18届高三数学一轮复习第十二章复数、算法、推理与证明第一节数系的扩充与复数的引入夯基提能作业本理
- 格式:doc
- 大小:721.52 KB
- 文档页数:6
2018版高考数学大一轮复习第十二章推理与证明、算法、复数 12.1 归纳与类比教师用书文北师大版1.归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体,由个别到一般的推理.归纳推理的基本模式:a,b,c∈M且a,b,c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( ×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( ×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.( √)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N+).( ×)(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.( × )1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A .28B .76C .123D .199 答案 C解析 从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a 10+b 10=123. 2.下面几种推理过程是演绎推理的是( )A .在数列{a n }中,a 1=1,a n =12(a n -1+1a n -1)(n ≥2),由此归纳数列{a n }的通项公式B .由平面三角形的性质,推测空间四面体性质C .两直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线与第三条直线形成的同旁内角,则∠A +∠B =180°D .某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人 答案 C解析 A 、D 是归纳推理,B 是类比推理,C 符合三段论模式,故选C.3.(2017·济南质检)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③垂直于同一个平面的两个平面互相平行; ④垂直于同一条直线的两个平面互相平行. 则正确的结论是________. 答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N +)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________.答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +)解析 利用类比推理,借助等比数列的性质,b 29=b 1+n ·b 17-n ,可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N +).5.(2016·青岛模拟)若数列{a n }的通项公式为a n =1n +2(n ∈N +),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________. 答案n +22n +2解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34(1-19)=23=46, f (3)=(1-a 1)(1-a 2)(1-a 3)=23(1-116)=58, 推测f (n )=n +22n +2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝⎛⎭⎪⎫sin 8π9-2=43×4×5; …照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·山西四校联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N +),则a =________.答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n. 命题点3 与数列有关的推理例3 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n n +2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式:三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n . … …可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 (2017·大连月考)某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为( )A .21B .34C .52D .55 答案 D解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55,故选D. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(1)(2015·陕西)观察下列等式:1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …据此规律,第n 个等式可为_________________________________________________________ _______________.(2)(2016·抚顺模拟)观察下图,可推断出“x ”处应该填的数字是________.答案 (1)1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)(2)183解析 (1)等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n. (2)由前两个图形发现:中间数等于四周四个数的平方和,∴“x ”处应填的数字是32+52+72+102=183.题型二 类比推理例5 (1)(2017·西安质检)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________. (2)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O -BCD·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0.(2)令1+12+1…=x ,则有1+12+1x =x ,解得x =1+32(负值已舍去).思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c=1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.题型三 演绎推理例6 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ). (1)试证明:f (x )为R 上的单调增函数;(2)若x ,y 为正实数且4x +9y=4,比较f (x +y )与f (6)的大小.(1)证明 设x 1,x 2∈R ,且x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0, ∵x 1<x 2,∴f (x 2)-f (x 1)>0, ∴f (x 2)>f (x 1).∴f (x )为R 上的单调增函数.(2)解 ∵x ,y 为正实数,且4x +9y=4,∴x +y =14(x +y )(4x +9y )=14(13+4y x +9x y )≥14(13+2 4y x ·9x y )=254, 当且仅当⎩⎪⎨⎪⎧ 4y x =9xy ,4x +9y =4,即⎩⎪⎨⎪⎧x =52,y =154时取等号,∵f (x )在R 上是增函数,且x +y ≥254>6,∴f (x +y )>f (6).思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为( ) A .大前提错误 B .小前提错误 C .推理形式错误D .非以上错误(2)(2016·洛阳模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数答案(1)C (2)B解析(1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)A中小前提不是大前提的特殊情况,不符合三段论的推理形式,故A错误;C、D都不是由一般性命题到特殊性命题的推理,所以C、D都不正确,只有B正确,故选B.10.高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为选择、填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:①b2 014是数列{a n}的第________项;②b2k-1=________.(用k表示)(2)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(1)T ={f (x )|x ∈S };(2)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________. ①A =N +,B =N ;②A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}; ③A ={x |0<x <1},B =R ; ④A =Z ,B =Q .解析 (1)①a n =1+2+…+n =n n +2,b 1=4×52=a 4, b 2=5×62=a 5, b 3=2=a 9, b 4=2=a 10, b 5=2=a 14, b 6=2=a 15,…b 2 014=⎝ ⎛⎭⎪⎫2 0142×5⎝ ⎛⎭⎪⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝ ⎛⎭⎪⎫2k -1+12×5-1⎝ ⎛⎭⎪⎫2k -1+12×52=5kk -2.(2)对于①,取f (x )=x -1,x ∈N +,所以A =N +,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的,故排除③.④不符合,故填④. 答案 (1)①5 035 ②5kk -2(2)④1.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在( ) A .大前提 B .小前提 C .推理过程 D .没有出错答案 A解析 推理形式正确,但大前提错误,故得到的结论错误.故选A. 2.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|PA |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确 B .大前提不正确 C .小前提不正确 D .全不正确答案 C解析 f (x )=sin(x 2+1)不是正弦函数,所以小前提错误.4.(2016·泉州模拟)正偶数列有一个有趣的现象:①2+4=6;②8+10+12=14+16;③18+20+22+24=26+28+30,…按照这样的规律,则2 016所在等式的序号为( ) A .29 B .30 C .31 D .32答案 C解析 由题意知,每个等式正偶数的个数组成等差数列3,5,7,…,2n +1,…,其前n 项和S n =n [3+n +2=n (n +2)且S 31=1 023,即第31个等式中最后一个偶数是1 023×2=2 046,且第31个等式中含有63个偶数,故2 016在第31个等式中. 5.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β; ③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3 答案 B解析 (a +b )n≠a n+b n(n ≠1,a ·b ≠0),故①错误. sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34, 故②错误.由向量的运算公式知③正确.6.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N +)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107.7.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0yb 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________. 答案x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2yb2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1. 8.如图(1)若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为__________________.答案111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O PQ R O P Q R V V--=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 9.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3 =33+3+13+3=33, 同理可得f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x3+3·3x =13x +3+3x33+3x=3+3x 33+3x=33. 10.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n ∈N +).证明: (1)数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2nS n , ∴(n +2)S n =n (S n +1-S n ),即nS n +1=2(n +1)S n . ∴S n +1n +1=2·S n n ,又S 11=1≠0,(小前提) 故⎩⎨⎧⎭⎬⎫S n n 是以1为首项,2为公比的等比数列.(结论) (大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2), ∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1 =4a n (n ≥2),(小前提)又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1,(小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)11.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现,(1)求函数f (x )的对称中心;(2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017).解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1, 由f ″(x )=0,即2x -1=0,解得x =12.f (12)=13×(12)3-12×(12)2+3×12-512=1.由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1).(2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2. 故f (12 017)+f (2 0162 017)=2,f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2, …,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。
2018版高考数学一轮复习第十二章推理与证明、算法、复数12.3 推理与证明、算法、复数真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第十二章推理与证明、算法、复数12.3 推理与证明、算法、复数真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第十二章推理与证明、算法、复数12.3 推理与证明、算法、复数真题演练集训理新人教A版的全部内容。
课外拓展阅读归纳、猜想、证明[典例] [2016·江西九江模拟]设数列{a n}的前n项和为S n,并且满足2S n=a错误!+n,a n〉0(n∈N*).(1)猜想{a n}的通项公式,并用数学归纳法加以证明;(2)设x〉0,y〉0,且x+y=1,证明:错误!+错误!≤错误!.[审题视角] (1)将n=1,2,3代入已知等式得a1,a2,a3,从而可猜想a n,并用数学归纳法证明.(2)利用分析法,结合x〉0,y〉0,x+y=1,利用基本不等式可证.(1)[解] 分别令n=1,2,3,得错误!∵a n〉0,∴a1=1,a2=2,a3=3.猜想:a n=n.∵2S n=a错误!+n,①当n≥2时,2S n-1=a错误!+(n-1).②①-②,得2a n=a错误!-a错误!+1,即a错误!=2a n+a错误!-1.(ⅰ)当n=2时,a错误!=2a2+12-1,∵a2>0,∴a2=2.(ⅱ)假设当n=k(k≥2)时,a k=k,那么当n=k+1时,a2,k=2a k+1+a错误!-1=2a k+1+k2-1,+1∴[a k+1-(k+1)][a k+1+(k-1)]=0,∵a k+1〉0,k≥2,∴a k+1+(k-1)>0,∴a k+1=k+1.即当n=k+1时也成立.∴a n=n(n≥2).显然n=1时,也成立,故对于一切n∈N*,均有a n=n。
第十二篇复数、算法、推理与证明(必修3、选修22)第1节数系的扩充与复数的引入知识点、方法题号复数的相关概念1,5,10,12,14,15,19,22复数代数形式的运算3,6,8,9,16,24复数的几何意义2,11,13,18,20复数相等的应用4,7,17,21复数的综合23,25基础对点练(时间:30分钟)1.(2016资阳模拟)复数m2-1+(m+1)i是纯虚数,则实数m的值为( B )(A)-1 (B)1 (C)±1 (D)±2解析:若复数m2-1+(m+1)i是纯虚数,则m2-1=0且m+1≠0,解得m=1.2.(2016重庆模拟)在复平面内,复数i·(1-i)对应的点位于( A )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:因为i·(1-i)=1+i,所以复数i·(1-i)对应的点的坐标为(1,1),显然位于第一象限.3.(2016绵阳模拟)已知i是虚数单位,则等于( D )(A)-1+i (B)-1-i(C)1+i (D)1-i解析:====1-i.4.(2016宿州模拟)设i为虚数单位,若=b-i(a,b∈R),则a+b等于( C )(A)1 (B)2 (C)3 (D)4解析:因为=b-i(a,b∈R),所以a+2i=bi+1,所以a=1,b=2,所以a+b=3.5.(2015高考广东卷)若复数z=i(3-2i)(i是虚数单位),则等于( A )(A)2-3i (B)2+3i (C)3+2i (D)3-2i解析:因为i(3-2i)=3i-2i2=2+3i,所以z=2+3i,所以=2-3i,故选A.6.(2015高考四川卷)设i是虚数单位,则复数i3-等于( C )(A)-i (B)-3i (C)i (D)3i解析:i3-=-i+2i=i.故选C.7.(2015高考新课标全国卷Ⅱ)若a为实数,且=3+i,则a等于( D )(A)-4 (B)-3 (C)3 (D)4解析:因为=3+i,所以2+ai=(3+i)(1+i)=2+4i,又a∈R,所以a=4.8.(2015高考湖南卷)已知=1+i(i为虚数单位),则复数z等于( D )(A)1+i (B)1-i(C)-1+i (D)-1-i解析:z===-i(1-i)=-1-i,故选D.9.(2015高考安徽卷)设i是虚数单位,则复数(1-i)(1+2i)等于( C )(A)3+3i (B)-1+3i (C)3+i (D)-1+i解析:(1-i)(1+2i)=1+i-2i2=3+i.故选C.10.(2016岳阳模拟)已知集合M={x|x=a+(a2-1)i}(a∈R,i是虚数单位),若M⊆R,则a等于( C )(A)1 (B)-1 (C)±1 (D)0解析:集合M={x|x=a+(a2-1)i}(a∈R,i是虚数单位),若M⊆R,可知复数x=a+(a2-1)i是实数,所以a2-1=0,解得a=±1.11.(2016茂名模拟)复数1-(i为虚数单位)在复平面上对应的点的坐标是( B )(A)(1,1) (B)(1,-1) (C)(-1,1) (D)(-1,-1)解析:因为复数1-=1+=1-i,在复平面上对应的点的坐标为(1,-1).12.(2016黄冈模拟)是z的共轭复数,若z+=3,z-=3i(i为虚数单位),z的实部与虚部之和为( B )(A)0 (B)3 (C)-3 (D)2解析:设z=a+bi(a,b∈R),由z+=3,z-=3i,得所以a=b=.所以a+b=3.13.(2016资阳诊断)在复平面内,复数1-3i,(1+i)(2-i)对应的点分别为A,B,则线段AB的中点C对应的复数为( D )(A)-4+2i (B)4-2i(C)-2+i (D)2-i解析:因为(1+i)(2-i)=3+i,所以A的坐标为(1,-3),B的坐标为(3,1),线段AB的中点C的坐标为(2,-1),所以线段AB的中点C对应的复数为2-i.14.(2016烟台模拟)设i是虚数单位,a∈R,若是一个纯虚数,则实数a的值为( C )(A)- (B)-1 (C) (D)1解析:==.因为复数是纯虚数,所以解得a=.15.(2015高考北京卷)复数i(1+i)的实部为.解析:i(1+i)=i+i2=-1+i,所以实部为-1.答案:-116.(2015高考天津卷)i是虚数单位,计算的结果为.解析:===-i.答案:-i17.(2016龙岩模拟)已知a,b∈R,i为虚数单位,若a-i=2+bi,则a+b= .解析:因为a-i=2+bi,所以a=2,-1=b,所以a+b=2-1=1.答案:118.(2016盐城模拟)已知复数z=(2-i)(1+3i),其中i是虚数单位,则复数z在复平面上对应的点位于第象限.解析:复数z=(2-i)(1+3i)=5+5i,复数z在复平面上对应的点(5,5)位于第一象限.答案:一19.(2016厦门模拟)设i是虚数单位,是复数z的共轭复数,若复数z=3-i,则z·= .解析:由z=3-i,得z·=|z|2=()2=10.答案:1020.(2016宁德模拟)复数z=(i是虚数单位)在复平面上对应的点到原点的距离为.解析:复数z==-i(1+i)=1-i.复数z=(i是虚数单位)在复平面上对应的点(1,-1)到原点的距离为.答案:能力提升练(时间:15分钟)21.(2014高考浙江卷)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的( A )(A)充分不必要条件(B)必要不充分条件(C)充分必要条件 (D)既不充分也不必要条件解析:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2-b2+2abi=2i”时,“a=b=1”或“a=b=-1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件.22.(2016钦州模拟)若复数(a∈R,i是虚数单位)是纯虚数,则实数a的值为( B )(A)-3 (B)3 (C)-6 (D)6解析:因为==是纯虚数,所以a-3=0,a+3≠0,所以a=3.23.在复平面内,复数z=(-1)+(2x-1)i的对应点位于第二象限,则实数x的范围是( C )(A)(1,+∞) (B)(-∞,0)(C)(0,1) (D)(-∞,0)∪(1,+∞)解析:因为复数z=(-1)+ (2x-1)i的对应点位于第二象限,则解得0<x<1.所以实数x的范围是(0,1).24.(2016福州模拟)已知a,b∈R,i为虚数单位,若a-i=2+bi,则(a+bi)2= .解析:由a-i=2+bi,得a=2,b=-1,所以(a+bi)2=(2-i)2=3-4i.答案:3-4i25.(2016包头校级模拟)设复数z1,z2在复平面内的对应点关于虚轴对称,且z1=2+i,则= .解析:因为复数z1,z2在复平面内的对应点关于虚轴对称,且z1=2+i,所以z2=-2+i,所以====-+i,所以==1.答案:1精彩5分钟1.定义:z2=a+bi(a,b∈R,i为虚数单位),则称复数z是复数a+bi的平方根.根据定义,则复数-3+4i的平方根是( B )(A)1-2i或-1+2i (B)1+2i或-1-2i(C)-7-24i (D)7+24i解题关键:利用复数相等的充要条件求解.解析:设(x+yi)2=-3+4i,则解得或2.(2016黄山模拟)“复数(a∈R,i为虚数单位)在复平面内对应的点位于第二象限”是“a<-1”的( B )(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件解题关键:根据复数的几何意义先求出点位于第二象限时a的取值范围,再作出判断.解析:复数==.因为复数(a∈R,i为虚数单位)在复平面内对应的点位于第二象限,所以解得a<-.所以“复数(a∈R,i为虚数单位)在复平面内对应的点位于第二象限”是“a<-1”的必要不充分条件.故选B.【教师备用】 (2016泰安校级期中)定义运算 a bc d=ad-bc,若复数x=,y=4i3-xi1+i x+i,则y= .解题关键:理解新运算的含义.解析:x====-i,y==4xi-4-(3+3i-xi+x) =5xi-7-3i-x=-5.答案:-5。
1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. 2.几何概型中,事件A 的概率的计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).3.几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个; (2)等可能性:每个结果的发生具有等可能性. 4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M 和总的随机数个数N ;③计算频率f n (A )=MN 作为所求概率的近似值.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)在一个正方形区域内任取一点的概率是零.( √ )(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × )(6)从区间[1,10]内任取一个数,取到1的概率是P =19.( ×)1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为( ) A.12 B.13 C.14 D .1 答案 B解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东)在区间[0,2]上随机地取一个数x ,则事件“-1≤121()2log x +≤1”发生的概率为( )A.34B.23C.13D.14 答案 A解析 由-1≤121()2log x +≤1,得12≤x +12≤2,∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34.3.(教材改编)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()答案 A解析 ∵P (A )=38,P (B )=28,P (C )=26,P (D )=13,∴P (A )>P (C )=P (D )>P (B ).4.(2017·南昌月考)一个边长为3π cm 的正方形薄木板的正中央有一个直径为2 cm 的圆孔,一只小虫在木板的一个面内随机地爬行,则小虫恰在离四个顶点的距离都大于2 cm 的区域内的概率等于________. 答案 12解析 如图所示,分别以正方形的四个顶点为圆心,2 cm 为半径作圆,与正方形相交截得四个圆心角为直角的扇形,当小虫落在图中的黑色区域时,它离四个顶点的距离都大于2 cm ,其中黑色区域面积为S 1=S 正方形-4S 扇形-S 小圆=(3π)2-π×22-π×12=9π-5π=4π,所以小虫离四个顶点的距离都大于2 cm 的概率为P =S 19π-π=4π8π=12.5.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________.答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.题型一 与长度、角度有关的几何概型例1 (1)(2016·全国甲卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A.710 B.58 C.38 D.310(2)(2017·太原调研)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)B (2)13解析 (1)至少需要等待15秒才出现绿灯的概率为40-1540=58,故选B.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率.解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.本例(3)中,若将“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3, P (BM <1)=11+3=3-12.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)(2016·全国乙卷)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A.13B.12C.23D.34(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)B (2)16解析 (1)如图所示,画出时间轴.小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P =10+1040=12,故选B.(2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型 命题点1 与平面图形面积有关的问题例2 (2016·全国甲卷)从区间[0,1]随机抽取2n 个数x 1,x 2,…,x n ,y 1,y 2,…,y n ,构成n 个数对(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A.4n m B.2n m C.4m n D.2m n 答案 C 解析 由题意得(x i ,y i )(i =1,2,…,n )在如图所示方格中,而平方和小于1的点均在如图所示的阴影中,由几何概型概率计算公式知π41=mn ,∴π=4mn,故选C.命题点2 与线性规划知识交汇命题的问题例3 (2016·武汉模拟)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACDS △OAB=2-142=78.命题点3 与定积分交汇命题的问题例4 (2015·福建)如图,点A 的坐标为(1,0),点C 的坐标为(2,4),函数f (x )=x 2.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________.答案512解析 由题意知,阴影部分的面积S =ʃ21(4-x 2)d x =(4x -13x 3)|21=53,所以所求概率P =S S 矩形ABCD =531×4=512.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)(2016·昌平模拟)设不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x ≤4,y ≥-2表示的平面区域为D .在区域D 内随机取一个点,则此点到直线y +2=0的距离大于2的概率是( ) A.413 B.513 C.825 D.925(2)如图,在边长为e(e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为________.答案 (1)D (2)2e2解析 (1)作出平面区域D ,可知平面区域D 是以A (4,3),B (4,-2),C (-6,-2)为顶点的三角形区域.当点在△AEF 区域内时,点到直线y +2=0的距离大于2. ∴P =S △AEF S △ABC =12×6×312×10×5=925.(2)由题意知,所给图中两阴影部分面积相等,故阴影部分面积为S =2ʃ10(e -e x )d x =2(e x -e x )|1=2[e -e -(0-1)]=2.又该正方形面积为e 2, 故由几何概型的概率公式可得所求概率为2e 2.题型三 与体积有关的几何概型例5 (1)(2016·贵州黔东南州凯里一中期末)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,则称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A.18 B.16 C.127 D.38(2)已知正三棱锥S —ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P —ABC <12V S —ABC 的概率是( ) A.78 B.34 C.12 D.14 答案 (1)C (2)A解析 (1)由题意知小蜜蜂的安全飞行范围为以这个正方体的中心为中心,且棱长为1的小正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为P =127.(2)当P 在三棱锥的三条侧棱的中点所在的平面及下底面构成的正三棱台内时符合要求,由几何概型知,P =1-18=78.思维升华 求解与体积有关的几何概型的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的问题也可利用其对立事件去求.(2016·哈尔滨模拟)在体积为V 的三棱锥S -ABC 的棱AB 上任取一点P ,则三棱锥S -APC 的体积大于V3的概率是________.答案 23解析 如图,三棱锥S -ABC 与三棱锥S -APC 的高相同,要使三棱锥S -APC 的体积大于V 3,只需△APC 的面积大于△ABC 的面积的13.假设点P ′是线段AB 靠近点A 的三等分点,记事件M 为“三棱锥S -APC 的体积大于V 3”,则事件M 发生的区域是线段P ′B . 从而P (M )=P ′B AB =23.16.几何概型中的“测度”典例 (1)在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________.(2)在长为1的线段上任取两点,则这两点之间的距离小于12的概率为( )A.14B.12C.34D.78 错解展示解析 (1)∵∠C =90°,∠CAM =30°, ∴所求概率为3090=13.(2)两点之间线段长为12时,占长为1的线段的一半,故所求概率为12.答案 (1)13 (2)B现场纠错解析 (1)因为点M 在直角边BC 上是等可能出现的,所以“测度”是长度.设直角边长为a ,则所求概率为33a a =33.(2)设任取两点所表示的数分别为x ,y , 则0≤x ≤1,且0≤y ≤1.由题意知|x -y |<12,所以所求概率为P =1-2×12×12×121=34.答案 (1)33(2)C 纠错心得 (1)在线段上取点,则点在线段上等可能出现;在角内作射线,则射线在角内的分布等可能.(2)两个变量在某个范围内取值,对应的“测度”是面积.1.(2016·佛山模拟)如图,矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆数为96,以此实验数据为依据可以估计出椭圆的面积约为( )A .16.32B .15.32C .8.68D .7.68答案 A解析 设椭圆的面积为S ,则S4×6=300-96300,故S =16.32.2.(2016·昆明三中、玉溪一中统考)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A.14 B.13 C.23 D.12 答案 D解析 以PB 、PC 为邻边作平行四边形PBDC , 则PB →+PC →=PD →, 因为PB →+PC →+2P A →=0,所以PB →+PC →=-2P A →,得PD →=-2P A →,由此可得,P 是△ABC 边BC 上的中线AO 的中点,点P 到BC 的距离等于A 到BC 距离的12,所以S △PBC =12S △ABC ,所以将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为S △PBC S △ABC =12,故选D.3.(2016·菏泽一模)已知函数f (x )的部分图象如图所示,向图中的矩形区域内随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为39,由此可估计ʃ10f (x )d x 的值约为( )A.61100 B.39100 C.10100 D.117100答案 D解析 ʃ10f (x )d x 表示阴影部分的面积S . 因为S 3=39100,所以S =117100.4.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 答案 C解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D 在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形,所以△ABD 为钝角三角形的概率为1+26=12.5.(2017·武昌质检)如图,矩形ABCD 的四个顶点的坐标分别为A (0,-1),B (π,-1),C (π,1),D (0,1),正弦曲线f (x )=sin x 和余弦曲线g (x )=cos x 在矩形ABCD 内交于点F ,向矩形ABCD 区域内随机投掷一点,则该点落在阴影区域内的概率是( )A.1+2πB.1+22πC.1πD.12π答案 B解析 根据题意,可得曲线y =sin x 与y =cos x 围成的区域的面积为ππππ44(sin cos )d (cos sin )|x x x x x -=--⎰=1-⎝⎛⎭⎫-22-22=1+ 2.又矩形ABCD 的面积为2π,由几何概型概率公式得该点落在阴影区域内的概率是1+22π.故选B.6.欧阳修的《卖油翁》中写到:“(翁)乃取一葫芦,置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔,若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落入孔中的概率是________.答案49π解析 依题意,所求概率为P =12π·(32)2=49π.7.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π,V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.8.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12解析 ∵方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆,∴m >n .如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分, ∴所求的概率为P =12.9.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______.答案 12+1π解析 半圆区域如图所示.设A 表示事件“原点与该点的连线与x 轴的夹角小于π4”,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π. 10.(2017·大连月考)正方形的四个顶点A (-1,-1),B (1,-1),C (1,1),D (-1,1)分别在抛物线y =-x 2和y =x 2上,如图所示.若将一个质点随机投入正方形ABCD 中,则质点落在图中阴影区域的概率是________.答案 23解析 正方形内空白部分面积为ʃ1-1[x 2-(-x 2)]d x=ʃ1-12x 2d x =23·x 3|1-1=23-(-23)=43, 阴影部分面积为2×2-43=83,所以所求概率为834=23.11.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次,第二次出现的点数,求满足a ·b =-1的概率; (2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36, 由a ·b =-1得-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个, 故满足a ·b =-1的概率为336=112.(2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6}, 满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0}. 画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21,故满足a ·b <0的概率为2125.12.已知关于x 的二次函数f (x )=ax 2-4bx +1.设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的一点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.解 ∵函数f (x )=ax 2-4bx +1的图象的对称轴为直线x =2ba ,要使f (x )=ax 2-4bx +1在区间[1,+∞)上为增函数, 当且仅当a >0且2ba≤1,即2b ≤a .依条件可知事件的全部结果所构成的区域为 ⎩⎨⎧⎭⎬⎫(a ,b )⎪⎪⎪⎩⎪⎨⎪⎧ a +b -8≤0,a >0,b >0,构成所求事件的区域为三角形部分. 所求概率区间应满足2b ≤a .由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为(163,83),故所求事件的概率为P =12×8×8312×8×8=13.*13.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部. 所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242=506.5576=1 0131 152.。
2018版高考数学大一轮复习 第十二章 推理与证明、算法、复数 12.4复数教师用书 文 新人教版1.复数的有关概念(1)定义:形如a +b i(a ,b ∈R )的数叫做复数,其中a 叫做复数z 的实部,b 叫做复数z 的虚部.(i 为虚数单位) (2)分类:(3)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (4)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).(5)模:向量OZ →的模叫做复数z =a +b i 的模,记作|a +b i|或|z |,即|z |=|a +b i|=a 2+b 2(a ,b ∈R ). 2.复数的几何意义复数z =a +b i 与复平面内的点Z (a ,b )及平面向量OZ →=(a ,b )(a ,b ∈R )是一一对应关系. 3.复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即OZ →=OZ 1→+OZ 2→,Z 1Z 2→=OZ 2→-OZ 1→.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( × )(2)复数z =a +b i(a ,b ∈R )中,虚部为b i.( × )(3)复数中有相等复数的概念,因此复数可以比较大小.( × ) (4)原点是实轴与虚轴的交点.( √ )(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( √ )1.(2016·全国乙卷)设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a 等于( ) A .-3 B .-2 C .2 D .3 答案 A解析 ∵(1+2i)(a +i)=a -2+(2a +1)i , ∴a -2=2a +1,解得a =-3,故选A.2.(2015·课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z 等于( ) A .-2-i B .-2+i C .2-i D .2+i 答案 C解析 由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i.3.在复平面内,复数6+5i ,-2+3i 对应的点分别为A ,B .若C 为线段AB 的中点,则点C 对应的复数是( )A .4+8iB .8+2iC .2+4iD .4+i 答案 C解析 ∵A (6,5),B (-2,3),∴线段AB 的中点C (2,4), 则点C 对应的复数为z =2+4i.4.(教材改编)在复平面内,向量AB →对应的复数是2+i ,向量CB →对应的复数是-1-3i ,则向量CA →对应的复数是( ) A .1-2i B .-1+2i C .3+4i D .-3-4i答案 D解析 CA →=CB →+BA →=-1-3i +(-2-i)=-3-4i. 5.i2 011+i2 012+i2 013+i2 014+i2 015+i2 016+i2 017=________.答案 1解析 原式=i 3+i 4+i 1+i 2+i 3+i 4+i =1.题型一 复数的概念例1 (1)(2015·福建)若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B .3,2 C .3,-3D .-1,4(2)若z 1=(m 2+m +1)+(m 2+m -4)i(m ∈R ),z 2=3-2i ,则“m =1”是“z 1=z 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件(3)(2016·天津)i 是虚数单位,复数z 满足(1+i)z =2,则z 的实部为________. 答案 (1)A (2)A (3)1解析 (1)∵(1+i)+(2-3i)=3-2i =a +b i , ∴a =3,b =-2,故选A.(2)由⎩⎪⎨⎪⎧m 2+m +1=3,m 2+m -4=-2,解得m =-2或m =1,所以“m =1”是“z 1=z 2”的充分不必要条件.(3)∵(1+i)z =2,∴z =21+i=1-i ,∴其实部为1. 引申探究1.将本例(1)中方程左边改为(1+i)(2-3i),求a ,b 的值. 解 (1+i)(2-3i) =2+3-i =5-i =a +b i , 所以a =5,b =-1.2.将本例(3)中的条件“(1+i)z =2”改为“(1+i)3z =2”,求z 的实部. 解 z =2 1+i 3=2-2+2i =-12-12i , ∴z 的实部为-12.思维升华 解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.(1)已知a ∈R ,复数z 1=2+a i ,z 2=1-2i ,若z 1z 2为纯虚数,则复数z 1z 2的虚部为( )A .1B .i C.25D .0(2)如果复数m 2+i1-m i是实数,则实数m 等于( )A .-1B .1C .- 2 D. 2 答案 (1)A (2)A解析 (1)由z 1z 2=2+a i 1-2i = 2+a i 1+2i 5=2-2a 5+4+a 5i 是纯虚数,得a =1,此时z 1z 2=i ,其虚部为1.(2)因为m 2+i 1-m i = m 2+i 1+m i 1+m 2=m 2-m + 1+m 3 i 1+m 2是实数,所以1+m31+m2=0,所以m =-1,故选A.题型二 复数的运算 命题点1 复数的乘法运算例2 (1)(2016·四川)设i 为虚数单位,则复数(1+i)2等于( ) A .0 B .2 C .2i D .2+2i(2)(2016·全国乙卷)设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|等于( ) A .1 B. 2 C. 3 D .2(3)(2015·课标全国Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a 等于( ) A .-1 B .0 C .1 D .2 答案 (1)C (2)B (3)B解析 (1)(1+i)2=12+i 2+2i =1-1+2i =2i.(2)由(1+i)x =1+y i ,得x +x i =1+y i ⇒⎩⎪⎨⎪⎧x =1,x =y ⇒⎩⎪⎨⎪⎧x =1,y =1.所以|x +y i|=x 2+y 2=2,故选B.(3)因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B.命题点2 复数的除法运算例3 (1)(2016·全国丙卷)若z =1+2i ,则4iz z -1等于( )A .1B .-1C .iD .-i (2)(2016·北京)复数1+2i2-i 等于( )A .iB .1+iC .-iD .1-i (3)(1+i 1-i )6+2+3i 3-2i =________.答案 (1)C (2)A (3)-1+i 解析 (1)z =1+2i ,z z =5,4iz z -1=i.(2)1+2i 2-i = 1+2i 2+i 2-i 2+i =5i 5=i.(3)原式=[ 1+i 22]6+ 2+3i 3+2i3 2+ 2 2=i 6+6+2i +3i -65=-1+i.命题点3 复数的综合运算例4 (1)(2016·山东)若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z 等于( )A .1+2iB .1-2iC .-1+2iD .-1-2i(2)(2016·全国丙卷)若z =4+3i ,则z|z |等于( ) A .1 B .-1 C.45+35i D.45-35i (3)若复数z 满足(3-4i)z =|4+3i|,则z 的虚部为( ) A .-4 B .-45 C .4 D.45答案 (1)B (2)D (3)D解析 (1)设z =a +b i(a ,b ∈R ),则z =a -b i ,∴2(a +b i)+(a -b i)=3-2i ,整理得3a+b i =3-2i ,∴⎩⎪⎨⎪⎧3a =3,b =-2,解得⎩⎪⎨⎪⎧a =1,b =-2,∴z =1-2i ,故选B.(2)z =4+3i ,|z |=5,z|z |=45-35i. (3)设z =a +b i ,故(3-4i)(a +b i)=3a +3b i -4a i +4b =|4+3i|,所以⎩⎪⎨⎪⎧3b -4a =0,3a +4b =5,解得b =45.思维升华 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i 的幂写成最简形式.(3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2015·山东)若复数z 满足z1-i=i ,其中i 为虚数单位,则z 等于( ) A .1-i B .1+i C .-1-i D .-1+i (2)⎝⎛⎭⎪⎫1+i 1-i 2 017=________.(3)-23+i 1+23i +⎝ ⎛⎭⎪⎫21-i 2 017=________.答案 (1)A (2)i (3)22+(22+1)i 解析 (1)z =i(1-i)=1+i ,∴z =1-i ,故选A. (2)(1+i 1-i )2 017=[ 1+i 21-i 1+i ]2 017=i 2 017=i.(3)-23+i 1+23i +(21-i )2 017=i 1+23i 1+23i+(21-i )[(21-i)2]1 008 =i +i 1 008·22(1+i)=22+(22+1)i. 题型三 复数的几何意义例5 (1)△ABC 的三个顶点对应的复数分别为z 1,z 2,z 3,若复数z 满足|z -z 1|=|z -z 2|=|z -z 3|,则z 对应的点为△ABC 的( ) A .内心 B .垂心 C .重心 D .外心答案 D解析 由几何意义知,复数z 对应的点到△ABC 三个顶点距离都相等,z 对应的点是△ABC 的外心.(2)如图所示,平行四边形OABC ,顶点O ,A ,C 分别表示0,3+2i ,-2+4i ,试求:①AO →、BC →所表示的复数; ②对角线CA →所表示的复数; ③B 点对应的复数.解 ①AO →=-OA →,∴AO →所表示的复数为-3-2i. ∵BC →=AO →,∴BC →所表示的复数为-3-2i. ②CA →=OA →-OC →,∴CA →所表示的复数为 (3+2i)-(-2+4i)=5-2i. ③OB →=OA →+AB →=OA →+OC →,∴OB →所表示的复数为(3+2i)+(-2+4i)=1+6i , 即B 点对应的复数为1+6i.思维升华 因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.已知z 是复数,z +2i ,z2-i均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. 解 设z =x +y i(x ,y ∈R ),∴z +2i =x +(y +2)i ,由题意得y =-2. ∵z2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由题意得x =4.∴z =4-2i.∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8 a -2 >0,解得2<a <6,∴实数a 的取值范围是(2,6).24.解决复数问题的实数化思想典例 (12分)已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y .思想方法指导 (1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把x 、y 用复数的基本形式表示出来,再用待定系数法求解,这是常用的数学方法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解. 规范解答解 设x =a +b i (a ,b ∈R ),则y =a -b i ,x +y =2a ,xy =a 2+b 2,[3分] 代入原式,得(2a )2-3(a 2+b 2)i =4-6i ,[5分]根据复数相等得⎩⎪⎨⎪⎧4a 2=4,-3 a 2+b 2=-6,[7分]解得⎩⎪⎨⎪⎧a =1,b =1或⎩⎪⎨⎪⎧a =1,b =-1或⎩⎪⎨⎪⎧ a =-1,b =1或⎩⎪⎨⎪⎧a =-1,b =-1.[9分]故所求复数为⎩⎪⎨⎪⎧x =1+i ,y =1-i或⎩⎪⎨⎪⎧x =1-i ,y =1+i或⎩⎪⎨⎪⎧x =-1+i ,y =-1-i或⎩⎪⎨⎪⎧x =-1-i ,y =-1+i.[12分]1.若复数z =(x 2-1)+(x -1)i 为纯虚数,则实数x 的值为( ) A .-1 B .0 C .1 D .-1或1 答案 A解析 由复数z 为纯虚数,得⎩⎪⎨⎪⎧x 2-1=0,x -1≠0,解得x =-1,故选A.2.(2017·天津质检)已知i 为虚数单位,a ∈R ,如果复数2i -a1-i 是实数,则a 的值为( )A .-4B .2C .-2D .4 答案 D解析 ∵2i-a 1-i =2i -a 1+i1-i 1+i=2i -a 2-a 2i =(2-a 2)i -a2,a ∈R , ∴2-a2=0,∴a =4. 3.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数z1+i的点是( )A .EB .FC .GD .H 答案 D解析 由题图知复数z =3+i , ∴z1+i =3+i 1+i = 3+i 1-i 1+i 1-i =4-2i 2=2-i. ∴表示复数z1+i的点为H .4.(2017·南昌月考)z 是z 的共轭复数,若z +z =2,(z -z )i =2(i 为虚数单位),则z 等于( )A .1+iB .-1-iC .-1+iD .1-i答案 D解析 方法一 设z =a +b i ,a ,b 为实数,则z =a -b i. ∵z +z =2a =2,∴a =1.又(z -z )i =2b i 2=-2b =2,∴b =-1.故z =1-i.方法二 ∵(z -z )i =2,∴z -z =2i=-2i. 又z +z =2,∴(z -z )+(z +z )=-2i +2,∴2z =-2i +2,∴z =1-i.5.设f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为( ) A .1 B .2 C .3 D .无数个答案 C解析 f (n )=⎝ ⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n =i n +(-i)n , f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…,∴集合中共有3个元素.6.集合M ={4,-3m +(m -3)i}(其中i 为虚数单位),N ={-9,3},若M ∩N ≠∅,则实数m 的值为( )A .-1B .-3C .3或-3D .3 答案 D解析 由题意可知-3m +(m -3)i 必为实数,则m =3,经检验符合题意.*7.对任意复数z =x +y i(x ,y ∈R ),i 为虚数单位,则下列结论正确的是( )A .|z -z |=yB .z 2=x 2+y 2C .|z -z |≥2xD .|z |≤|x |+|y | 答案 D解析 |z |=x 2+y 2≤x 2+2|xy |+y 2 = |x |+|y | 2=|x |+|y |,故选D.8.复数(3+i)m -(2+i)对应的点在第三象限内,则实数m 的取值范围是________.答案 (-∞,23) 解析 z =(3m -2)+(m -1)i ,其对应点(3m -2,m -1)在第三象限内,故3m -2<0且m -1<0,∴m <23. 9.已知集合M ={1,m,3+(m 2-5m -6)i},N ={-1,3},若M ∩N ={3},则实数m 的值为______. 答案 3或6解析 ∵M ∩N ={3},∴3∈M 且-1∉M ,∴m ≠-1,3+(m 2-5m -6)i =3或m =3,∴m 2-5m -6=0且m ≠-1或m =3,解得m =6或m =3,经检验符合题意.10.已知i 是虚数单位,m 和n 都是实数,且m (1+i)=1+n i ,则(m +n i m -n i )2 017=________. 答案 i解析 由m (1+i)=1+n i ,得m =n =1,所以(m +n i m -n i )2 017=(1+i 1-i)2 017=i 2 017=i. 11.若1+2i 是关于x 的实系数方程x 2+bx +c =0的一个复数根,则b =________,c =________.答案 -2 3解析 ∵实系数一元二次方程x 2+bx +c =0的一个虚根为1+2i ,∴其共轭复数1-2i 也是方程的根. 由根与系数的关系知,⎩⎨⎧ 1+2i + 1-2i =-b , 1+2i 1-2i =c ,∴b =-2,c =3.12.给出下列命题:①若z ∈C ,则z 2≥0;②若a ,b ∈R ,且a >b ,则a +i>b +i ;③若a ∈R ,则(a +1)i 是纯虚数; ④若z =-i ,则z 3+1在复平面内对应的点位于第一象限.其中正确的命题是________.(填上所有正确命题的序号)答案 ④解析 由复数的概念及性质知,①错误;②错误;若a =-1,则(a +1)i =0,③错误;z 3+1=(-i)3+1=i +1,④正确.13.计算:(1) -1+i 2+i i 3; (2) 1+2i 2+3 1-i 2+i; (3)1-i 1+i 2+1+i 1-i 2;(4)1-3i 3+i 2. 解 (1) -1+i 2+i i 3=-3+i -i=-1-3i. (2) 1+2i 2+3 1-i 2+i =-3+4i +3-3i 2+i=i 2+i =i 2-i 5=15+25i. (3)1-i 1+i 2+1+i 1-i 2=1-i 2i +1+i -2i =1+i -2+-1+i 2=-1. (4)1-3i 3+i 2= 3+i -i 3+i 2=-i 3+i= -i 3-i 4 =-14-34i. 14.复数z 1=3a +5+(10-a 2)i ,z 2=21-a+(2a -5)i ,若z 1+z 2是实数,求实数a 的值. 解 z 1+z 2=3a +5+(a 2-10)i +21-a +(2a -5)i =⎝⎛⎭⎪⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13 a +5 a -1+(a 2+2a -15)i. ∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3.又(a +5)(a -1)≠0,∴a ≠-5且a ≠1,故a =3.*15.若虚数z 同时满足下列两个条件:①z +5z是实数; ②z +3的实部与虚部互为相反数.这样的虚数是否存在?若存在,求出z ;若不存在,请说明理由. 解 这样的虚数存在,z =-1-2i 或z =-2-i.设z =a +b i(a ,b ∈R 且b ≠0),z +5z =a +b i +5a +b i =a +b i +5 a -b i a 2+b 2 =⎝ ⎛⎭⎪⎫a +5a a 2+b 2+⎝ ⎛⎭⎪⎫b -5b a 2+b 2i.∵z +5z 是实数,∴b -5b a 2+b 2=0. 又∵b ≠0,∴a 2+b 2=5.①又z +3=(a +3)+b i 的实部与虚部互为相反数, ∴a +3+b =0.②由①②得⎩⎪⎨⎪⎧ a +b +3=0,a 2+b 2=5,解得⎩⎪⎨⎪⎧ a =-1,b =-2或⎩⎪⎨⎪⎧ a =-2,b =-1, 故存在虚数z ,z =-1-2i 或z =-2-i.。
1.概率和频率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数n A为事件A出现的频数,称事件A 出现的比例f n(A)=错误!为事件A出现的频率.(2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)B⊇A(或A⊆B)3。
概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1。
(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)=1-P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下列结论是否正确(请在括号中打“√"或“×”)(1)事件发生频率与概率是相同的.(×)(2)随机事件和随机试验是一回事.(×)(3)在大量重复试验中,概率是频率的稳定值.( √)(4)两个事件的和事件是指两个事件都得发生.( ×)(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.(√)(6)两互斥事件的概率和为1。
(×)1.从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则b>a的概率是()A。
错误! B.错误! C.错误!D。
1.离散型随机变量的均值与方差一般地,若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)均值称E(X)=x1p1+x2p2+…+x i p i+…+x n p n为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.(2)方差称D(X)=错误!(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,并称其算术平方根错误!为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b。
(2)D(aX+b)=a2D(X).(a,b为常数)3.两点分布与二项分布的均值、方差(1)若随机变量X服从两点分布,则E(X)=p,D(X)=p(1-p).(2)若X~B(n,p),则E(X)=np,D(X)=np(1-p).4.正态分布(1)正态曲线:函数φμ,σ(x222()x uσ--,x∈(-∞,+∞),其中实数μ和σ为参数(σ〉0,μ∈R).我们称函数φμ,σ(x)的图象为正态分布密度曲线,简称正态曲线.(2)正态曲线的性质①曲线位于x轴上方,与x轴不相交;②曲线是单峰的,它关于直线x=μ对称;③曲线在x=μ处达到峰值错误!;④曲线与x轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图甲所示;⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)正态分布的定义及表示一般地,如果对于任何实数a,b (a<b),随机变量X满足P(a〈X≤b)=ʃ错误!φμ,σ(x)d x,则称随机变量X服从正态分布,记作X~N(μ,σ2).正态总体在三个特殊区间内取值的概率值①P(μ-σ〈X≤μ+σ)=0。
6826;②P(μ-2σ<X≤μ+2σ)=0。
9544;③P(μ-3σ<X≤μ+3σ)=0。
【第1讲 数系的扩充与复数的引入】之小船创作一、知识梳理 1.复数的有关概念 (1)复数的定义形如a +b i(a ,b ∈R )的数叫做复数,其中实部是a ,虚部是b .(2)复数的分类 复数z =a +b i(a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数(a =0,b ≠0),非纯虚数(a ≠0,b ≠0).(3)复数相等a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ).(4)共轭复数a +b i 与c +d i 共轭⇔a =c 且b =-d (a ,b ,c ,d ∈R ).(5)复数的模向量OZ →的模叫做复数z =a +b i 的模,记作|z |或|a +b i|,即|z |=|a +b i|=r = a 2+b 2(r ≥0,a ,b ∈R ).2.复数的几何意义(1)复数z =a +b i ―→一一对应复平面内的点Z (a ,b )(a ,b ∈R ). (2)复数z =a +b i(a ,b ∈R )―→一一对应平面向量OZ →. 3.复数的运算(1)复数的加、减、乘、除运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则①加法:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i;②减法:z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i;③乘法:z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i;④除法:z1z2=a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)ac+bdc+d+bc-adc+di(c+d i≠0).(2)复数加法的运算律复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).常用结论(1)(1±i)2=±2i;1+i1-i=i;1-i1+i=-i.(2)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i.(3)i4n+i4n+1+i4n+2+i4n+3=0,n∈N*.(4)|z|2=|z-|2=z·z-.二、习题改编1.(选修12 P60例4改编)计算1-i1+i+2i=.答案:i2.(选修12P55A组T5改编)复数z=(x+1)+(x-2)i(x∈R)在复平面内所对应的点在第四象限,则x的取值范围为.答案:(-1,2)一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若a∈C,则a2≥0.( )(2)已知z=a+b i(a,b∈R),当a=0时,复数z为纯虚数.( )(3)复数z=a+b i(a,b∈R)中,虚部为b i.( )(4)方程x2+x+1=0没有解.( )(5)由于复数包含实数,在实数范围内两个数能比较大小,因而在复数范围内两个数也能比较大小.( )答案:(1)×(2)×(3)×(4)×(5)×二、易错纠偏常见误区(1)复数相等概念把握不牢固致误;(2)对复数的几何意义理解有误;(3)复数的分类把握不准导致出错.1.若a为实数,且2+a i1+i=3+i,则a=( )A.-4 B.-3 C.3 D.4解析:选D.由2+a i1+i=3+i,得2+a i=(3+i)(1+i)=2+4i,即a i=4i,因为a为实数,所以a=4.故选D.2.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是( ) A.4+8i B.8+2iC.2+4i D.4+i解析:选C.因为A(6,5),B(-2,3),所以线段AB的中点C(2,4),则点C对应的复数为z=2+4i.故选C.3.i为虚数单位,若复数(1+m i)(i+2)是纯虚数,则实数m等于.解析:因为(1+m i)(i+2)=2-m+(1+2m)i是纯虚数,所以2-m=0,且1+2m≠0,解得m=2.答案:2复数的有关概念(师生共研)(1)(2019·高考全国卷Ⅰ )设z=3-i1+2i,则|z|=( )A.2 B. 3C. 2 D.1(2)(2020·郑州市第一次质量预测)若复数1+2a i 2-i(a∈R)的实部和虚部相等,则实数a的值为( ) A.1 B.-1C.16 D .-16【解析】 (1)法一:z =3-i 1+2i =(3-i )(1-2i )(1+2i )(1-2i )=1-7i5, 故|z |=|1-7i 5|=505= 2.故选C.法二:|z |=|3-i 1+2i |=|3-i||1+2i|=105= 2.故选C.(2)因为1+2a i 2-i =(1+2a i )(2+i )(2-i )(2+i )=2-2a 5+1+4a5i ,所以由题意,得2-2a 5=1+4a 5,解得a =16,故选C.【答案】 (1)C (2)C解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.1.(2020·安徽省考试试题)z -是z =1+2i 1-i 的共轭复数,则z -的虚部为( )A .-12B.12C .-32D .32解析:选C.z =1+2i 1-i =(1+2i )(1+i )(1-i )(1+i )=-1+3i2=-12+32i ,则z -=-12-32i ,所以z -的虚部为-32,故选C.2.(2020·山西八校第一次联考)已知a ,b ∈R ,i 为虚数单位,若3-4i 3=2-b i a +i,则a +b 等于( )A .-9B .5C .13D .9解析:选A.由3-4i 3=2-b i a +i 得,3+4i =2-b ia +i ,即(a+i)(3+4i)=2-b i ,(3a -4)+(4a +3)i =2-b i ,则⎩⎪⎨⎪⎧3a -4=2,4a +3=-b ,解得⎩⎪⎨⎪⎧a =2,b =-11,故a +b =-9.故选A.复数的几何意义(师生共研)(1)(2019·高考全国卷Ⅰ)设复数z 满足|z -i|=1,z 在复平面内所对应的点为(x ,y ),则( )A .(x +1)2+y 2=1 B .(x -1)2+y 2=1 C .x 2+(y -1)2=1D .x 2+(y +1)2=1(2)设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i(i 为虚数单位),则z 1z 2=( )A .-5B .5C .-4+iD .-4-i【解析】 (1)由已知条件,可得z =x +y i.因为|z -i|=1,所以|x +y i -i|=1,所以x 2+(y -1)2=1.故选C.(2)因为复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,所以z 2=-2+i ,所以z 1z 2=(2+i)(-2+i)=-5.【答案】 (1)C (2)A复数的几何意义及应用(1)复数z 、复平面上的点Z 及向量OZ →相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ →.(2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.1.(2020·南宁摸底联考)已知(1+i)·z =3i(i 是虚数单位),那么复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选 A.因为(1+i)·z =3i ,所以z =3i 1+i =3i (1-i )(1+i )(1-i )=3+3i2,则复数z 在复平面内对应的点的坐标为⎝⎛⎭⎪⎪⎫32,32,所以复数z 在复平面内对应的点位于第一象限,故选A.2.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面内对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是 .解析:由条件得OC →=(3,-4),OA →=(-1,2), OB →=(1,-1),根据OC →=λOA →+μOB →得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),所以⎩⎪⎨⎪⎧-λ+μ=3,2λ-μ=-4,解得⎩⎪⎨⎪⎧λ=-1,μ=2,所以λ+μ=1.答案:1复数代数形式的运算(师生共研)(1)(2019·高考全国卷Ⅲ)若z (1+i)=2i ,则z =( )A .-1-iB .-1+iC .1-iD .1+i(2)(2020·江西省五校协作体试题)已知i 是虚数单位,若z +1i =⎝ ⎛⎭⎪⎪⎫1-i 1+i 2 018,则|z |=( )A .1 B. 2 C .2D .5【解析】(1)z=2i1+i =2i(1-i)(1+i)(1-i)=2+2i2=1+i.故选D.(2)1i=-ii(-i)=-i,1-i1+i=(1-i)2(1+i)(1-i)=-2i 2=-i,所以⎝⎛⎭⎪⎪⎫1-i1+i2 018=(-i)2 018=i504×4+2=i2=-1,所以由z+1i=⎝⎛⎭⎪⎪⎫1-i1+i2 018,得z-i=-1,z=-1+i,所以|z|=2,故选B.【答案】(1)D (2)B复数代数形式运算问题的解题策略(1)复数的乘法:复数的乘法类似于多项式的乘法运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法运算是分子、分母同乘以分母的共轭复数,即分母实数化.1.(2020·新疆乌鲁木齐一模)已知复数z=1+i(i是虚数单位),则z2+2z-1=( )A.2+2i B.2-2i C.2i D.-2i解析:选B.因为z=1+i,所以z2+2z-1=(1+i)2+21+i-1=2+2i i =(2+2i )(-i )-i2=2-2i.故选B. 2.若复数z 满足2z +z ·z =(2-i)2(i 为虚数单位),则z 为( )A .-1-iB .-1-2iC .-1+2iD .1-2i解析:选B.设z =a +b i ⇒2(a +b i)+(a +b i)(a -b i)=a 2+b 2+2a +2b i =3-4i ⇒a =-1,b =-2⇒z =-1-2i.[基础题组练]1.(2020·新疆第一次毕业诊断及模拟测试)已知x ,y ∈R ,i 为虚数单位,且x i -y =-1+i ,则(1-i)(x -y i)=( )A .2B .-2iC .-4D .2i解析:选B.x i -y =-1+i ,得⎩⎪⎨⎪⎧-1=-y ,x =1,所以x =1,y =1,所以(1-i)(x -y i)=(1-i)(1-i)=-2i ,故选B. 2.(2020·辽宁辽南协作体一模)已知i 是虚数单位,复数z =1-i|i|,下列说法正确的是( )A .z 的虚部为-iB .z 对应的点在第一象限C .z 的实部为-1D .z 的共轭复数为1+i解析:选D.因为z =1-i|i|=1-i ,所以z 的虚部为-1;z 对应的点的坐标为(1,-1),在第四象限;z 的实部为1;z 的共轭复数为1+i.故选D.3.(2020·黑龙江齐齐哈尔二模)已知复数z =(2+a i )i1+i是纯虚数,其中a 是实数,则z 等于( )A .2iB .-2iC .iD .-i解析:选A.z =(2+a i )i 1+i =-a +2i1+i=(-a +2i )(1-i )(1+i )(1-i )=2-a 2+a +22i ,因为z 为纯虚数,所以2-a 2=0,a +22≠0,得a =2.所以z =2i ,故选A.4.(2020·云南民族大学附属中学期中)复数z 满足z (1-i)=|1+i|,则复数z 的共轭复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D.因为z (1-i)=|1+i|,所以z =|1+i|1-i =2(1+i )2=22+22i ,所以z =22-22i ,所以复数z 的共轭复数在复平面内对应的点为⎝⎛⎭⎪⎪⎫22,-22,位于第四象限,故选D. 5.设z =11+i +i(i 为虚数单位),则|z |= .解析:因为z =11+i +i =1-i (1+i )(1-i )+i =1-i2+i =12+12i ,所以|z |=⎝ ⎛⎭⎪⎪⎫122+⎝ ⎛⎭⎪⎪⎫122=22. 答案:226.(2020·西安八校联考)若a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,则a -b = .解析:因为a +b i i=(a +b i )(-i )-i2=b -a i ,(2-i)2=4-4i -1=3-4i ,a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,所以b =3,a =-4,则a -b =-7,故答案为-7.答案:-77.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为 .解析:因为A (-1,2)关于直线y =-x 的对称点为B (-2,1),所以向量OB→对应的复数为-2+i.答案:-2+i8.计算:(1)(1+2i)2+3(1-i)2+i;(2)1-i(1+i)2+1+i(1-i)2;(3)1-3i (3+i)2.解:(1)(1+2i)2+3(1-i)2+i=-3+4i+3-3i2+i=i2+i=i(2-i)5=15+25i.(2)1-i(1+i)2+1+i(1-i)2=1-i2i+1+i-2i=1+i-2+-1+i2=-1.(3)1-3i(3+i)2=(3+i)(-i)(3+i)2=-i3+i=(-i)(3-i)4=-14-34i.[综合题组练]1.已知复数z=(cos θ-isin θ)(1+i),则“z为纯虚数”的一个充分不必要条件是( )A .θ=π4B .θ=π2C .θ=3π4D .θ=5π4解析:选C.z =(cos θ-isin θ)(1+i)=(cos θ+sin θ)+(cos θ-sin θ)i.z 是纯虚数等价于⎩⎪⎨⎪⎧cos θ+sin θ=0,cos θ-sin θ≠0,等价于θ=3π4+k π,k ∈Z .故选C.2.(应用型)(2020·成都第二次诊断性检测)若虚数(x-2)+y i(x ,y ∈R )的模为3,则yx的最大值是( )A.32B.33C.12D .3解析:选D.因为(x -2)+y i 是虚数, 所以y ≠0,又因为|(x -2)+y i|=3, 所以(x -2)2+y 2=3.因为yx是复数x +y i 对应点的斜率,所以⎝ ⎛⎭⎪⎪⎫y x max =tan ∠AOB =3,所以yx的最大值为 3.3.设复数z 满足1+2z1-z=i ,则z = .解析:法一:因为1+2z1-z =i ,所以1+2z =i -i z ,所以z =i -12+i =(i -1)(2-i )5=-15+35i.法二:设z =a +b i(a ,b ∈R ),因为1+2z 1-z =i ,所以1+2(a +b i)=i -i(a +b i),所以2a +1+2b i =b +(1-a )i ,所以⎩⎪⎨⎪⎧2a +1=b 2b =1-a,解得⎩⎪⎨⎪⎧a =-15b =35,所以z =-15+35i.答案:-15+35i4.已知复数z =i +i 2+i 3+…+i2 0181+i ,则复数z 在复平面内对应点的坐标为 .解析:因为i4n +1+i4n +2+i4n +3+i4n +4=i +i 2+i 3+i 4=0,而2 018=4×504+2,所以z =i +i 2+i 3+…+i2 0181+i=i +i 21+i =-1+i 1+i=(-1+i )(1-i )(1+i )(1-i )=2i2=i ,对应的点的坐标为(0,1).答案:(0,1)。
第一节数系的扩充与复数的引入A组基础题组1.(2016湖南一模)已知复数z=,则z-|z|对应的点所在的象限为( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2016山西四校联考)i是虚数单位,若=a+bi(a,b∈R),则lg(a+b)的值是( )A.-2B.-1C.0D.3.(2016湖北优质高中联考)已知复数z=1+i(i是虚数单位),则-z2的复数是( )A.-1+3iB.1+3iC.1-3iD.-1-3i4.(2016江西鹰潭余江一中月考)设z=+(1+i)2,则||=( )A. B.1 C.2 D.5.(2016安徽江南十校3月联考)若复数z满足z(1-i)=|1-i|+i,则z的实部为( )A. B.-1 C.1 D.6.已知a∈R,若为实数,则a= .7.复数|1+i|+= .8.已知复数z=,是z的共轭复数,则z·= .9.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i:(1)与复数2-12i相等?(2)与复数12+16i互为共轭复数?(3)对应的点在x轴上方?10.计算:(1);(2);(3)+;(4).B组提升题组11.“+(1+i)2=a+bi(a,b∈R,i是虚数单位)”是“点(a,b)在第一象限”的( )A.既不充分也不必要条件B.必要不充分条件C.充要条件D.充分不必要条件12.设z1,z2是复数,则下列命题中的假.命题是( )A.若|z1-z2|=0,则=B.若z1=,则=z2C.若|z1|=|z2|,则z1·=z2·D.若|z1|=|z2|,则=13.已知复数z=x+yi(x,y∈R),且|z-2|=,则的最大值为.14.已知复数z1=cos 15°+sin 15°i和复数z2=cos 45°+sin 45°i,则z1·z2= .15.复数z1=+(10-a2)i,z2=+(2a-5)i,若+z2是实数,求实数a的值.答案全解全析A组基础题组1.B ∵复数z===+i,∴z-|z|=+i-=+i,对应的点所在的象限为第二象限.故选B.2.C ∵==-i=a+bi,∴∴lg(a+b)=lg 1=0.3.B -z2=-(1+i)2=-2i=1-i-2i=1-3i,其共轭复数是1+3i,故选B.4.D z=+(1+i)2=+2i=1-i+2i=1+i,∴=1-i,∴||=.5.A 由z(1-i)=|1-i|+i,得z===+i,z的实部为,故选A.6.答案-解析===+i,∵为实数,∴=0,∴a=-.7.答案i解析原式=+=+=+i-=i.8.答案解析∵z======-+i,∴z·==+=.9.解析(1)根据复数相等的充要条件得解之得m=-1.(2)根据共轭复数的定义得解之得m=1.(3)根据复数z对应的点在x轴上方可得m2-2m-15>0,解之得m<-3或m>5.10.解析(1)==-1-3i.(2)====+i.(3)+=+=+=-1.(4)====--i.B组提升题组11.A +(1+i)2=+(1+i)2=2(1+i)2=4i,∴4i=a+bi,即a=0,b=4.因点(0,4)在y轴上,不在第一象限,故选A.12.D A中,|z1-z2|=0,则z1=z2,故=成立.B中,z1=,则=z2成立.C中,|z1|=|z2|,则|z1|2=|z2|2,即z1=z2,C正确.D不一定成立,如z1=1+i,z2=2,则|z1|=2=|z2|,但=-2+2i,=4,≠.13.答案解析因为|z-2|=,即|(x-2)+yi|=,所以(x-2)2+y2=3,而(x-2)2+y2=3表示一个圆,表示圆上的点(x,y)与原点连线的斜率,令k=,则y=kx,当直线与圆相切时,斜率最大或最小.由=,得k2=3,∴k=±,∴的最大值为.14.答案+i解析z1·z2=(cos 15°+sin 15°i)(cos 45°+sin 45°i)=(cos 15°cos 45°-sin 15°sin45°)+(sin 15°cos 45°+cos 15°·sin 45°)i=cos 60°+sin 60°i=+i.15.解析+z2=+(a2-10)i++(2a-5)i=+[(a2-10)+(2a-5)]i=+(a2+2a-15)i.∵+z2是实数,∴a2+2a-15=0,解得a=-5或a=3.∵a+5≠0,∴a≠-5,故a=3.。
第一节数系的扩充与复数的引入
A组基础题组
1.(2016湖南一模)已知复数z=,则z-|z|对应的点所在的象限为( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.(2016山西四校联考)i是虚数单位,若=a+bi(a,b∈R),则lg(a+b)的值是( )
A.-2
B.-1
C.0
D.
3.(2016湖北优质高中联考)已知复数z=1+i(i是虚数单位),则-z2的复数是( )
A.-1+3i
B.1+3i
C.1-3i
D.-1-3i
4.(2016江西鹰潭余江一中月考)设z=+(1+i)2,则||=( )
A. B.1 C.2 D.
5.(2016安徽江南十校3月联考)若复数z满足z(1-i)=|1-i|+i,则z的实部为( )
A. B.-1 C.1 D.
6.已知a∈R,若为实数,则a= .
7.复数|1+i|+= .
8.已知复数z=,是z的共轭复数,则z·= .
9.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i:
(1)与复数2-12i相等?
(2)与复数12+16i互为共轭复数?
(3)对应的点在x轴上方?
10.计算:(1);
(2);
(3)+;
(4).
B组提升题组
11.“+(1+i)2=a+bi(a,b∈R,i是虚数单位)”是“点(a,b)在第一象限”的( )
A.既不充分也不必要条件
B.必要不充分条件
C.充要条件
D.充分不必要条件
12.设z1,z2是复数,则下列命题中的假.命题是( )
A.若|z1-z2|=0,则=
B.若z1=,则=z2
C.若|z1|=|z2|,则z1·=z2·
D.若|z1|=|z2|,则=
13.已知复数z=x+yi(x,y∈R),且|z-2|=,则的最大值为.
14.已知复数z1=cos 15°+sin 15°i和复数z2=cos 45°+sin 45°i,则z1·z2= .
15.复数z1=+(10-a2)i,z2=+(2a-5)i,若+z2是实数,求实数a的值.
答案全解全析
A组基础题组
1.B ∵复数z===+i,
∴z-|z|=+i-=+i,对应的点所在的象限为第二象限.故选B.
2.C ∵==-i=a+bi,
∴∴lg(a+b)=lg 1=0.
3.B -z2=-(1+i)2=-2i=1-i-2i=1-3i,其共轭复数是1+3i,故选B.
4.D z=+(1+i)2=+2i=1-i+2i=1+i,∴=1-i,∴||=.
5.A 由z(1-i)=|1-i|+i,得z===+i,z的实部为,故选A.
6.答案-
解析===+i,
∵为实数,∴=0,∴a=-.
7.答案i
解析原式=+=+=+i-=i.
8.答案
解析∵z======-+i,
∴z·==+=.
9.解析(1)根据复数相等的充要条件得
解之得m=-1.
(2)根据共轭复数的定义得
解之得m=1.
(3)根据复数z对应的点在x轴上方可得m2-2m-15>0,
解之得m<-3或m>5.
10.解析(1)==-1-3i.
(2)====+i.
(3)+=+=+=-1.
(4)=
==
=--i.
B组提升题组
11.A +(1+i)2=+(1+i)2=2(1+i)2=4i,∴4i=a+bi,即a=0,b=4.因点(0,4)在y轴上,不在第一象限,故选A.
12.D A中,|z1-z2|=0,则z1=z2,故=成立.
B中,z1=,则=z2成立.
C中,|z1|=|z2|,则|z1|2=|z2|2,即z1=z2,C正确.
D不一定成立,如z1=1+i,z2=2,
则|z1|=2=|z2|,但=-2+2i,=4,≠.
13.答案
解析因为|z-2|=,即|(x-2)+yi|=,所以(x-2)2+y2=3,而(x-2)2+y2=3表示一个圆,表示圆上的点
(x,y)与原点连线的斜率,令k=,则y=kx,当直线与圆相切时,斜率最大或最小.由=,得
k2=3,∴k=±,∴的最大值为.
14.答案+i
解析z
1·z2=(cos 15°+sin 15°i)(cos 45°+sin 45°i)=(cos 15°cos 45°-sin 15°sin 45°)+(sin 15°cos 45°+cos 15°·sin 45°)i=cos 60°+sin 60°i=+i.
15.解析+z 2=+(a2-10)i++(2a-5)i=+[(a2-10)+(2a-5)]i=+(a2+2a-15)i.
∵+z2是实数,∴a2+2a-15=0,解得a=-5或a=3.
∵a+5≠0,∴a≠-5,故a=3.。