价键理论、晶体场理论讲解
- 格式:doc
- 大小:1.27 MB
- 文档页数:65
配位化学讲义第四章(1)价键理论、晶体场理论第三章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论、②晶体场理论、③分子轨道理论第一节价键理论(Valencebond theory)由L.Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp3、sd3杂化四面体顶点Ni(CO)4sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2-dsp2、d2p2 杂化正方形顶点[PtCl4]2-d2sp3杂化八面体顶点[Fe(CN)6]4-sp杂化直线型[AgCl2]-二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
例:[HgI3]- (D3h群)平面三角形A1′:d z2、sE′:(p x、p y )、(d x2-y2、d xy)A 2″:p zE″:(d xz、d yz)2、σ轨道杂化方案1)四面体分子AB4(Td)[CoCl4]2-以四个杂化轨道的集合作为分子点群(Td)表示的基,确定该表示的特征标:r1r4r2r3恒等操作,χ(E)=4 C3操作,χ(C3)=1对C2、S4和σd用同样方法处理,得T d E 8C3 3C2 6S46σdΓ 4 1 00 2约化:T d E 8C3 3C2 6S4 6σdA1 1 1 1 11A2 1 1 1 -1 - 1E 2 -1 2 00 (z2, x2-y2)T1 3 0 -1 1 -1T2 3 0 -1 -11 (xy,xz,yz) (x,y,z)a(A1)=1/24(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1a(A2)=1/24 [1×4+8×1×1+3×1×0+6×(-1)×0+6×(-1)×2]=0a(E)=1/24 [2×4+8×(-1)×1+3×2×0+6×0×0+6×0×2]=0a(T1)=1/24 [3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2]=0a(T2)=1/24 [3×4+8×0×1+3×(-1)×0+6×(-1)×0+6×1×2]=1约化结果Γ=A1+T2由特征标表:A1T2s(p x、p y、p z)(d xy、d xz、d yz)可有两种组合:sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)* 以一组杂化轨道为基的表示的特征标的简化计算规则:①不变(1)②改变符号(-1)③与其他函数变换(0)2)再以[CdCI5]3-三角双锥(D3h)为例:41325D3h E 2C33C2σh2S3 3σvΓ 5 2 13 0 3约化结果:Γ= 2A1′+A2〞+E′A1′A2〞E′s p z (p x、p y)d z2(d xy、d x2-y2)两种可能的组合:(s、d z2、p z 、p x、p y)( s、d z2、p z、d xy、d x2-y2)3)[HgI3]- ( D3h)123D3h E 2C3 3C2σh2S33σvΓ 3 0 13 0 1约化得:Γ=A1′+E′A1′E′s (p x、p y)d z2(d xy、d x2-y2)可能的组合有:(s、p x、p y)、(s、d xy、d x2-y2)、(d z2、p x、p y)、(d z2、d xy、d x2-y2)4)平面AB4型分子(D4h)例:[PtCl4]2-C2′C2″D4h E 2C4(C41,C43) C2(C42) 2C2′2C2″i 2S4σh 2σv2σdΓ 4 0 0 20 0 0 4 2 0约化得:Γ=A1g+B1g+E uA1g B1g E us d x2-y2(p x、p y)d z2两种类型:dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+O h E 8C3 6C26C4 3C2i 6S4′8S6 3σh 6σdΓ 6 0 0 2 2 0 0 0 4 2约化得:Γ=A1g+E g+T1u A1g E gT1us (d z2、d x2-y2) (p x、p y、p z)只有唯一的d2sp3杂化(d z2、d x2-y2、s、p x、p y、p z)3、π成键杂化方案在AB n分子中,原子A上要有2n个π型杂化轨道和在B原子上的2n个π原子轨道成键。
试论价键理论和晶体场理论的统一性
键理论和晶体场理论是研究化学分子结构的两种理论,它们都是量子力学的重要分支,它们之间存在着统一性。
键理论,又被称为“简捷理论”,主要是研究原子之间的键的性质,它将原子之间的键分为两类:covalent bond(共价键)
和ionic bond(离子键),它用条件分析法(Condition Analysis)来计算分子的结构。
它对共价键的计算是基于量子
力学中概率波函数(Probability Wavefunction)的概念,通过
计算概率波函数来计算键的长度、强度以及其他性质。
晶体场理论是一种量子力学的理论,它是用来研究分子的结构的,它的基础是构建分子的电子能量层次,用来研究分子的结构,它是基于量子力学中晶体场的概念,它可以用来计算分子的能量、结构、化学反应以及各种其他性质。
键理论和晶体场理论之间的统一性是基于量子力学的概念,它们都可以用来研究分子的结构,但是它们使用的方法不同,键理论主要是基于概率波函数,而晶体场理论是基于晶体场,但它们都可以用来计算分子的能量、结构以及其他性质。
此外,键理论和晶体场理论之间还存在着一些交叉性,例如,键理论可以用来计算离子键的结构,而晶体场理论可以用来计算共价键的结构,这表明它们之间存在着一定的统一性。
总之,键理论和晶体场理论是研究化学分子结构的两种重要理论,它们相互之间存在着一定的统一性,可以用来计算分子的能量、结构以及其他性质。
第四章配合物的化学键理论目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。
三种理论:①价键理论(Valence bonding theory VBT)②晶体场理论(Crystal field theory CFT)③分子轨道理论(Molecular orbital theory MOT)第一节价键理论由L. C. Pauling提出要点:①配体的孤对电子可以进入中心原子的空轨道;②中心原子用于成键的轨道是杂化轨道(用于说明构型)。
一、轨道杂化(Hybrid orbital)及对配合物构型的解释能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。
对构型的解释(依据电子云最大重叠原理:杂化轨道极大值应指向配体)指向实例sp 3、sd 3杂化 四面体顶点 Ni(CO)4COCOOCCOsp 2、sd 2、dp 2、d 3杂化 三角形顶点 [AgCl 3]2-Cl ClClAgdsp 2、d 2p 2杂化 正方形顶点 [PtCl 4]2-ClClClClPtd 2sp 3杂化 八面体顶点 [Fe(CN)6]4-CNNCFeNCCNsp杂化直线型[AgCl2]-二、AB n型分子的杂化轨道1、原子轨道的变换性质考虑原子轨道波函数,在AB n分子所属点群的各种对称操作下的变换性质。
O.+xf = x(p x) = ?类型轨道多项式sp x xp p y yp z zd xy xyd xz xzd d yz yzd x2-y2x2-y2d z22z2-x2-y2(简记为z2)*s轨道总是按全对称表示变换的。
2、如何判定原子轨道波函数的对称类型例:[HgI3]−(D3h群)平面三角形III HgD 3hE 2C 33σv 11111-12-10z(x, y)x 2+(x2(x3C 2σh 2S 3A 1'A 2'E'A 1"A 2"11111-12-101111-1-111-1-1-112-1-21E"A 1′: d z 2、sE ′:(p x 、p y )、(d x 2-y 2、d xy )A 2″: p z E ″: (d xz 、d yz )3、轨道杂化方案步骤:A、以一组杂化轨道集合作为分子所属点群表示的基,写出群的表示。
B、将上述表示约化为不可约表示。
C、在点群的特征标表中查出与上述不可约表示对应的原子轨道。
D、确定原子轨道的正确组合。
1)四面体分子AB4(Td)[CoCl4]2−以四个杂化轨道的集合作为分子点群(Td)表示的基,确定该表示的特征标:r1r4r2r3T d E 8C3 3C26S46σdΓ?????r 1r 2r 3r 4恒等操作,χ(E)=4000100110r2r300001r4r1r2r3r4r1r 1r 2r 3r 4C 3C 3操作,χ(C 3)=1100100000r2r300101r4r1r3r4r2r1r 1r 2r 3r 4C 2C 2操作,χ(C 2) = 0000011000r2r300101r4r1r1r4r3r2r 1r 2r 3r 4S 4旋转反映操作 χ(S 4) = 0110000000r2r310001r4r1r3r1r2r4r 1r 2r 3r 4反映操作 χ(σd ) = 2000100100r2r300101r4r1r2r4r3r1T d E 8C3 3C26S4 6σdΓ 4 1 0 0 2约化:T d A1 A2 E T1 T2E8C33C26S46 d11111111-1-12-1200330-11-10-1-11(xy, yz,xz)(2z2-x2-y2a(A 2) =a(E) =a(A 1) =a(T 1) =a(T 2) =241241241241241×[3×4+8×0×1+3×(-1)×0+6×(-1)×0+6×1×2]×[3×4+8×0×1+3×(-1)×0+6×1×0+6×(-1)×2×[2×4+8×(-1)×1+3×2×0+6×0×0+6×0×2]×[1×4+8×1×1+3×1×0+6×(-1)×0+6×(-1)×(1×4+8×1×1+3×1×0+6×1×0+6×1×2)=1约化结果Γ=A 1+T 2由特征标表:A 1 T 2s (p x 、p y 、p z )(d xy 、d xz 、d yz)可有两种组合:sp3(s、p x、p y、p z)、sd3(s、d xy、d xz、d yz)* 以一组杂化轨道为基的表示的特征标的简化计算规则:①不变(1)②改变符号(-1)③与其他函数变换(0)2)再以[CdCl5]3−三角双锥(D3h)为例:42135D3h E 2C33C2 σh2S3 3σvΓ 5 2 1 3 0 3约化结果:Γ= 2A1′+A2〞+E′A1′A2〞E′s p z (p x、p y)d z2(d xy、d x2-y2)两种可能的组合:(s、d z2、p z 、p x、p y)( s、d z2、p z、d xy、d x2-y2)3)[HgI3]− ( D3h)213D3h E 2C3 3C2 σh2S33σvΓ 3 0 1 3 0 1约化得:Γ=A1′+E′A1′E′s (p x、p y)d z2(d xy、d x2-y2)可能的组合有:(s 、p x 、p y )、 (s 、d xy 、d x 2-y 2)、(d z 2、p x 、p y )、 (d z 2、d xy 、d x 2-y 2)4)平面AB 4型分子(D 4h ) 例:[PtCl 4]2−C 2'C 2"r 2r 3r 4r 1D4h E 2C4(C41,C43) C2(C42) 2C2′2C2″i 2S4σh 2σv2σdΓ 4 0 0 2 0 0 0 4 2 0约化得:Γ=A1g+B1g+E uA1g B1g E us d x2-y2(p x、p y)d z2两种类型:dsp2(d x2-y2、s、p x、p y)、d2p2(d z2、d x2-y2、p x、p y)5)八面体AB6(O h) 例:[Fe(H2O)6]3+r1r2r5r3r4r6C3C 4C2O h E 8C3 6C26C4 3C2i 6S4′8S6 3σh 6σdΓ 6 0 0 2 2 0 0 0 4 2约化得:Γ=A1g+E g+T1uA1g E g T1us (d z2、d x2-y2) (p x、p y、p z)只有唯一的d2sp3杂化(d z2、d x2-y2、s、p x、p y、p z)4、对配合物磁性的解释1)配合物磁性与配合物中成单电子数的关系配合物的分子磁矩μ与配合物中未成对电子数n 有关。
如:对某些配合物:µ=[n(n+2)]1/2 B.M.1B.M. = 9.27×10-21erg·G-12)实验发现:K4[Fe(CN)6] µ=0.00 B.M.FeSO4.7H2O µ=5.10 B.M.3) 价键理论的解释(内、外轨型配合物)内轨型配合物,如:K4[Fe(CN)6 ] 自由Fe2+( d 6 ):3d4s4p 重排为:3d4s4p[Fe(CN)6]4−3d4s4pd2sp3外轨型配合物:如[Fe (H2O)6]2+4d 3d4s4psp3d25、价键理论的成功与不足1)成功①杂化轨道配位数、构型②内、外轨型配合物磁性③继承了传统的价键概念(配位共价键),简明易于理解。
2)不足①定量程度差,无法解释配合物的吸收光谱②无法说明Cu2+平面正方形内轨型配合物的稳定性如[Cu(NH3)4]2+:Cu2+3d4s4p4d平面正方形构型:dsp23d4s4p第二节晶体场理论(Crystal field theory)一、概述由H. Bethe和J. H. van Vleck提出理论模型:①把配体视为点电荷或偶极子(不考虑其结构);②配体与中心离子间的作用是纯静电相互作用,不形成任何共价键。
二、d轨道能级分裂(单电子能级的分裂)1、定义:由于d轨道空间取向不同,与非球形对称静电场的作用则不相同,引起d轨道能级发生分裂。
2、群论在d轨道能级分裂中的应用静电作用模型:d x2-y2d z2d xyd yz d xz将一组五个d轨道波函数作为配位场所属点群表示的基,并由此决定d轨道能级分裂的方式。
由O h群特征标表:A 1g A 2gT 1g T 2g A 1u A 2u T 1u T 2uE u O hE gE 8C 36C 26S 46σd1111111-1-112-1002330-11-101-1-16C 43C 2i 8S 63σh 111111-111-120-1203310-1-1-10-111111111-1-112-1002330-11-101-1-1-1-1-1-1-1-11-1-11-201-20-3-3-101111-1(xy, yz(2z 2-x 2(x, y, z)(xy 、yz 、xz) → (d xy 、d yz 、d xz ) → t 2g 不可约表示的基 (x 2-y 2、z 2) → (d x 2-y 2、d z 2) → e g 不可约表示的基O h T d D4hs a1g a1a1gp t1u t2a2u+e ud e g+t2g e+t2a1g+b1g+b2g+e gf a2u+t1u+t2u a2+t1+t2a2u+b1u+b2u+2eg a1g+e g+t1g+t2g a1+e+t1+t22a1g+a2g+b1g+b2h e u+2t1u+t2u e+t1+2t2a1u+2a2u+b1u+b3、正八面体场中d轨道的分裂1)d轨道与电场的作用d x2-y2 d xy2)能级计算:E s 4Dq6Dq=e g(dx2_y2t2g(d xy, d yz,o10D自由离子球形场八面体场d轨道分裂能Δo=E eg-E t2g=10Dq (1)根据能量重心原理:2E eg+3E t2g=5Es。
若取Es为能量零点,则2E eg+3E t2g=0 (2)联合(1)与(2)方程,解得E eg = 6DqE t2g = -4Dq4、正四面体场中d轨道能级的分裂1) d轨道的分组T d A1 A2 E T1 T2E8C33C26S46 d11111111-1-12-1200330-11-10-1-11(xy, yz,xz)(2z2-x2-y22) d轨道与电场的作用d z2d x2-y2d xy d yz d xz-------- --------- --------------- -------------- -------------- -------------- -------- --------- --------------- -------------- -------------- --------------d x2-y2d xy极大值指向面心极大值指向棱的中点ABCoOACαβαsin α = A C /OAsin β = AB/OAOABβA'A"3a2a2aA'AA"OOA 22a ()+a222==AA"=aa 22a 2ABCa 23a 2OA 22a ()+a222==AA"=2a 2AB =a2AC =sin β = AB/OA sin α = A C /OA ==2313==54.7β=α=0.8160.57735.3ooβ> α,这表明d xy与点电荷A 作用比d x2-y2更强。