tl494引脚功能
- 格式:docx
- 大小:36.74 KB
- 文档页数:2
tl494各引脚功能电压无论《PS—ON》是高电平还是低电平,1脚-00V ;2脚-4.8V ; 3脚-00V ;4脚-3.3V《有变00V; 5脚-1.3V;6脚-3.6V7脚-00V ;8脚-2.2V 9脚-00V ; 10脚-00V ; 11脚-2.2V12脚-14.2V<br/>13脚-5V ; 14脚-5V;15脚-5V 16脚-0.4VTL494详细功能介绍如下:第(1)脚为第一组误差放大器的同相输入端。
由+5V输出电压经R35、VR、R13取样送入第(1)脚。
第(2)脚为第一组误差放大器的反相输入端。
从第(14)脚输出的5V基准电压经R14、R20分压得到约4V的电压,与第(1)脚电压进行比较。
由于输+5V电压升高时第(1)脚取样电压成比例升高,当此电压超过4V时,误差放大器输出高电平,通过IC内部比较器控制输出脉宽减小,以使5V电压下降,达到稳压的目的。
第(3)脚为第一误差放大器输出的引出端。
外接C19、C20、C21、R11组成的频率校正网路,以防止放大器发生自激。
第(4)脚为死区控制端。
当IC工作在推挽状态时,其两组输出脉冲使两只推挽开关管依次导通和关断。
为了避免开关管的滞事效应造成瞬间导通而击穿开关管,在脉冲的序列之间留有一定的空隙,称为死区。
改变第(4)脚的电压,可改变死区时间。
当第(4)脚电压大于5V基准电压时,输出脉冲关断。
在0-5V,死区时间成比例增大。
利用此功能,第(4)脚在维亚开关电源中作为输出过压保护。
次级输出的12V电压,经R26、D7和R10分压后加到第(4)脚上,与TR3、TR4共同构成+-5V和+12V 的过压保护电路。
正常情况下,TR4的基极由R28接在+5V输出端,R29接在输出端,R28和R29的分压使TR4偏置电压小于0.6V,TR4截止,其集电极经R36呈现近似5V的高电平,因而使TR3导通,由12V电压接出R26与地短路,二极管D7反偏截止,因而此部分电路与第三者第(4)脚电压无关。
TL494实现单回路控制器及引脚功能详解本文介绍了以电压驱动型脉宽调制控制集成电路TL494为核心元件并加上简单滤波电路及RC放电回路所构成的回路控制器。
它能把脉冲宽度变化的信号转换成与脉冲宽度成正比变化的直流信号,进而实现闭环单回路控制。
TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。
本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。
1 TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。
图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和1 1、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
2 回路控制器工作原理回路控制器的方框图如图2所示。
被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。
设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。
反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。
TL494功能简介
TL494是一种电压驱动型脉宽调制集成电路,具有两路脉宽调制信号输出,同时控制推挽式电路异步开/关动作。
开关频率约30KHz,由#5外接电容和#6外接电阻决定,时间常数为t=1/RC。
当TL494工作在双路推挽方式时,#8、#11两输出脚的最大脉宽相位小于或等于180°。
其内部的误差比较放大器将检测到的驱动脉冲宽度自动修正,所以有较好的自控调制能力。
TL494的内部包含两个相同的误差放大器,它们的输出经二极管隔离后送至比较器的同相端,与反相端的锯齿电压相比较,并决定输出电压的脉宽,调宽过程可由#3上的电压来控制,也可分别经误差放大器进行控制。
两个放大器独立使用,用于反馈电压和过流保护。
#3外接RC网络,以提高整个电路的稳定性。
脚功能简介:
#1、误差比较放大器同相输入。
#2、误差比较放大器反相输入。
#3、放大信号输出。
#4、死区时间控制。
输入0—4V直流电压,控制输出脉冲的占空比(0—
0.4)。
在此基础上,占空比还受反馈信号控制。
该脚还常用作软启动
控制端。
#5、振荡定时电容。
#6、振荡定时电阻。
#7、地。
#8、#11、输出驱动器C极。
#9、#10、输出驱动器E极。
#12、电源。
电压范围7—40V。
#13、驱动方式控制。
高电平为双路输出,低电平为双路同相输出。
#14、5V基准电压输出。
#15、控制器反向输入。
#16、控制器同相输入。
开关集成电路TL494内部原理图:TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。
本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。
1、TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。
图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
2、回路控制器工作原理回路控制器的方框图如图2所示。
被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。
设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。
反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。
这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。
用TL494实现的单回路控制器的电路原理图如图3所示。
TL494的标准应用参数 - 大功率逆变器电路设计过程详解TL494的标准应用参数:Vcc(第12脚)为7~40V,Vcc1(第8脚)、Vcc2(第11脚)为40V,Ic1、Ic2为200mA,RT 取值范围1.8~500kΩ,CT取值范围4700pF~10μF,最高振荡频率(fOSC)≤300kHz图4为外刊介绍的利用TL494组成的400W大功率稳压逆变器电路。
它激式变换部分采用TL494,VT1、VT2、VD3、VD4构成灌电流驱动电路,驱动两路各两只60V/30A的MOS FET开关管。
如需提高输出功率,每路可采用3~4只开关管并联应用,电路不变。
TL494在该逆变器中的应用方法如下:图4 400W大功率稳压逆变器电路第1、2脚构成稳压取样、误差放大系统,正相输入端1脚输入逆变器次级取样绕组整流输出的15V直流电压,经R1、R2分压,使第1脚在逆变器正常工作时有近4.7~5.6V取样电压。
反相输入端2脚输入5V基准电压(由14脚输出)。
当输出电压降低时,1脚电压降低,误差放大器输出低电平,通过PWM电路使输出电压升高。
正常时1脚电压值为5.4V,2脚电压值为5V,3脚电压值为0.06V。
此时输出AC电压为235V(方波电压)。
第4脚外接R6、R4、C2设定死区时间。
正常电压值为0.01V。
第5、6脚外接CT、RT设定振荡器三角波频率为100Hz。
正常时5脚电压值为1.75V,6脚电压值为3.73V。
第7脚为共地。
第8、11脚为内部驱动输出三极管集电极,第12脚为TL494前级供电端,此三端通过开关S控制TL494的启动/停止,作为逆变器的控制开关。
当S1关断时,TL494无输出脉冲,因此开关管VT4~VT6无任何电流。
S1接通时,此三脚电压值为蓄电池的正极电压。
第9、10脚为内部驱动级三极管发射极,输出两路时序不同的正脉冲。
正常时电压值为1.8V。
第13、14、15脚其中14脚输出5V基准电压,使13脚有5V高电平,控制门电路,触发器输出两路驱动脉冲,用于推挽开关电路。
TL494芯片简介本系统中采用了德州仪器公司(Texas Instrument)生产的PWM发生器TL494,它是典型的固定频率脉宽调制控制集成电路,它包含了控制开关电源所需的全部功能,可作为单端正激双管式、半桥式、全桥式开关电源的控制系统,其基本电路单元如图1所示。
图1 TL494内部功能方框图与基本单元电路①引脚说明。
的1、2和16、15脚分别为两个误差放大器的同相向和反相输进端,两个误差放大器可构成电压反馈调节器和电流反馈调节器,分别控制输出电压的稳定和输出过流的保护。
3脚为两个放大器公共输出端,也称补偿端。
的8、11、12为电源端,7脚为地,14脚为参考电平,正常工作时,输出标准的+5V电压。
13脚为输出方式控制端,当该脚为高电平时,形成双路输出方式,若为低电平时,则为同步工作方式。
②工作方式。
输出脉冲的宽度调制,是通过电容器C上的正极性锯齿波电压与其他两个控制信号电压进行比较来实现的。
激励输出管Q1和Q2的或非门工作状态,是只有在双稳态触发器的时钟输进为低电平时才选通,这种情形只有在锯齿被电压大于控制信号时出现。
因此,控制信号幅度的增大,将相应地使输出脉冲的宽度线性减小。
控制信号由IC外部输进,一路选到死区时间比较器控制端,一路送到两误差放大器输进端,又称PWM比较器输进端。
死区时间控制比较用具有120mV有效输进补偿电压,它限制最小输出死区时间近似即是锯齿波周期时间的4%。
在输出控制接地时,将使最大占空系数为己知输出的96%;而在输出接参考电平时,占空比则是给定输出的48%。
当把死区时间控制输进端设置在一个固定的电压值时(范围在0~3.3V之间),就能在输出脉冲上产生附加的死区时间。
脉宽调制比较器为误差放大器调节输出脉冲宽度提供了一条途径:例如当反馈电压从0.5V变到3.5V时,则输出脉宽从被死区时间控制输进端确定的最大导通时间里下降到0。
若TL494片内的两个误差放大器的反相输进端(2脚或15脚)的参考电位一定,当它们的同相输进端电平升高时,则可使片内的两个驱动三极管输出的脉宽调制控制脉冲的宽度变窄;反之,可使脉冲宽度变宽。
TL494(ka7500b)是专用双端固定频的脉冲调制器件,下图是其TL494内部结构,引脚图及典型应用电路,它结合了全部方块图所需之功能,在切换式电源供给器里可单端式或双坡道式的输出控制。
应用电路请参考下图1,线性锯齿波振荡器乃为频率调整器件(frequency programmable),在脚5与脚6连接两个外部元件RT与CT,既可获得所需之频率其频率可由下式计算得知图1 TL494(ka7500b)控制器的引脚图,内部结构典型应用电路TL494主要参数:power supply voitage 电源电压line regulation输入电压调节率load regulation 负载调整率outpot ripple输出纹波电压short circuit current短路电流efficiency 效率TL494工作原理分析输出脉波宽度调变之达成可借着在电容器CT端的正锯齿波形与两个控制信号中的任一个做比较而得之。
电路中的NOR闸可用来驱动输出三极管Q1与Q2,而且仅当正反器的时钟输入信号是在低准位时,此闸才会在有效状态,此种情况的发生也是仅当锯齿波电压大于控制信号电压的期间里。
当控制信号的振幅增加时,此时也会一致引起输出脉波宽度的线性减少。
如图2所示的波形图。
图2 TL494控制器时序波形图外部输入端的控制信号可输入至脚4的截止时间控制端,与脚1、2、15、16误差放大器的输入端,其输入端点的抵补电压为120mV,其可限制输出截止时间至最小值,大约为最初锯齿波周期时间的4%。
当13脚的输出模控制端接地时,可获得96%最大工作周期,而当13脚接制参考电压时,可获得48%最大工作周期。
如果我们在第4脚截止时间控制输入端设定一个固定电压,其范围由0V至3.3V之间,则附加的截止时间一定出现在输出上。
PWM比较器提供一个方法给误差放大器,乃由最大百分比的导通时间来做输出脉波宽度的调整,此乃借着设定截止时间控制输入端降至零电位,而此时再回授输入脚的电压变化可由0.5V至 3.5V之间,此二个误差放大器有其模态(common-mode)输入范围由-0.3V至(Vcc-2)V,而且可用来检知电源供给器的输出电压与电流。
TL494实现单回路控制器及引脚功能详解本文介绍了以电压驱动型脉宽调制控制集成电路TL494为核心元件并加上简单滤波电路及RC放电回路所构成的回路控制器。
它能把脉冲宽度变化的信号转换成与脉冲宽度成正比变化的直流信号,进而实现闭环单回路控制。
TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。
本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。
1 TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。
图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
2 回路控制器工作原理回路控制器的方框图如图2所示。
被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。
设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。
反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。
开关集成电路TL494介绍及其应用开关集成电路TL494介绍及其应用开关集成电路TL494介绍及其应用TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。
本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。
1、TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。
图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
2、回路控制器工作原理回路控制器的方框图如图2所示。
被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。
设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。
反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。
这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。
TL494开关电源电路图,引脚功能及参数讲解TL494系列设备包含所有功能在构造脉宽调制中所必需的(PWM)控制电路在单片机上。
主要为电源控制而设计设备提供了灵活性,以定制电源控制电路到一个特定的应用。
TL494系列基本描述:TL494设备包含两个错误放大器,一个错误放大器片上可调振荡器,有死区时间控制(DTC)比较器,一种脉冲转向控制触发器5v, 5%精度调节器,输出控制电路。
误差放大器显示共模电压范围从- 0.3 V到VCC - 2v。
的空时控制比较器有一个固定的偏移量,提供大约5%的停止时间。
芯片上的振荡器是否可以通过终止RT来绕过引用输出并提供一个锯齿输入到CT,或者它可以驱动同步多轨共用电路电力供应。
未提交的输出晶体管提供任何一种共发射极或发射-跟随器输出能力。
TL494系列设备提供推拉或单端输出操作,其中可选择通过输出控制功能。
该体系结构该设备中禁止任何一种输出的可能性在推-拉操作期间被脉冲两次。
TL494系列基本特征:·完成PWM电源控制电路·未承诺输出的200毫安接收器或电流源·输出控制选择单端或推挽式操作·内部电路禁止双脉冲直至输出·可变死时间提供控制总行驶里程·内部调节器提供稳定的5伏电压参考供应与5%的公差·电路结构允许简单的同步TL494系列电路图及原理图:TL494系列主要应用:·电源:交流/直流、隔离、带PFC,>90w·电源:交流/直流、隔离、无PFC,<90w·电源:电信/服务器AC/DC电源:·太阳能许多独立的·洗衣机:低端和高端·电动自行车双控制器:模拟·烟雾探测器·太阳能逆变器·服务器电源·台式电脑·微波炉TL494系列开关电源电路图:TL494IN引脚图及功能说明:1IN+ 1 (I) 非逆变输入到误差放大器11IN- 2(I) 反向输入到误差放大器12IN+ 16(I) 非逆变输入到误差放大器22IN- 15(I) 反向输入到误差放大器2C1 8(O) BJT输出集电极端1C2 11(O) BJT输出集电极端2CT 5(-) 电容器端子用于设定振荡器频率DTC 4(I) 停止时间控制比较器输入E1 9(O) BJT发射器终端输出1E2 10(O) BJT输出集电极端2FEEDBACK 3(I) 反馈输入脚GND 7(-) 地OUTPUT CTRL 13(I) 选择单端/并行输出或推拉操作REF 14(O) 5伏参考调节器输出RT 6 (-) 用于设置振荡器频率的电阻端子VCC 12(-) 电源电压TL494IN核心参数及功能框图:制造商: Texas Instruments输出端数量: 2 Output开关频率: 300 kHz占空比-最大: 45 % 输出电压: 40V输出电流: 200 mA 最小工作温度: -40°C 最大工作温度: +85°C 封装: PDIP-16高度: 4.57 mm长度: 19.3 mm下降时间: 40 ns上升时间: 100 ns单位重量: 1 g。
TL494中文资料时间:2009-01-22 14:55:24 来源:资料室作者:集成电路编号: 15917 更新日期20120530 003144 TL494(ka7500b)是专用双端脉冲调制器件,TL494为固定频率的PWM控制电路,它结合了全部方块图所需之功能,在切换式电源供给器里可单端式或双坡道式的输出控制。
如图1所示为TL494控制器的内部结构与方块图其内部的线性锯齿波振荡器乃为频率可规划式(frequency programmable),在脚5与脚6连接两个外部元件RT与CT,既可获得所需之频率其频率可由下式计算得知图1 TL494(ka7500b)控制器的内部结构与方块图片输出脉波宽度调变之达成可借着在电容器CT端的正锯齿波形与两个控制信号中的任一个做比较而得之。
电路中的NOR闸可用来驱动输出三极管Q1与Q2,而且仅当正反器的时钟输入信号是在低准位时,此闸才会在有效状态,此种情况的发生也是仅当锯齿波电压大于控制信号电压的期间里。
当控制信号的振幅增加时,此时也会一致引起输出脉波宽度的线性减少。
如图2所示的波形图。
图2 TL494控制器时序波形图外部输入端的控制信号可输入至脚4的截止时间控制端,与脚1、2、15、16误差放大器的输入端,其输入端点的抵补电压为120mV,其可限制输出截止时间至最小值,大约为最初锯齿波周期时间的4%。
当13脚的输出模控制端接地时,可获得96%最大工作周期,而当13脚接制参考电压时,可获得48%最大工作周期。
如果我们在第4脚截止时间控制输入端设定一个固定电压,其范围由0V至3.3V之间,则附加的截止时间一定出现在输出上。
PWM比较器提供一个方法给误差放大器,乃由最大百分比的导通时间来做输出脉波宽度的调整,此乃借着设定截止时间控制输入端降至零电位,而此时再回授输入脚的电压变化可由0.5V至3.5V之间,此二个误差放大器有其模态(common-mode)输入范围由-0.3V至(Vcc-2)V,而且可用来检知电源供给器的输出电压与电流。
3. 工作原理5V基准源TL494内置了基于带隙原理的基准源,基准源的稳定输出电压为5V,条件是VCC 电压在7V以上,误差在100mV之内。
基准源的输出引脚是第14脚 REF.锯齿波振荡器TL494内置了线性锯齿波振荡器,产生0.3~3V的锯齿波。
振荡频率可通过外部的一个电阻Rt和一个电容Ct进行调节,其振荡频率为:f=1/RtCt,其中Rt的单位为欧姆,Ct的单位为法拉。
锯齿波可以在Ct引脚测量到。
运算放大器TL494集成了两个单电源供电的运算放大器。
运算放大器传递函数为ft(ni,inv)=A(ni-inv),但不能越出输出摆幅。
一般电源电路中,运放接成闭环运行。
少数特殊情况下使用开环,由外界输入信号。
两个运放的输出端分别接一个二极管,和COMP引脚以及后级电路(比较器)相连接。
这保证了两个运放中较高的输出进入后级电路。
比较器运算放大器输出的信号(COMP引脚)在芯片内部进入比较器正输入端,和进入负输入端的锯齿波比较。
当锯齿波高于COMP引脚的信号时,比较器输出0,反之则输出1.脉冲触发器脉冲触发器在锯齿波的下降沿且比较器输出1时导通,令两个中的一个输出端(依次轮流)片内三极管导通,并在比较器输出降到0时截止。
静区时间比较器静区(直译死区)时间由Dead Time Control引脚4设置,它通过一个比较器对脉冲触发器实行干扰,限制最大占空比。
可设置的每端占空比上限最高为45%,在工作频率高于150KHz时占空比上限是42%左右。
(当DTC引脚电平被设为0时)时序图4. 示例设计注意:以下的示例设计是过于陈旧的。
新的设计有更高的效率和更低的成本。
ATX半桥电源Buck拓扑稳压电源5. 参考文献TL494 Datasheet from Texas InstrumentsDesigning Switching Voltage Regulators With the TL494ATX电源技术详解请注意:TL494仅仅在大部分ATX电脑电源中应用。
TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。
本文介绍它与相应的输入、输出电路等一起构成一个单回路控制器。
开关集成电路TL494内部原理图:1、TL494管脚配置及其功能TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。
图1是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。
2、回路控制器工作原理回路控制器的方框图如图2所示。
被控制量(如压力、流量、温度等)通过传感器交换为0~5V的电信号,作为闭环回路的反馈信号,通过有源简单二阶低通滤波电路进行平滑、去除杂波干扰后送给TL494的误差放大器I的IN+同相输入端。
设定输入信号是由TL494的5V基准电压源经一精密多圈电位器分压,由电位器动端通过有源简单二阶低通滤波电路接入TL494的误差放大器I的IN-反相输入端。
反馈信号和设定信号通过TL494的误差放大器I进行比较放大,进而控制脉冲宽度,这个脉冲空度变化的输出又经过整流滤波电路及由集成运算放大器构成的隔离放大电路进行平滑和放大处理,输出一个与脉冲宽度成正比的、变化范围为0~10V的直流电压。
这个电压就是所需要的输出控制电压,用它去控制执行电路,及时调整被控制量,使被控制量始终与设定值保持一致,形成闭环单回路控制。
用TL494实现的单回路控制器的电路原理图如图3所示。
ATX电源中TL494各脚的作用第(1)脚为第一组误差放大器的同相输入端。
由+5V输出电压经R35、VR、R13取样送入第(1)脚。
第(2)脚为第一组误差放大器的反相输入端。
从第(14)脚输出的5V基准电压经R14、R20分压得到约4V的电压,与第(1)脚电压进行比较。
由于输+5V电压升高时第(1)脚取样电压成比例升高,当此电压超过4V时,误差放大器输出高电平,通过IC内部比较器控制输出脉宽减小,以使5V电压下降,达到稳压的目的。
第(3)脚为第一误差放大器输出的引出端。
外接C19、C20、C21、R11组成的频率校正网路,以防止放大器发生自激。
第(4)脚为死区控制端。
当IC工作在推挽状态时,其两组输出脉冲使两只推挽开关管依次导通和关断。
为了避免开关管的滞事效应造成瞬间导通而击穿开关管,在脉冲的序列之间留有一定的空隙,称为死区。
改变第(4)脚的电压,可改变死区时间。
当第(4)脚电压大于5V基准电压时,输出脉冲关断。
在0-5V,死区时间成比例增大。
利用此功能,第(4)脚在维亚开关电源中作为输出过压保护。
次级输出的12V电压,经R26、D7和R10分压后加到第(4)脚上,与TR3、TR4共同构成+-5V和+12V的过压保护电路。
正常情况下,TR4的基极由R28接在+5V输出端,R29接在输出端,R28和R29的分压使TR4偏置电压小于0.6V,TR4截止,其集电极经R36呈现近似5V的高电平,因而使TR3导通,由12V电压接出R26与地短路,二极管D7反偏截止,因而此部分电路与第三者第(4)脚电压无关。
第(4)脚电压为第(14)脚的5V基准电压经R12和R16分压的0.5V左右电压,设定末级半桥式开磁电路必要的死区时间。
当电源取样系统发生故障时,+5V电压升高或-5V电压因负载短路而降低时,TR4将导通,其集电极为低电平,使TR3截止。
12V电压经R26,使D7导通,第(4)脚电压被R10分压后仍为5V左右,使输出脉冲关断,电源保护,各组无输出。
tl494引脚功能
TL494是一种常用的PWM控制集成电路,具有多种功能,是
广泛应用于开关电源控制电路中的一款芯片。
TL494芯片引脚的功能可以分为电源引脚、控制引脚、输出引脚和反馈引脚四大类。
首先是电源引脚,该芯片共有9个电源引脚,分别是VCC、VREF、VC、VEE、VFB、VSENSE、VOUT、RT、CT。
其中,VCC是芯片的电源引脚,用于提供TL494的工作电压;VREF 是一个内部参考电压的来源;VC是来自电源的电压,用于给
内部电路提供参考电压;VEE是负电源引脚,用于提供负电
源电压;VFB和VSENSE分别是反馈电压和电流感应电压的
引脚,用于控制输出电压和电流;VOUT是PWM输出引脚,
输出PWM信号;RT和CT是内部振荡电路的引脚,通过改
变RT和CT的值,可以调整PWM信号的频率。
其次是控制引脚,该芯片共有两个控制引脚,分别是COMP
和FB。
COMP是PWM比较器的输入引脚,是TL494的核心
控制引脚之一,用于比较输入信号与反馈信号,控制PWM信
号的占空比;FB是反馈隔离引脚,用于与比较器输入信号进
行反馈,实现闭环控制。
然后是输出引脚,该芯片有三个输出引脚,分别是OUT1、OUT2和OUT3。
这三个引脚可用于输出PWM信号,OUT1
和OUT2是对称的输出,用于驱动同步整流电路和同步MOS 管,OUT3是非对称输出,用于驱动静态关断开关。
最后是反馈引脚,该芯片有两个反馈引脚,分别是FB1和
FB2。
FB1和FB2用于实现电流折返和过流保护,当输出过流时,这两个引脚会通过比较器将信号反馈给PWM,控制输出电流。
综上所述,TL494芯片引脚具有丰富的功能,通过控制引脚、输出引脚和反馈引脚可以实现对PWM信号频率、占空比、输出电流等的精确控制,从而实现开关电源的稳定工作。
在电源控制领域有着广泛的应用。