光纤差动保护的应用及现场调试
- 格式:pdf
- 大小:270.01 KB
- 文档页数:2
光纤差动保护在应用中应注意的问题摘要:光纤作为继电保护的通道介质,具有不怕超高压与雷电电磁干扰等优点,在继电保护中得到广泛应用,但在运行中也发现了一些问题,重点讨论了光纤保护在实际应用中可能遇到的问题及其解决办法。
关键词:光纤差动;光纤通道;应注意的问题光纤作为继电保护的通道介质,具有不怕超高压与雷电电磁干扰、对电场绝缘、频带宽和衰耗低等优点。
而电流差动保护原理简单,不受系统振荡、线路串补电容、平行互感、单侧电源运行方式的影响,差动保护本身具有选相能力,保护动作速度快,最适合作为主保护。
光纤电流差动保护在运行中发现一些问题也不容忽视。
1光纤纵联电流差动的应用及运行中出现的问题电流差动原理的保护是较为简单的,也是最为有效的保护方式。
通过计算线路两侧电流的差值的有无,从而判别区内或区外故障。
区外故障时:故障电流为穿越性电流,两侧电流的差值为零。
区内故障时:故障电流由线路两侧向故障点流,两侧电流差值为两侧故障电流的和。
在实际应用中,220kV以上系统保护要求采用分相电流差动保护方式,它是把本侧的三相电流采样值传送到对侧,进行同步比较,从而计算出电流差值,经一定逻辑后,做出跳闸与否的选择。
在动作特性上,均采用比例制动原理。
某变电站220kV光纤电流差动保护WXH-803装置投运,通信方式为2M复用方式。
两端互联时候,两端出现较高误码。
由于是2M复用方式。
首先确认时钟方式设置是否正确,当时投运人员确认没有错误,都为主时钟,但本着现场实时检测的原则,还是打开光端机后盖进行确认,结果发现B端时钟方式设置为从时钟方式,更改为主时钟。
然后两端互连,发现误码虽然有所减少,但仍然有存在。
分别对A、B两端进行近端光自环,装置没有误码;对A、B两端进行近端自环,装置仍然正常没有误码;对装置进行远端电自环,发现装置有误码产生,检查通信网络通信正常,还是本着现场实时检测的原则,最终确定误码产生的原因在于其中一条光纤通道的PDH/SDH设备的时钟不准确,从而造成了误码的产生。
RCS-9613CS型光纤差动保护原理分析及其调试、运行注意事项一、开放条件在保护功能已投入的情况下, RC S9613CS 型光纤差动保护装置的开放条件是:a) 保护启动且满足差动方程。
b) 保护没有启动, 但是相电压或相间电压由正常值变为低于65 % Ur ( Ur 为线路的额定电压) ,且满足差动方程。
c) 开关置于分位, 且满足差动方程。
一旦上述任一条件得到满足, 保护装置将给对侧发差动允许信号, 对侧如检测到有区内故障, 两侧保护出口将动作。
上述开放条件仅对瞬时金属性短路故障而言。
二、闭锁条件RC S9613CS型光纤差动保护装置的闭锁条件是:a) 保护功能压板不投;b) 开关位置为合位, 且三相电压正常(三相对称且幅值大于65 %Ur ) ;c) 开关位置为分位, 但是保护没有接受到跳闸信号(如控制电源被切除) 。
上述任一条件不满足, 则对侧保护装置检测到任何瞬时故障, 两侧光纤分相差动保护均被闭锁。
上述闭锁条件只是针对瞬时金属性短路故障而言的, 当后备保护在投入状态或发生零序高阻接地故障时, 闭锁条件将不起作用。
三、特殊试验条件下的反应特殊试验条件下RC S9613CS型光纤差动保护装置的反应情况:a) 对空载充电线路, 在断路器断开侧对保护装置进行加电流试验。
若只投主保护压板, 其它后备保护压板不投, 模拟各类型故障(故障电压低于40 V) ,则两侧光纤差动保护装置均不动作; 投入主保护压板及其它后备保护压板, 加故障电流, 如本侧开关断开, 则后备加速保护动作, 开关合位时, 后备保护动作, 经一定延时后, 光纤差动保护装置动作, 此时,对侧光纤差动保护装置也随之跳闸; 若只投主保护压板, 其它后备保护压板不投, 空载充电线路有启动电流, 则两侧光纤差动保护装置动作; 任一侧开关跳闸异常, 不影响两侧光纤差动保护的逻辑判别。
b) 空载充电线路发生故障时, 断路器断开侧光纤差动保护装置不动作。
浅谈光纤差动保护摘要:随着我国经济以及科技的快速发展,超高压输电线路也得到了一定的发展。
近年来,光纤通信技术发展迅速,光纤差动保护因其保护原理简单、动作快速、能可靠地反映线路上各种类型故障等优点,在220kV 及以上电压等级的输电线路中作为主保护被广泛应用。
本文主要从光纤差动保护原理入手,结合实际经验,对其功能的应用和实现做了相应的介绍。
关键词:光纤差动、原理、注意事项光纤差动保护基本原理由于只能反应两侧TA 之间的线路全长,在原理上讲光纤差动保护并不是完整的保护,通常还需附带其他后备保护以弥补不足。
如RCS-931保护以分相电流差动和零序电流差动为主体的快速主保护,还配有工频变化量距离元件构成快速的Ⅰ断保护,由三段式相间和接地距离及多个零序方向过流保护构成后备保护,保护有分相出口。
光纤差动保护需注意的问题TA饱和TA 的饱和使得电流二次值与一次值的误差超出规定值范围,在区外故障时,会影响差动保护的正确动作。
克服TA 饱和可选用合适的电流互感器,宜尽量选用有剩磁限值的互感器如TPY 型;此外,保护装置本身也应采取措施减缓互感器暂态饱和影响,如采用变制动特性比率差动原理等。
在RCS-931保护中,由于采用了较高的制动系数和自适应浮动制动门槛,从而保证了在较严重的饱和情况下不会误动。
通道数据同步性光纤差动线路保护装置对两侧数据的实时性、同步性要求较高,若两侧采样不同步,会使不平衡电流加大,产生差流。
通道两侧采用一主一从方式,用于测量通道延时,主机侧为参照侧,从机侧为调整侧,若两侧不同步,参与计算的交流采样值不是同一时刻的,就会出现差流。
解决该问题必须统一时钟,改变时钟方式。
RCS931 系列保护通过控制字“主机方式”和“专用光纤”进行整定,可防止因数据传输中产生周期性滑码,出现差流。
若差动保护装置的通信时钟方式控制字设置错误,保护装置也会报通道异常,使光纤差动保护退出运行。
因此现场调试及运行中要特别注意正确设置装置的通信时钟方式。
RCS931系列光纤差动保护装置现场调试摘要: 南瑞继保的RCS931系列是由微机实现的数字式超高压线路成套快速保护装置,可用作输电线路的主保护及后备保护。
本文借助ONLLY继保调试仪器,简述了RCS931系列光纤差动保护装置的保护功能调试方法和光纤通道的保护联调方法,对RCS931系列保护装置的现场调试具有一定的参考价值。
关键字:线路保护、RCS931、调试1 引言RCS931系列微机保护装置一般包括以分相电流差动和零序电流差动为主体的快速主保护,由三段式相间和接地距离及多个零序方向过流构成的全套后备保护。
RCS-931系列保护有分相出口,配有自动重合闸功能,对单或双母线接线的开关实现单相重合、三相重合和综合重合闸。
ONLLY测试仪器是由昂立电气公司研发,可以独立完成各种继电保护功能调试的保护测试装置,广泛适用于电力、铁路、石化、冶金、矿山、军事、航空等行业的科研、生产和电气试验现场。
正确地进行装置的功能调试是装置能准确判断及动作的必要前提。
2 光纤纵差保护2.1光纤差动保护原理光纤纵差保护是直接将对侧电流的相位信息传送到本侧,本侧的电流相位信息也传送到对侧,每侧保护对两侧电流相位进行比较,从而判断出区内外故障,属于直接比较两侧电量的纵联保护,包括分相电流差动和零序电流差动两种[1、2]。
2.2试验方法(1)将光端机(在CPU插件上)的接收“RX”和发送“TX”用尾纤短接,构成自发自收方式;仅投差动保护压板;整定保护定值控制字中“投纵联差动保护”、“专用光纤”、“通道自环”、“投重合闸”和“投重合闸不检”均置1。
此时通道异常灯应该为不亮状态。
(2)等保护充电,直至“充电”灯亮,且TV断线灯不亮。
(3)进入ONLLY测试仪器的电压/电流菜单,加大于1.05×0.5×差动电流高定值的故障电流,模拟单相或多相区内故障。
(4)装置面板上相应跳闸灯亮,液晶上显示“电流差动保护”,动作时间为10~25ms。
光纤差动保护调试方法
光纤差动保护调试方法包括以下步骤:
1. 通道调试前的准备工作:检查光纤头是否清洁,光纤连接时,一定
要注意检查FC连接头上的凸台和砝琅盘上的缺口对齐,然后旋紧FC
连接头。
当连接不可靠或光纤头不清洁时,仍能收到对侧数据,但收
信裕度大大降低,当系统扰动或操作时,会导致通道异常,故必须严
格校验光纤连接的可靠性。
如果保护使用的通道中有通道接口设备,
应保证通道接口装置良好接地,接口装置至通信设备间的连接线应符
合厂家要求,其屏蔽层两端应可靠接地,通信机房的接地网应与保护
设备的接地网物理上完全分开。
2. 调试时的准备工作:投入差动保护,退出出口压板,开关处于合位。
看采样,一侧加A、B、C相分别为1、2、3A的电流,对侧应该能看到
的电流值为本侧电流二次值*本侧ct变比/对侧ct变比的值,若两侧
变比相同的话则对侧看到的值就是1、2、3A。
然后根据试验报告要求
加三相平衡的特定电流值,如要求的0.2倍额定电流、1倍额定电流、
2倍额定电流值。
可以看一下纵联保护闭锁灯的动作情况,常见的动作情况有:a.差动保护投退不一致(包括硬压板、软压板和控制字投退
的不一致,另外注意一下差动保护退出的一侧纵联保护闭锁灯并不会亮)b.拔掉保护装置背板上的光差通道 c.两侧识别码不对应 d.智能
站保护装置和合智一体的检修状态不一致(两侧保护装置检修状态不
一致并不会导致纵联保护闭锁)e.智能站保护装置接受合智一体的SV
断链。
光纤差动保护调试报告
一、背景及目的
本次调试旨在确保光纤差动保护装置在电力系统中的正常运行,提高电力系统的稳定性和安全性。
通过本次调试,我们将对光纤差动保护装置的性能、功能、参数等进行全面测试,并记录相关数据和结果。
二、设备描述
本次调试所使用的光纤差动保护装置型号为XDF100,该装置具有以下主要特点:
1. 采用光纤传输信号,具有较高的传输速度和稳定性;
2. 具备差动保护、后备保护、过载保护等多种功能;
3. 配置有液晶显示屏,便于操作和监视;
4. 具备远程通信功能,可与监控系统连接。
三、调试过程及结果
1. 设备安装及接线正确性检查:确认设备安装位置正确,接线方式符合要求,连接牢固。
2. 参数设置检查:确认装置参数设置正确,包括电流采样值、差动门限等。
3. 模拟故障测试:通过模拟各种故障情况,如区内故障、区外故障等,测试装置的动作准确性、灵敏性。
4. 实际运行测试:在电力系统实际运行状态下,对装置进行长时间连续测试,观察其性能表现。
测试结果如下:
(根据实际测试数据填写)
四、结论
经过本次调试,光纤差动保护装置性能稳定,动作准确、灵敏,符合设计要求。
但在实际运行中,仍需注意以下几点:
1. 定期检查设备运行状态,确保其始终处于最佳工作状态;
2. 定期进行维护保养,确保设备安全可靠;
3. 遇到异常情况时,应及时处理,防止故障扩大。
总之,光纤差动保护装置在电力系统中的应用,可以有效提高电力系统的稳定性和安全性,为人们的生活和工作提供保障。