3.1不等式与不等关系 第1课时
- 格式:doc
- 大小:46.00 KB
- 文档页数:2
§3.1.1不等关系与不等式(第一课时)教学重点:理解不等式的意义,建立适当的不等式(组)表示不等关系.教学难点:如何从具体问题情境中抽象出数学模型并建立不等式.教学过程:一、设置情境,引发思考学生辅助学习素材1.视频:(1)国庆50周年阅兵式;(2)祖国大地山川秀美;(3)道路限速路标;(4)天平测质量;(5)跷跷板游戏.【制作提示】用数学的眼光看世界,认识世界,感受现实世界中相等关系与不等关系普遍存在,感受数学之美,增强用数学的意识.等量关系体现了数学的对称美、统一美、和谐美、平衡美,不等关系则如同仙苑奇葩呈现出数学的奇异美、层次美.2.你还能举出哪些更多的不等关系的实例?3.你能否用所学过的哪种数学知识来表示和研究这些不等关系?二、提出问题,激发探究学生活动:尝试用适当的不等式表示下列问题中所蕴含的不等关系:1.设点A与平面的距离为d,B为平面上的任意一点,表示d与|AB|之间的不等关系.2.某种杂志原以每本世纪末2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本.若把提价后杂志的定价设为x元,使销售总收入不低于20万元应怎样表示?3.小圆的半径为r,大圆的半径为R,两圆的圆心距离为d,若两圆相交,则d应满足什么关系?4.学习素材中蕴含不等关系的表示.建构数学:把生活中的具体问题转化成数学问题,并用恰当的数学模型(不等式)表示出来即为本节课的核心问题.其具体步骤为:实际问题:不等关系→(抽象概括)→数学问题:不等式数学模型:不等式→(刻画)→实际问题:不等关系三、巩固结论,尝试应用〖例1〗某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种,按照生产的要求,600mm钢管的数量不能超过500mm钢管的3倍,怎样写出满足上述所有不等关系的不等式呢?〖问题〗(1)本例涉及哪几个变量?(2)哪句话中体现了不等关系?〖例2〗某单位计划10月份组织员工到泰山旅游,人数估计在10~25人之间.甲、乙两旅行社的服务质量相同,且组织到泰山旅游的价格都是每人200元,甲旅行社表示可给予每位旅客七五折优惠;乙旅行社表示先免去一位旅客的旅游费用,其余游客八折优惠.问该单位怎样选择,使其支付的旅游费用较少?〖问题〗(1)若有10人,应选择哪家旅行社?(2)满足什么条件,选择甲旅行社更优惠?(3)满足什么条件,选择乙旅行社更优惠?(4)你对解决本例中的问题有什么想法?〖例3〗由下表给出了甲、乙、丙三种食物的维生素含量及其成本.现欲将三种食物混合成100kg的食品,要使混合食品中至少含有35000单位的维生素A 和40000单位的维生素B,设甲、乙两种食物各取x kg、y kg,那么x、y应满怎样的关系?〖问题〗(1)从这段话中可以抽象出哪几种不等关系?(2)混合食品有哪几中成分组成,含量各为多少?(3)各成分中的维生素A和维生素B的含量又是多少?四、反思小结,理论升华(1)解决实际问题的常规步骤:实际问题:不等关系→(抽象概括)→数学问题:不等式数学模型:不等式→(刻画)→实际问题:不等关系(2)一个重要数学模型:不等关系.【反馈练习】(只列出不等关系,不求解)(1)a与b的和是非负数;(2)某公路立交桥对通过车辆的高度h“限高4m”;(3)在一个面积为350m2的矩形地基上建造一个仓库,四周是绿地.仓库的长L大于宽W的4倍.(4)有一个两位数大于50而小于60,其个位数字比十位数字大2.试用不等式表示上述关系,并求出这个两位数(用a、b分别表示这个两位数的十位数字和个位数字).(5)某种植物适宜生长在温度在18°~20°的山区,已知山区海拔每升高100米,气温下降0.55°.现测得山脚下的平均温度为22°,试问该植物种植在山区多高处较为适宜?(6)某市政府准备投资1800万元兴办一所中学,经调查,班级数量以20到30个为宜,每个初、高中班硬件配置分别为28万元与58万元,该学校的规模(初、高中班级数量)所满足的条件是什么?五、布置作业1.书面作业:教材P83习题3.1 A组第4、5题B组第3题2.课外思考:b克糖水中有a克糖(b>a>0),若再加入m克(m>0)糖,则糖水更甜了,为什么?你能否用不等式的知识给出合理的解释?。
3.1《不等关系与不等式》(第1课时)一、选择题:1.设M =x 2,N =-x -1,则M 与N 的大小关系是( )A .M >NB .M =NC .M <ND .与x 有关 【答案】A【解析】 M -N =x 2+x +1=(x +12)2+34>0,∴M >N .2.若a <b <0,则下列不等式不能成立的是( )A .1a >1bB .2a >2bC .|a |>|b |D .(12)a >(12)b 【答案】B【解析】 ∵a <b ,y =2x 单调递增,∴2a <2b,故选B . 3.已知a <0,-1<b <0,则下列各式正确的是( )A .a >ab >ab 2B .ab >a >ab 2C .ab 2>ab >a D .ab >ab 2>a 【答案】D【解析】 ∵-1<b <0,∴1>b 2>0>b >-1,即b <b 2<1,两边同乘以a 得,∴ab >ab 2>a .故选D .4.如果a 、b 、c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) A .ab >ac B .bc >ac C .cb 2<ab 2D .ac (a -c )<0 【答案】C【解析】 ∵c <b <a ,且ac <0,∴a >0,c <0.∴ab -ac =a (b -c )>0,bc -ac =(b -a )c >0,ac (a -c )<0,∴A、B 、D 均正确.∵b 可能等于0,也可能不等于0. ∴cb 2<ab 2不一定成立.5.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b【答案】B【解析】 选项A ,若a =4,b =2,c =5,显然不成立;选项C 不满足倒数不等式的条件,如a >b >0,c <0<d时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不等成立,故选B .6.下列各式中,对任何实数x 都成立的一个式子是( )A .lg(x 2+1)≥lg(2x ) B .x 2+1>2x C .1x 2+1≤1 D.x +1x≥2 【答案】C【解析】 A 中x >0;B 中x =1时,x 2+1=2x ;C 中任意x ,x 2+1≥1,故1x 2+1≤1;D 中当x <0时,x +1x≤0.7.若a >b >0,c <d <0,则一定有( )A .a c >b dB .a c <b dC .a d >b cD .a d <b c【答案】D【解析】本题考查不等式的性质,a c -b d =ad -bccd,cd >0,而ad -bc 的符号不能确定,所以选项A 、B 不一定成立.a d -b c =ac -bddc,dc >0,由不等式的性质可知ac <bd ,所以选项D 成立.本题也可以对实数a 、b 、c 、d 进行适当的赋值逐一排查.8.设a =sin15°+cos15°,b =sin16°+cos16°,则下列各式正确的是( )A .a <a 2+b 22<b B .a <b <a 2+b 22C .b <a <a 2+b 22D .b <a 2+b 22<a【答案】B【解析】a =sin15°+cos15°=2sin60°,b =sin16°+cos16°=2sin61°,∴a <b ,排除C 、D 两项.又∵a ≠b ,∴a 2+b 22-ab =a -b22>0,∴a 2+b 22>ab =2sin60°×2sin61°=3sin61°>2sin61°=b ,故a <b <a 2+b 22成立.9.已知-1<a <0,A =1+a 2,B =1-a 2,C =11+a ,比较A 、B 、C 的大小结果为( ) A .A <B <C B .B <A <C C .A <C <B D .B <C <A【答案】B【解析】 不妨设a =-12,则A =54,B =34,C =2,由此得B <A <C ,排除A 、C 、D ,选B .具体比较过程如下:由-1<a <0得1+a >0,A -B =(1+a 2)-(1-a 2)=2a 2>0得A >B , C -A =11+a-(1+a 2)=-a a 2+a +11+a=-a ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a +122+341+a>0,得C >A ,∴B <A <C .二、填空题:10.若x =(a +3)(a -5),y =(a +2)(a -4),则x 与y 的大小关系是________. 【答案】x <y【解析】x -y =(a +3)(a -5)-(a +2)(a -4)=(a 2-2a -15)-(a 2-2a -8)=-7<0,∴x <y . 11.给出四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推得1a <1b成立的是________.【答案】①、②、④【解析】 1a <1b ⇔b -aab<0,∴①、②、④能使它成立.12.a ≠2、b ≠-1、M =a 2+b 2、N =4a -2b -5,比较M 与N 大小的结果为________. 【答案】M >N【解析】 ∵a ≠2,b ≠-1,∴M -N =a 2+b 2-4a +2b +5=(a -2)2+(b +1)2>0,∴M >N . 三、解答题13.某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式. 【答案】见解析【解析】 设每天派出甲型卡车x 辆,乙型卡车y 辆.根据题意,应有如下的不等关系:(1)甲型卡车和乙型卡车的总和不能超过驾驶员人数. (2)车队每天至少要运360 t 矿石.(3)甲型车不能超过4辆,乙型车不能超过7辆.要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎩⎪⎨⎪⎧x +y ≤910×6x +6×8y ≥3600≤x ≤40≤y ≤7,即⎩⎪⎨⎪⎧x +y ≤95x +4y ≥300≤x ≤40≤y ≤7.14.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:关系的不等式. 【答案】见解析【解析】设需安排x 艘轮船和y 架飞机,则⎩⎪⎨⎪⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎪⎨⎪⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.15.设a >0,b >0且a ≠b ,试比较a a b b与a b b a的大小. 【答案】见解析【解析】 根据同底数幂的运算法则.a a b b a b b a =a a -b ·b b -a =(a b)a -b,当a >b >0时,ab >1,a -b >0,则(a b)a -b>1,于是a a b b>a b b a . 当b >a >0时,0<a b <1,a -b <0,则(a b)a -b>1,于是a a b b>a b b a.综上所述,对于不相等的正数a 、b ,都有a a b b>a b b a.。
§3.1 不等关系与不等式(1)引标:用不等式表示,某地规定本地最低生活保障金x不低于400元______________________示标:了解现实世界和日常生活中存在着的不等关系;会从实际问题中找出不等关系,并能列出不等式与不等式组。
学标(一)自主学习、知识盘点v不超过40km/h,写成不等式就是_______________某品牌酸奶的质量检查规定,酸奶中脂肪的含量p应不少于2.5%,蛋白质的含量q 应不少于2.3%,写成不等式组就是_________________(二)合作探讨、师生互动例1 设点A与平面的距离为d,B为平面 上的任意一点,则其中不等关系有______________例2 某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本. 若把提价后杂志的定价设为x元,怎样用不等式表示销售的总收入仍不低于20万元呢?例3某钢铁厂要把长度为4000mm的钢管截成500mm和600mm两种.按照生产的要求,600mm的数量不能超过500mm钢管的3倍.怎样写出满足所有上述不等关系的不等式呢?诊标课堂测试1. 下列不等式中不成立的是().A .12-≤B .12-<C .11-≤-D .2. 用不等式表示,某厂最低月生活费a 不低于300元 ( ).A .300a ≤B .300a ≥C .300a >D .300a <3. 已知0a b +>,0b <,那么,,,a b a b --的大小关系是( ).A .a b b a >>->-B .a b a b >->->C .a b b a >->>-D .a b a b >>->-4. 用不等式表示下面的不等关系:(1)a 与b 的和是非负数_________________(2)某公路立交桥对通过车辆的高度h “限高4m ”_____________________5. 有一个两位数大于50而小于60,其个位数字比十位数大2.试用不等式表示上述关系,并求出这个两位数(用a 和b 分别表示这个两位数的十位数字和个位数字).补标 (总结提炼、拓展延伸)1. 用不等式表示:a 与b 的积是非正数___________2. 用不等式表示:某学校规定学生离校时间t 在16点到18点之间_______________________3. 某夏令营有48人,出发前要从A 、B 两种型号的帐篷中选择一种.A 型号的帐篷比B 型号的少5顶.若只选A 型号的,每顶帐篷住4人,则帐篷不够;每顶帐篷住5人,则有一顶帐篷没有住满.若只选B 型号的,每顶帐篷住3人,则帐篷不够;每顶帐篷住4人,则有帐篷多余.设A 型号的帐篷有x 顶,用不等式将题目中的不等关系表示出来.4. 某正版光碟,若售价20元/本,可以发行10张,售价每体高2元,发行量就减少5000张,如何定价可使销售总收入不低于224万元?。