布里渊区
- 格式:ppt
- 大小:1.23 MB
- 文档页数:13
布里渊区通俗理解-概述说明以及解释1.引言1.1 概述布里渊区是一个在物理和数学领域中具有重要意义的概念,它主要用来描述在给定条件下某一物体或物体集合的邻域。
布里渊区的概念源于法国物理学家亚历山大·布里渊的研究成果,他发现了一种描述物体在空间中的局部特性的方法。
布里渊区的概念不仅在物理学领域中被广泛应用,同时也在计算机图形学、材料科学、生物学等领域中具有重要作用。
在本文中,我们将深入探讨布里渊区的概念、应用以及重要性,希望能够对读者有所启发和帮助。
通过了解布里渊区的相关知识,我们可以更好地理解物体在空间中的局部结构和特性,为我们探索和应用这些知识提供了理论基础。
在日常生活中,布里渊区的概念也有着重要的意义,可以帮助我们更好地理解世界的复杂性,促进科学技术的发展和创新。
展望未来,布里渊区的研究和应用将会不断深化和拓展,为人类社会的进步和发展做出更大的贡献。
1.2 文章结构本文将分为三个主要部分来讨论布里渊区的通俗理解。
在引言部分,我们将简要介绍布里渊区的概念、文章结构和撰写本文的目的。
在正文部分,我们将详细探讨布里渊区的概念,其在实际应用中的情况以及在各领域中的重要性。
最后,在结论部分,我们将总结布里渊区的作用,讨论其在日常生活中的意义,并展望未来布里渊区的发展方向。
通过这样的结构安排,读者可以系统地了解布里渊区的相关知识,并深入理解其在现实生活中的应用和意义。
1.3 目的2.正文2.1 布里渊区的概念布里渊区(英文名为Boulevard区)是一种在计算机科学领域中常用的概念,用于描述一种数据结构的布局方式。
布里渊区是指内存中的一段连续地址空间,通常用来存储程序代码、全局变量和静态变量。
在操作系统中,布里渊区还可以用于存放动态链接库和共享库的代码段和数据段。
布里渊区的特点是具有一定的大小和位置,可以在运行时被操作系统动态地分配和回收。
布里渊区的概念主要用于优化内存管理和提高程序的执行效率。
§5.5 布里渊区本节我们举例说明二维和三维晶格的布里渊区。
一、二维正方格子正格子原胞基矢 a a a a == 2,1; 倒格子原胞基矢 ab a b π=π=22,21 。
如图5.10所示,倒格子空间离原点最近的倒格点有四个,相应的倒格矢为b b b b 2,2,1,1--, 它们的垂直平分线的坐标是 ak x π±= 及 a k y π±= 这些垂直平分线围成的区域就是简约布里渊区。
它也是一个正方形,其中一些特殊点和线有惯用的符号表示,中心:Γ; 边界线中心:X ; 角顶点:M; ΓX 线:∆; ΓM 线:∑。
离Γ点次近邻的四个倒格点相应的倒格矢是b b b b b b b b 21,21),2(1,21+--+-+它们的垂直平分线,同第一布里渊区边界围成的区域合起来成为第二布里渊区,这个区的各部分别平移一个倒格矢,可以同第一个区重合。
同理可得第三,第四,……,一系列布里渊区。
二、体心立方格子正基矢 )(21k j i a a ++-=, )(22a a +-= , )(23a a -+= 。
可证倒基矢 )(21k j ab +π= , )(22k i ab +π= , )(23i j ab +π= 。
(习题:证明bcc 的倒格子是fcc 。
)倒格矢:图5.10])21()31()32[(2332211k n n j n n i n n ab n b n b n G n +++++π=++= 离原点最近的有12个倒格点,其坐标可一般地写为)21,31,32(2n n n n n n a +++π. 具体写出是)0,1,1(2a π, )0,1,1(2aπ )0,1,1(2a π, )0,1,1(2aπ )1,0,1(2a π, )1,0,1(2aπ )1,0,1(2a π, )1,0,1(2aπ )1,1,0(2a π, )1,1,0(2aπ )1,1,0(2a π, )1,1,0(2aπ 相应的倒格矢长度为 π=22),,(321an n n G 这12个倒格矢的中垂线围成菱形正面体,称为简约布里渊区,如图5.11所示,其体积正好是倒格子原胞的大小。
布里渊区的名词解释布里渊区是指在光学和无线电工程中,光纤或导波管中因材料非线性而产生的相位调制现象。
这个现象是由于不同频率的光波在光纤中传播时,会发生频率的混合与干涉,导致光波的相位发生变化。
在布里渊区内,光纤中的光波与光纤内部的声波相互作用产生布里渊散射。
布里渊散射是指当光纤中的光波与声波相互作用时,部分光能被散射出去。
这种散射现象是由光波与光纤中声波的相互作用引起的。
光纤中的声波可以由光波引导产生。
当光波在光纤中传播时,由于光纤材料的非线性特性,光波的电场强度会随着光纤中的声波的存在而发生变化。
这种变化会导致光波的相位发生调制。
在布里渊区内,声波的频率与光波的频率非常接近,使得声波与光波发生有效的相互作用。
布里渊区的大小取决于光纤的参数以及传输信号的频率。
对于光纤通信系统来说,布里渊区的存在会对信号的传输产生一定的影响。
当信号频率位于布里渊区时,光纤中的声波与光波的相互作用会导致信号的相位失真和功率损耗。
因此,在设计和实施光纤通信系统时,需要考虑布里渊散射对信号传输的影响,并采取相应的措施来减小布里渊区对信号质量的影响。
布里渊区的现象不仅存在于光纤中,还可以在其他一些导波管(如微纳米波导)中观察到。
这些导波管中的布里渊散射现象也会对波导中传输的信号产生影响。
除了在通信领域中的应用,布里渊区的现象还在光纤传感、光子晶体等领域有着广泛的应用。
通过利用布里渊区的特性,可以设计出基于布里渊散射的传感器,用于测量温度、压力等物理量。
此外,在光子晶体中,布里渊散射也起着重要的作用,可以用于控制和调制光子的传输和储存。
总的来说,布里渊区是光纤或导波管中由于材料非线性而产生的相位调制现象。
它在光纤通信、光纤传感和光子晶体等领域都有着重要的应用。
在光纤通信领域,布里渊散射的存在对信号的传输质量产生一定的影响,因此需要在系统设计中考虑并采取相应的措施来减小布里渊区对信号的影响。
的Wigner-Seitz原胞给出。
金刚石结构的Si、Ge和闪锌矿结构的Ⅲ-Ⅴ族半导体等, 都具有面心立方Bravais格子, 因此都具有体心立方的倒格子, 从而也都具有相同形状的第一Brilouin区, 为截角八面体(即是由6个正方形和8个正六边形构成的14面体)。
3布里渊区的特殊k点采样问题研究介绍在各种周期性边界条件的第一原理计算方法中,需要涉及到在布里渊区的积分问题,例如总能、电荷密度分布,以及金属体系中费米面的确定等等。
如果采用普通的在布里渊区内均匀选取k点的方法,那么为了得到精确的结果点的密度必须很大,从而导致非常大的计算量。
这使得计算的效率非常低下。
因此,需要寻找一种高效的积分方法,可以通过较少的点运算取得较高的精度。
而这些k点被称之为“平均值点”(Baldereschi)或者“特殊点”(Chadi, Cohen)。
[1]基本思想Chadi和Cohen最早提出了这种特殊点的数学基础[1]。
考虑一个光滑函数,我们可以将其展为傅立叶级数:假设另有一个拥有体系全部对称性(对称性用对称群表示)的函数,满足条件,则我们可以将用展开如下:其中是对称群的阶数。
设,将上式的求和顺序重新组合可以得到其中是距离原点第近邻的球半径,按升序排列,且。
需要注意的是限制条件具有球对称性,也即高于的对称性,所以满足限制条件的格点集合并不一定都是等价的——或说可以通过中的操作联系起来的——格点。
方程(3)中的函数满足下列条件:上式中是倒格矢,是满足条件的格点数。
五个方程分别表明函数在第一布里渊区内成奇函数、具有正交性、周期性、体系对称性和完备性。
对于特殊点法而言,前两条更为重要。
注意到上面公式中的求和从1开始,因此需要对的情况进行单独定义。
我们定义,则函数的平均值为:那么该如何得到呢?注意方程(3),如果存在这样的特殊点,使其满足:>那么立刻可以得到,这样的点被称为“平均值点”。
但是普遍的讲,满足上述条件的点并不存在。
二维矩形格子的布里渊区
二维矩形格子的布里渊区是一个正方形,其中包含了矩形格子的所有布里渊区。
布里渊区是指在倒空间中,由晶格点连接而成的区域。
对于二维矩形格子,其晶格常数可以分别记为a和b。
布里渊区的边长可以分别表示为2π/a和2π/b。
因此,布里渊区的面积为(2π/a) * (2π/b) = 4π²/(ab)。
布里渊区的形状取决于晶格的几何形状。
对于二维矩形格子,布里渊区是一个正方形,其边长为2π/a和2π/b。
这个正方形的四个顶点分别对应着倒空间中的四个高对称点。
在布里渊区内,任意两个高对称点之间的连线即为布里渊区的边界。
布里渊区在固体物理中具有重要的意义,它决定了能带结构、电子传导性质等物理性质。
通过研究布里渊区的形状和大小,可以了解材料的电子结构和导电性质等方面的信息。