相似习题4
- 格式:doc
- 大小:66.00 KB
- 文档页数:1
图形的相似专题练习1.已知△ABC∽△DEF,AB=1,BC=3,EF=5,则△ABC与△DEF的面积比是()A.1∶9 B.1∶25C.9∶25 D.3∶52.如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OB∶OB′=2∶3,则四边形ABCD与四边形A′B′C′D′的面积比为()图2A.4∶9 B.2∶5C.2∶3 D.2∶ 33.如果3A=2B(AB≠0),那么下列比例式中正确的是()A.ab=32B.ba=23C.a2=b3D.a3=b24.如图,在△ABC中,点D,E分别为边AB,AC上的点,且DE∥B C.若AD=5,BD=10,AE=3,则CE的长为()图4A.3 B.6C.9 D.125.在下面的图形中,相似的一组是(),A) ,B),C) ,D)图56.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是(),A) ,B),C) ,D)图67.为测量某河的宽度,小在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于()图7A.120 m B.67.5 mC.40 m D.30 m8.如图,在△ABC中,∠A=70°,AB=4,AC=6,将△ABC沿图中的虚线剪开,则剪下的阴影三角形与原三角形不相似的是(),A) ,B),C) ,D)图89.如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥B C .如果ADDB =32,AC =10,那么EC =________.图910.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处.已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_________米.图1011.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA =3OD ,OB =3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若CD =3.2 cm ,则AB 的长为_________ cm.图1112.如图,已知矩形纸片ABCD 中,AB =1,剪去正方形ABEF ,得到的矩形ECDF 与矩形ABCD 相似,则AD 的长为__________.图1213.如图,在平面直角坐标系xOy中,以原点为位似中心,线段AB与线段A′B′是位似图形,若A(-1,2),B(-1,0),A′(-2,4),则B′的坐标为___________.图1314.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0),A(2,1),B(1,-2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB的位似比为2∶1,并分别写出点A,B的对应点A1,B1的坐标;(2)画出将△OAB向左平移2个单位,再向上平移1个单位后得△O2A2B2,并写出点A,B的对应点A2,B2的坐标;(3)△OA1B1和△O2A2B2是位似图形吗?若是,请在图中标出位似中心M,并写出点M的坐标.图1415.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC =90°.(1)求证:△ADE∽△BEC;(2)若AD=1,BC=3,AE=2,求AB的长.图1516.如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF⊥AE于点F,交CD于点G.(1)求证:△ABF∽△BGC;(2)若AB=2,G是CD的中点,求AF的长.图1617.如图,BD,CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F,H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.图1718.如图,一圆柱形油桶,高1.5 m,用一根2 m长的木棒从桶盖小口斜插桶内,至另一端的B处,抽出木棒后,量得上面没浸油的部分为1.2 m,求桶内油面高度.图1819.如图,操场上有一根旗杆AH,为测量它的高度,在B和D处各立一根高1.5米的标杆BC,DE,两杆相距30米.测得视线AC与地面的交点为F,视线AE与地面的交点为G,并且H,B,F,D,G都在同一直线上,测得BF为3米,DG为5米,求旗杆AH的高度.图1920.如图1,把两块全等的含45°角的直角三角板ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合.把三角板ABC 固定不动,让三角板DEF绕点D旋转,两边分别与线段AB,BC相交于点P,Q,易说明△APD∽△CDQ.根据以上内容,回答下列问题:(1)如图2,将含30°角的三角板DEF(其中∠EDF=30°)的锐角顶点D与等腰△ABC(其中∠ABC=120°)的底边中点O重合,两边DF,DE分别与边AB,BC 相交于点P,Q.写出图中的相似三角形__△APD∽△CDQ__(直接填在横线上);(2)其他条件不变,将三角板DEF旋转至两边DF,DE分别与边AB的延长线、边BC相交于点P,Q.上述结论还成立吗?请你在图3上补全图形,并说明理由;(3)在(2)的条件下,连接PQ,△APD与△DPQ是否相似?请说明理由;(4)根据(1)(2)的解答过程,你能否将两三角板改为更一般的三角形,使得(1)中的结论仍然成立?若能,请说明两个三角形应满足的条件;若不能,请简要说明理由.,图1),图2),图3)图20参考答案【过关训练】1.C2.A3.C4.B5.C6.A7.A8.D 9.__4__10.__10__11._9.6__12._1+52__13.(-2,0)_14.解:(1)如答图,△OA1B1为所作,点A1,B1的坐标分别为(4,2),(2,-4);(2)如答图,△O2A2B2为所作,点A2,B2的坐标分别为(0,2),(-1,-1);(3)△OA1B1和△O2A2B2是位似图形,如答图,点M为所,位似中心M的坐标为(-4,2).15.[解:(1)证明:∵AD∥BC,AB⊥BC,∴AB⊥AD,∠A=∠B=90°,∴∠ADE+∠AED=90°.∵∠DEC=90°,∴∠AED+∠BEC=90°,∴∠ADE=∠BEC,∴△ADE∽△BE C.(2)∵△ADE∽△BEC,∴BEAD=BCAE,即BE1=32,∴BE=3 2,∴AB=AE+BE=7 2.16.解:(1)证明:∵四边形ABCD是正方形,∴∠ABE=∠BCG=90°.∵BF⊥AE,∴∠BAE+∠ABF=90°,∠CBG+∠ABF=90°,∴∠BAE=∠CBG,∴△ABF∽△GB C.(2)∵△ABF∽△BG C.∴ABBG=AFBC.∵AB=2,G是CD的中点,四边形ABCD是正方形,∴BC=2,CG=1,∴BG=BC2+CG2=5,∴25=AF2,解得AF=45 5.17.证明:(1)∵BD⊥AC,DG⊥BC,∴∠BDC=∠DGC=90°,∴∠DBC+∠DCG=∠GDC+∠DCG,∴∠GDC=∠DBC,∴△BDG∽△DCG,∴BG∶DG=DG∶CG,即DG2=BG·CG.(2)同(1)中的方法,同理可证△BGH∽△FGC,∴BG∶GF=GH∶CG,∴BG·CG=GF·GH.18.解:∵DE∥BC,∴△ADE∽△ABC,∴AEAC=ADAB,即AE1.5=1.22,解得AE=0.9 m,∴EC=1.5-0.9=0.6(m),即油面高0.6 m. 19.解:设AH=x,BH=y,由题意知,△AHF∽△CBF,△AHG∽△EDG,∴BFHF=CBAH,DGHG=DEAH,∴3x=1.5×(y+3),5x=1.5×(y+30+5),解得x=24.则旗杆AH的高度为24 m.20.__△APD∽△CDQ__解:(2)成立,如答图.理由如下:∵AB=BC,∴∠BAC=∠BC A.∵∠ABC=120°,∴∠BAC=∠BCA=30°,∴∠ADP+∠APD=180°-30°=150°.∵∠EDF=30°,∴∠ADP+∠CDQ=150°,∴∠APD=∠CDQ,∴△APD∽△CDQ. (3)△APD∽△DPQ.理由如下:∵△APD∽△CDQ,∴APCD=DPDQ.∵点D为AC的中点,∴CD=AD,∴APAD=DPDQ,即APDP=ADDQ.又∵∠P AD=∠PDQ=30°,∴△APD∽△DPQ.(4)△DEF满足∠EDF=α,△ABC满足顶角为(180°-2α)的等腰三角形即可.理由:∵∠ABC=180°-2α,∴∠A=∠C=α.∵∠ADP+∠APD=180°-α,∠ADP+∠QDC=180°-α,∴∠APD=∠CDQ.又∵∠A=∠C,∴△APD∽△CDQ.。
相似三角形判定练习题### 相似三角形判定练习题一、选择题1. 下列各组三角形中,一定相似的是()A. 等腰三角形与直角三角形B. 等边三角形与等腰三角形C. 等腰直角三角形与直角三角形D. 等腰三角形与等边三角形2. 如果两个三角形的对应角相等,那么这两个三角形()A. 一定全等B. 一定相似C. 不一定相似D. 以上都不对3. 三角形ABC与三角形DEF相似,若AB:DE=2:3,那么AC:DF的比值为()A. 2:3B. 3:2C. 1:1D. 无法确定二、填空题4. 若三角形ABC与三角形DEF相似,且∠A=∠D,∠B=∠E,则∠C=______。
5. 三角形ABC与三角形DEF相似,若AB=6cm,DE=9cm,则BC:EF的比值为______。
6. 如果三角形ABC与三角形DEF相似,且AB=4cm,AC=6cm,DE=6cm,那么DF的长度为______。
三、判断题7. 如果两个三角形的对应边成比例,则这两个三角形一定相似。
()8. 三角形ABC与三角形DEF相似,如果∠A=∠D,∠B=∠E,那么∠C=∠F。
()9. 三角形ABC的周长是三角形DEF的2倍,那么三角形ABC与三角形DEF相似。
()四、简答题10. 已知三角形ABC与三角形DEF相似,且AB:DE=3:4,BC:EF=2:3,求AC:DF的比值。
11. 根据相似三角形的性质,如果一个三角形的三个内角的度数分别是40°,50°,90°,那么与它相似的另一个三角形的三个内角的度数分别是多少?12. 如果三角形ABC的面积是三角形DEF的9倍,且AB=6cm,DE=4cm,求三角形ABC的面积与三角形DEF的面积的具体数值。
五、解答题13. 在三角形ABC中,已知∠A=70°,∠B=40°,求∠C的度数,并判断三角形ABC是否为直角三角形。
14. 已知三角形ABC与三角形DEF相似,且AB=5cm,BC=7cm,DE=10cm,求三角形ABC的周长。
初三数学第四章图形的相似章节练习题及答案刚刚学习过图形的相似这一章节的学生们,大家都掌握了吗下面为大家带来一份初三数学上第四章图形的相似的章节练习题,文末附有答案,有需要的同学可以看一看,更多内容欢迎关注!知识点 1 平行线分线段成比例定理1. 如图,已知直线11 II 12 II 13 , AB=4 BC=6 DE=3 则EF为()A.2B.4.5C.6D.82. 如图,已知11 II 12 II 13,如果DE: EF=3: 4, BC=8 那么AB 的长是()A.323B.6C.3D.1633. (乐山中考)如图,1 1 I 12I 13,两条直线与这三条平行线分别交于点A B、C和D E、F.已知ABBC=32则DEDF勺值为()A.32B.23C.25D.354. 如图,已知11 II 12 II 13 , AB=3 DE=2 EF=4,求AC的长.知识点 2 平行线分线段成比例定理勺推论5. (成都中考)如图,在厶ABC中, DE// BC AD=6 DB=3 AE=4 则EC的长为()A.1B.2C.3D.46. 如图,在厶ABC中 , D, E分别在AB, AC上,且DE// BC,贝卩下列不成立的比例式是()A.ADDB=AECEB.ADDB=DEBCC.ADAB=AEACD.ABDB=ACCE7. 已知线段a、b、c,求作线段x使ax二be,下列每个图中的两条虚线都是平行线,则作法正确的是()8. 如图,已知EG/ BC GF// DC, AE=3 EB=2 AF=6 求AD的值.中档题9. (嘉兴中考)如图,直线11 // 12 // 13 ,直线AC分别交11 ,12 ,13 于点A, B,C;直线DF分别交11,12,13 于点D,E,F,AC与DF相交于点H,且AH=2 HB=1 BC=5则DEEF的值为()A.12B.2C.25D.3510. (包头中考)如图,在厶ABC中,点D, E,F分别在边AB AC BC上,且DE// BC EF// AB.若AD=2BD 贝卩CFBF的值为()A.12B.13C.14D.2311. (扬州中考)如图练习本中的横格线都平行且相邻两条横格线间的距离都相等,同一条直线上的三个点A、B、C都在横格线上,若线段AB=4cm 则线段BC= _______ cm.12. 如图已知AD/ BE/ CF 它们依次交直线11 、12 于点A、B、C和点D E、F,如果AB=6 BC=8 DF=21,求DE的长.13. 如图,F是口ABCD勺边CD上一点,连接BF并延长交AD的延长线于点 E. 求证:DEAE=DFDC.14. 如图,在厶ABC中 , DF// AC DE// BC.求证:AE?CB=AC?CF.综合题15. 如图,在矩形ABCD K E是边CB延长线上的点,且EB=ABDE与AB相交于点F, AD=2 CD=1求AE及DF的长.参考答案1.B2.B3.D4. v 11 // 12 // 13,二ABBC=DEEF卩3BC=24「. BC=6.••• AC=AB+BC=3+6=9. 5.B 6.B 7.A 8. v EG/ BCAEEB=AGG又v GF // DC 二AGGC=AFF D.AEEB=AFFD卩32=6FD.「. FD=4.「.AD=AF+FD=10.9.D 10.A 11.12 12. 设DE为x,贝S EF=21-x. v AD// BE// CF, • ABBC 二DEE即68=x21-x.解得x=9.经检验,x=9是原分式方程的解,•DE=9. 13.证明:v 四边形ABCD是平行四边形,• CD// AB AD// BC. •DEAE=EFE同理可得EFEB=DFDC. DEAE=DFDC. 14证明:v DE// BC • ADAB二AEAC.DF// AC • ADAB=CFCB. AEAC=CFCB.AE?CB二AC?CF.5. v 四边形ABCD^矩形,且AD=2CD=1 • BC=AD=2 AB=CD=1 / ABC M C=90°,AB// DC;. EB=AB=1 在Rt△ ABE中, AE 二AB2+BE2二在Rt△ DCE中, DE二DC2+CE2=12+32=T0.AB// DC • EFDF二EBBC=1 设EF二x,贝S DF=2x.v EF+DF=DE • x+2x=10. • x=103.•DF=2x=2310.。
相似三角形一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF和AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= _________ °,BC= _________ ;(2)判断△ABC和△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形和△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC和△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A 方向,向点A 运动,过点Q 作QE⊥BC 于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形和△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形和△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ和△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM和△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形和△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE和AB交于点M,EF和AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE和BA的延长线交于点M,EF和AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形和△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm .丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH和⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有和(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF和AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF ≌△BGF ,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.解答:(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.解答:解:相似三角形有△AEF∽△BEC;△AEF∽△DCF;△BEC∽△DCF.(3分)如:△AEF∽△BEC.在▱ABCD中,AD∥BC,∴∠1=∠B,∠2=∠3.(6分)∴△AEF∽△BEC.(7分)7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC= 135°°,BC= ;解答:解:(1)∠ABC=135°,BC=;(2)相似;∵BC=,EC==;∴,;∴;又∠ABC=∠CED=135°,∴△ABC∽△DEC.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s 的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形和△ACD相似?若存在,求t 的值;若不存在,请说明理由解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形和△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形和△ACD相似.(8分)9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)解答:解:(1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择①、③证明.在△AOB和△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB和△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE ⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC 和△BEA的面积之比.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.解答:证明:∵正方形ABCD,M为CD中点,∴CM=MD=AD.∵BP=3PC,∴PC=BC=AD=CM.∴.∵∠PCM=∠ADM=90°,∴△MCP∽△ADM.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC 于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形和△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.解答:解:(1)过D作DH∥AB交BC于H点,∵AD∥BH,DH∥AB,∴四边形ABHD是平行四边形.∴DH=AB=8;BH=AD=2.∴CH=8﹣2=6.∵CD=10,∴DH 2+CH2=CD2∴∠DHC=90°.∠B=∠DHC=90°.∴梯形ABCD 是直角梯形.∴S ABCD=(AD+BC )AB=×(2+8)×8=40.(2)①∵BP=CQ=t,∴AP=8﹣t,DQ=10﹣t ,∵AP+AD+DQ=PB+BC+CQ,∴8﹣t+2+10﹣t=t+8+t.∴t=3<8.∴当t=3秒时,PQ将梯形ABCD周长平分.②第一种情况:0<t≤8若△PAD∽△QEC则∠ADP=∠C∴tan∠ADP=tan∠C==∴=,∴t=若△PAD∽△CEQ则∠APD=∠C ∴tan∠APD=tan∠C==,∴=∴t=第二种情况:8<t≤10,P、A、D三点不能组成三角形;第三种情况:10<t≤12△ADP为钝角三角形和Rt△CQE不相似;∴t=或t=时,△PAD和△CQE相似.③第一种情况:当0≤t≤8时.过Q点作QE⊥BC,QH⊥AB,垂足为E、H.∵AP=8﹣t,AD=2,∴PD==.∵CE=t,QE=t,∴QH=BE=8﹣t,BH=QE=t.∴PH=t﹣t=t.∴PQ==,DQ=10﹣t.Ⅰ:DQ=DP,10﹣t=,解得t=8秒.Ⅱ:DQ=PQ,10﹣t=,化简得:3t2﹣52t+180=0解得:t=,t=>8(不合题意舍去)∴t=第二种情况:8≤t≤10时.DP=DQ=10﹣t.∴当8≤t<10时,以DQ为腰的等腰△DPQ恒成立.第三种情况:10<t≤12时.DP=DQ=t﹣10.∴当10<t≤12时,以DQ为腰的等腰△DPQ恒成立.综上所述,t=或8≤t<10或10<t≤12时,以DQ为腰的等腰△DPQ成立.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形和△BDC相似?解答:解:设经x秒后,△PBQ∽△BCD,由于∠PBQ=∠BCD=90°,(1)当∠1=∠2时,有:,即;(2)当∠1=∠3时,有:,即,∴经过秒或2秒,△PBQ∽△BCD.15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s 的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ和△ABC相似.解答:设经过秒后t秒后,△PBQ和△ABC相似,则有AP=2t,BQ=4t,BP=10﹣2t,当△PBQ∽△ABC时,有BP:AB=BQ:BC,即(10﹣2t):10=4t:20,解得t=2.5(s)(6分)当△QBP∽△ABC时,有BQ:AB=BP:BC,即4t:10=(10﹣2t):20,解得t=1.所以,经过2.5s或1s时,△PBQ和△ABC相似(10分).解法二:设ts后,△PBQ和△ABC相似,则有,AP=2t,BQ=4t,BP=10﹣2t分两种情况:(1)当BP和AB对应时,有=,即=,解得t=2.5s(2)当BP和BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形和△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解答:解:∵AC=,AD=2,∴CD==.要使这两个直角三角形相似,有两种情况:1)当Rt△ABC∽Rt△ACD时,2)有=,∴AB==3;3)当Rt△ACB∽Rt△CDA时,4)有=,∴AB==3.故当AB的长为3或3时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM和△MAN相似?若能,请给出证明,若不能,请说明解答:证明:分两种情况讨论:①若△CDM∽△MAN ,则=.∵边长为a,M是AD的中点,∴AN=a.②若△CDM∽△NAM,则.∵边长为a,M是AD的中点,∴AN=a,即N点和B重合,不合题意.所以,能在边AB上找一点N(不含A、B),使得△CDM和△MAN相似.当AN=a时,N点的位置满足条件.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s 的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形和△CBA相似?解答:解:设经过x秒后,两三角形相似,则CQ=(8﹣2x)cm,CP=xcm,(1分)∵∠C=∠C=90°,∴当或时,两三角形相似.(3分)(1)当时,,∴x=;(4分)(2)当时,,∴x=.(5分)所以,经过秒或秒后,两三角形相似.(6分)点评:本题综合考查了路程问题,相似三角形的性质及一元一次方程的解法.19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似.解答:解:(1)若点A,P,D分别和点B,C,P对应,即△APD∽△BCP,∴=,∴=,∴AP2﹣7AP+6=0,∴AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP=6,∴=,又∵∠A=∠B=90°,∴△APD∽△BCP.当AP=6时,由BC=3,AD=2,BP=1,又∵∠A=∠B=90°,∴△APD∽△BCP.(2)若点A,P,D分别和点B,P,C对应,即△APD∽△BPC.∴=,∴=,∴AP=.检验:当AP=时,由BP=,AD=2,BC=3,∴=,又∵∠A=∠B=90°,∴△APD∽△BPC.因此,点P的位置有三处,即在线段AB距离点A的1、、6处.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE和AB交于点M,EF和AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE和BA的延长线交于点M,EF和AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你解答:证明:(1)∵△ABC是等腰直角三角形,∴∠MBE=45°,∴∠BME+∠MEB=135°又∵△DEF是等腰直角三角形,∴∠DEF=45°∴∠NEC+∠MEB=135°∴∠BEM=∠NEC,(4分)而∠MBE=∠ECN=45°,∴△BEM∽△CNE.(6分)(2)和(1)同理△BEM∽△CNE,∴.(8分)又∵BE=EC,∴,(10分)则△ECN和△MEN中有,又∠ECN=∠MEN=45°,∴△ECN∽△MEN .(12分)21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s 的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形和△ABC相似.解答:解:以点Q、A、P为顶点的三角形和△ABC相似,所以△ABC∽△PAQ或△ABC∽△QAP,①当△ABC∽△PAQ时,,所以,解得:t=6;②当△ABC∽△QAP时,,所以,解得:t=;③当△AQP∽△BAC时,=,即=,所以t=;④当△AQP∽△BCA时,=,即=,所以t=30(舍去).故当t=6或t=时,以点Q、A、P为顶点的三角形和△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?解答:解:∵∠MAC=∠MOP=90°,∠AMC=∠OMP,∴△MAC∽△MOP.∴,即,解得,MA=5米;同理,由△NBD∽△NOP,可求得NB=1.5米,∴小明的身影变短了5﹣1.5=3.5米.23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.解答:解:(1)皮尺,标杆;(2)测量示意图如图所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,∵△DEF∽△BAC,∴,∴,∴.(7分)24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH和⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)解答:解:(1)由题意可知:∠BAC=∠EDF=90°,∠BCA=∠EFD.∴△ABC∽△DEF.∴,即,(2分)∴DE=1200(cm).所以,学校旗杆的高度是12m .(3分)(2)解法一:和①类似得:,即,∴GN=208.(4分)在Rt△NGH中,根据勾股定理得:NH2=1562+2082=2602,∴NH=260.(5分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(6分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN,∴(7分),又ON=OK+KN=OK+(GN﹣GK)=r+8,∴,解得:r=12.∴景灯灯罩的半径是12cm.(8分)解法二:和①类似得:,即,∴GN=208.(4分)设⊙O的半径为rcm,连接OM,∵NH切⊙O于M,∴OM⊥NH.(5分)则∠OMN=∠HGN=90°,又∵∠ONM=∠HNG,∴△OMN∽△HGN.∴,即,(6分)∴MN=r,又∵ON=OK+KN=OK+(GN﹣GK)=r+8.(7分)在Rt△OMN中,根据勾股定理得:r2+(r)2=(r+8)2即r2﹣9r﹣36=0,解得:r1=12,r2=﹣3(不合题意,舍去),∴景灯灯罩的半径是12cm.(8分)25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.解答:解:∵AE∥BD,∴△ECA∽△DCB,∴.∵EC=8.7m,ED=2.7m,∴CD=6m.∵AB=1.8m,∴AC=BC+1.8m,∴,∴BC=4,即窗口底边离地面的高为4m.点评:此题基本上难度不大,利用相似比即可求出窗口底边离地面的高.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.解答:解:(1)由已知:AB∥OP,∴△ABC∽△OPC.∵,∵OP=l,AB=h,OA=a,∴,∴解得:.(2)∵AB∥OP,∴△ABC∽△OPC,∴,即,即.∴.同理可得:,∴=是定值.(3)根据题意设李华由A到A',身高为A'B',A'C'代表其影长(如图).由(1)可知,即,∴,同理可得:,∴,由等比性质得:,当李华从A走到A'的时候,他的影子也从C移到C',因此速度和路程成正比∴,所以人影顶端在地面上移动的速度为.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有和(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.解:设直角三角形ABC的三边BC、CA、AB的长分别为a、b、c,则c2=a2+b2(1)S1=S2+S3;(2)S1=S2+S3.证明如下:显然,S1=,S2=,S3=∴S2+S3==S1;(3)当所作的三个三角形相似时,S1=S2+S3.证明如下:∵所作三个三角形相似∴∴=1 ∴S1=S2+S3;(4)分别以直角三角形ABC三边为一边向外作相似图形,其面积分别用S1、S2、S3表示,则S1=S2+S3.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.解答:解:∵△ABC∽△ADE,∴AE:AC=AD:AB.∵AE:AC=(AB+BD):AB,∴AE:9=(15+5):15.∴AE=12.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.解答:解:(1)Rt△ABC中,根据勾股定理得:BC==5,∵Rt△ABC∽Rt△BDC,∴==,==,∴BD=,CD=;(2)在Rt△BDC中,S△BDC=BE•CD=BD•BC,∴BE===3.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,解:(1)设=k,那么x=2k,y=3k,z=5k,由于3x+4z﹣2y=40,∴6k+20k﹣6k=40,∴k=2,∴x=4,y=6,z=10.(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分别为240cm,800cm。
第四章酶一、A型题1.酶作为一种生物催化剂,具有下列哪种能量效应A.降低反应活化能B.增加反应活化能C.增加产物的能量水平D.降低反应物的能量水平E.降低反应的自由能变化2.下列关于酶的论述正确的是A.体内所有具有催化活性的物质都是酶B.酶在体内不能更新C.酶的底物都是有机化合物D.酶能改变反应的平衡点E.酶由活细胞合成的具有催化作用的蛋白质3.关于酶的叙述哪一个是正确的A.酶催化的高效率是因为分子中含有辅酶或辅基B.所有的酶都能使化学反应的平衡常数向加速反应的方向进行 C.酶的活性中心中都含有催化基团D.所有的酶都含有两个以上的多肽链E.所有的酶都是调节酶4.酶的辅酶是A.与酶蛋白结合紧密的金属离子B.分子结构中不含维生素的小分子有机化合物C.在催化反应中不与酶的活性中心结合D.在反应中作为底物传递电子、质子或其他基团 E.与酶蛋白共价结合成多媒体5.酶蛋白变性后其活性丧失,这是因为A.酶蛋白被完全降解为氨基酸B.酶蛋白的一级结构受破坏C.酶蛋白的空间结构受到破坏D.酶蛋白不再溶于水E.失去了激活剂6.下列酶蛋白与辅助因子的论述不正确的是A.酶蛋白与辅助因子单独存在时无催化活性B.一种酶只能与一种辅助因子结合形成全酶C.一种辅助因子只能与一种酶结合形成全酶D.酶蛋白决定酶促反应的特异性E.辅助因子可以作用底物直接参与反应7.有关金属离子作为辅助因子的作用,错误的是A.作为酶活性中心的催化基团参加反应B.传递电子C.连接酶与底物的桥梁D.降低反应中的静电斥力E.与稳定酶的分子构象无关8.酶的特异性是指A.酶与辅酶特异的结合B.酶对其所催化的底物有特异的选择性C.酶在细胞中的定位是特异的D.酶催化反应的机制各不相同E.在酶的分类中各属不同的类别9.有关酶的活性中心的论述A.酶的活性中心专指能与底物特异性结合的必需基团 B.酶的活性中心是由一级结构上相互邻近的基团组成 C.酶的活性中心在与底物结合时不应发生构象改变 D.没有或不能形成活性中心的蛋白质不是酶E.酶的活性中心10.酶促反应动力学研究的是A.酶分子的空间构象B.酶的电泳行为C.酶的活性中心D.酶的基因来源E.影响酶促反应的因素11.影响酶促反应速度的因素不包括A.底物浓度B.酶的浓度C.反应环境的pHD.反应温度E.酶原的浓度12.含有维生素B1的辅酶是A.NAD+B.FADC.TPPD.CoAE.FMN13.当Km值近似于ES的解离常数Ks时,下列说法正确的是 A.Km值越大,酶与底物的亲和力越小B.Km值越大,酶与底物的亲和力越大C.Km值越小,酶与底物的亲和力越小D.在任何情况下,Km与Ks的涵义总是相同的E.既使Km≅Ks,也不可以用Km表示酶对底物的亲和力大小14.关于Km值的意义不正确的是A.Km值上酶的特征性常数B.Km值与酶的结构有关C.Km值与酶所催化的底物有关D.Km值等于反应速度为最大速度一半时的酶的浓度E.Km值等于反应速度为最大速度一半时的底物浓度15.竞争性抑制对酶促反应速度影响是A.Km↑,Vmax不变B.Km↓,Vmax↓C.Km不变,Vmax↓D.Km↓,Vmax↑E.Km↓,Vmax不变16.有关竞争性抑制剂的论述,错误的是A.结构与底物相似B.与酶的活性中心相结合C.与酶的结合是可逆的D.抑制程度这与抑制剂的浓度有关E.与酶非共价结合17.下列哪些抑制作用属于竞争性抑制作用A.砷化物对巯基酶的抑制作用B.敌敌畏对胆碱酯酶的抑制作用C.磺胺类药物对细菌二氢叶酸合成酶的抑制作用 D.氰化物对细胞色素氧化酶的抑制作用E.重金属盐对某些酶的抑制作用18.有机磷中毒时,下列哪一种酶受到抑制A.己糖激酶B.碳酸酐酶C.胆碱酯酶D.乳酸脱氢酶E.含巯基的酶19.非竞争性抑制剂对酶促反应速度的影响是A.Km↑,Vmax不变B.Km↓,Vmax↓C.Km不变,Vmax↓D.Km↓,Vmax↑E.Km↓,Vmax不变20.反竞争性抑制剂对酶促反应速度的影响是A.Km↑,Vmax不变B.Km↓,Vmax↓C.Km不变,Vmax↓D.Km↓,Vmax↑E.Km↓,Vmax不变21.温度对酶促反应速度的影响是A.温度升高反应速度加快,与一般催化剂完全相同B.低温可使大多数酶发生变性C.最适温度是酶的特征性常数,与反应进行的时间无关D.最适温度不是酶的特征性常数,延长反应时间,其最适温度降低E.最适温度对于所有的酶均相同22.关于pH对酶促反应速度影响的论述中,错误的是A.PH影响酶、底物或辅助因子的解离度,从而影响酶促反应速度B.最适pH是酶的特征性常数C.最适pH不是酶的特征性常数D.PH过高或过低可使酶发生变性E.最适pH是酶促反应速度最大时的环境pH23.关于酶原与酶原激活A.体内所有的酶在初合成时均以酶原的形式存在B.酶原的激活是酶的共价修饰过程C.酶原的激活过程也就是酶被完全水解的过程D.酶原激活过程的实质是酶的活性中心形成或暴露的过程E.酶原的激活没有什么意义24.有关别构酶的论述哪一种不正确A.别构酶是受别构调节的酶B.正协同效应例如,底物与酶的一个亚基结合后使此亚基发生构象改变,从而引起相邻亚基发生同样的改变,增加此亚基对后续底物的亲和力C.正协同效应的底物浓度曲线是矩形双曲线D.构象改变使后续底物结合的亲和力减弱,称为负协同效应E.具有协同效应的别构酶多为含偶数亚基的酶25.有关乳酸脱氢酶同工酶的论述,正确的是A.乳酸脱氢酶含有M亚基和H亚基两种,故有两种同工酶B.M亚基和H亚基都来自同一染色体的某一基因位点C.它们在人体各组织器官的分布无显著差别D.它们的电泳行为相同E.它们对同一底物有不同的Km值26.关于同工酶A.它们催化相同的化学反应B.它们的分子结构相同C.它们的理化性质相同D.它们催化不同的化学反应E.它们的差别是翻译后化学修饰不同的结果27.国际酶学委员会将酶分为六类的依据是A.酶的来源B.酶的结构C.酶的物理性质D.酶促反应的性质E.酶所催化的底物28.在测定酶活性时要测定酶促反应的初速度,其目的是A.为了提高酶促反应的灵敏度B.为了节省底物的用量C.为了防止各种干扰因素对酶促反应的影响D.为了节省酶的用量E.为了节省反应的时间29.用乳酸脱氢酶作指示剂,用酶偶联测定进行待测酶的测定时,原理是 A.NAD+在340nm波长处有吸收峰B.NADH在340nm波长处有吸收峰C.NAD+在280nm波长处有吸收峰D.NADH在280nm波长处有吸收峰E.只是由于乳酸脱氢酶分布广,容易达到30.反应速度为最大速度的80%时,Km值等于A.1/2[S]B.1/4[S]C.1/5[S]D.1/6[S]E.1/8[S]二、B型题A.丙二酸B.敌百虫C.路易士气D.二巯基丙醇E.琥珀酸1.琥珀酸脱氢酶的竞争性抑制剂为2.巯基酶中毒的解毒剂为3.胆碱酯酶的抑制剂为4.有毒的砷化物之一为A.递氢作用B.转氨基作用C.转移一碳单位作用D.转酰基作用E.转移CO2作用5.辅酶A6.DNA+7.FAD8.磷酸吡哆醛A.单体酶B.寡聚酶C.结合酶D.多功能酶E.单纯酶9.由于基因融合的结果,多种酶相互连接成一条肽链的具有多个活性中心的蛋白质10.只由氨基酸残基组成的酶11.只由一条多肽链组成的酶12.由酶蛋白和辅助因子两部分组成的酶三、X型题1.酶的活性中心是A.由一级结构上相互接近的一些基团组成,分为催化基团和结合基团B.平面结构C.裂缝或凹陷D.线状结构E.由空间结构上相接近的催化基团和结合基团组成的结构2.酶的化学修饰包括A.磷酸化与脱磷酸化B.乙酰化与脱乙酰化C.抑制剂的共价结合与去抑制剂作用D.甲基化与脱甲基化E.-SH与-S-S互变3.酶催化作用的机制可能是A.邻近效应与定向作用B.酶与底物锁-钥匙式的结合C.共价催化作用D.酸碱催化作用E.表面效应4.对酶来说,下列哪种描述不正确A.酶可加速化学反应速度,从而改变反应的平衡常数B.酶对其所催化的底物具有特异性C.酶通过增大反应的活化能而加快反应速度D.酶对其所催化的反应环境很敏感E.人体多数酶的最适温度接近37 C5.酶的非特征性常数包括A.Km值B.KsC.酶的最适温度D.酶的最适pHE.Vmax6.关于酶的激活剂的论述A.使酶由无活性变为有活性或使酶活性增加的物质称为酶的激活剂B.酶的辅助因子都是酶的激活剂.C.凡是使酶原激活的物质都是酶的激活剂D.酶的活性所必需的金属离子是酶的激活剂E.在酶的共价修饰中,有的酶被磷酸激酶磷酸化后活性增加,此磷酸激酶可视为酶的激活剂7.关于酶的抑制剂的论述A.使酶的活性降低或消失而不引起酶变性的物质都是酶的抑制剂B.蛋白质使酶水解而引起酶的活性消失,所以蛋白水解酶是酶的抑制剂C.丙二酸是琥珀酸脱氢酶的竞争性抑制剂D.过多的产物可使酶促反应出现逆相反应,也可视为酶的抑制剂E.在酶的共价修饰中,有的酶被磷酸激酶磷酸化后活性消失,此磷酸激酶可视为酶的抑制剂8.遵守米-曼氏方程的酶应具备以下特点A.反应速度与底物浓度应一直成直线关系B.当底物浓度很高时,反应的产物与反应时间之间不成直线关系 C.当底物浓度很高时,反应速度等于KmD.当反应速度为最大速度一半时,底物浓度等于KmE.当底物浓度很低时,反应的产物与反应浓度成直线关系9.酶的别构与别构协同效应是A.效应剂与酶的活性中心相结合,从而影响酶与底物的结合B.第一个底物与酶结合引起酶的构象改变,此构象改变波及邻近的亚基,从而影响酶与第二个底物结合C.上述的效应使第二个底物与酶的亲和力增加时,底物浓度曲线呈现出S形曲线D.酶的别构效应应是酶使底物的结合发生构象改变,从而影响底物与酶的结合E.酶的亚基与别构剂的结合是非共价键结合10.哪些是酶的特点A.只在一定的温度才有催化作用B.只在一定的pH才有催化作用C.只能催化热力学上允许进行的反应D.只加速反应的速度而不改变反应的平衡点E.改变反应的平衡点11.下列哪项不符合诱导契合假说A.酶与底物的关系有如锁-钥匙的关系B.酶的活性中心有可能改变,在底物影响下,空间构象可发生一定改变,才能与底物进行反应C.底物的结构朝着适应酶活性中心方面改变D.底物与酶的别构部位结合后,改变酶的构象,使之与底物相适应E.底物的结构可以不变12.酶的高催化效率是因为酶能A.改变化学反应的平衡点B.降低反应的活化能C.增加反应的活化能D.增加活化分子E.缩短平衡达到的时间13.丙二酸对琥珀酸脱氢酶的抑制效应是A.Vmax增加,Km值不变B.Vmax降低,Km值不变C.Vmax不变,Km值增加D.Vmax不变,Km值降低E.属于竞争性抑制14.全酶是指A.结构完整无缺的酶B.酶蛋白与辅助因子的结合物C.酶与抑制剂的复合物D.酶与变构剂的复合物E.由酶蛋白和非蛋白成分组成15.不以酶原形式分泌的酶是A.丙酮酸脱氢酶B.琥珀酸脱氢酶C.胰蛋白酶D.凝血酶E.苹果酸脱氢酶四、填空题1.酶的特异性包括特异性,特异性与立体异构特异性。
27.1 图形的相似练习题一、选择题。
1.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.6cm B.5cm C.18cm D.±6cm2.下列说法正确的是()A.两个等腰三角形一定相似B.两个等边三角形一定相似C.两个矩形一定相似D.两个直角三角形一定相似3.如图,菱形ABCD∽菱形AEFG,菱形AEFG的顶点G在菱形ABCD的BC边上运动,GF与AB相交于点H,∠E=60°,若CG=3,AH=7,则菱形ABCD的边长为()A.8B.9C.D.4.若a、b、c、d是成比例线段,其中a=5,b=2.5,c=8,则线段d的长为()A.2B.4C.5D.65.下列四组线段中,不成比例线段的是()A.2cm,5cm,10cm,25cm B.4cm,7cm,4cm,7cmC.2cm,cm,cm,4cm D.cm,cm,2cm,5cm6.甲、乙两地的实际距离是400千米,在比例尺为1:500000的地图上,甲乙两地的距离是()A.0.8cm B.8cm C.80cm D.800cm.7.在一张比例尺为1:50 000的地图上,一块多边形地区的面积是320cm2,这个地区的实际面积是()A.8×107m2B.8×108m2C.8×1010m2D.8×1011m28.将一条线段AB分割成长、短两条线段AP、PB,若短段与长段的长度之比等于长段的长度与全长之比,即,这种分割称为黄金分割,这时点P叫做线段AB的黄金分割点.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.2﹣2B.2﹣C.2﹣1D.﹣2二、填空题9.已知==,则=.10.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是.11.已知=,则=.12.若===,(a+c+e≠0),则=.13.已知=,那么=.三.解答题14.如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,已知AC=3,BC=4.问线段AD,CD,CD,BD是不是成比例线段?写出你的理由.15.(1)解方程x2+2x﹣5=0(2)一支铅笔长10cm,把它按黄金分割后,较长部分涂上橘红色,较短部分涂上浅蓝色,求出橘红色部分的长度.16.如图,矩形ABCD剪去一个以宽为边长的正方形ABFE后,剩下的矩形EFCD的长与宽的比与原矩形长与宽的比相等,求原矩形的长与宽的比.17.已知线段a,b,c,d(b≠d≠0),如果,求证:.。
一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
分析:根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.解答:证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.点评:本题考查的是平行线的性质及相似三角形的判定定理.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。
菁优网版权所有专题:几何综合题。
分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2EF﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.分析:由FD∥AB,FE∥AC,可知∠B=∠FDE,∠C=∠FED,根据三角形相似的判定定理可知:△ABC∽△FDE.解答:证明:∵FD∥AB,FE∥AC,∴∠B=∠FDE,∠C=∠FED,∴△ABC∽△FDE.点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相似.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.解答:证明:∵矩形ABCD中,AB∥CD,∠D=90°,(2分)∴∠BAF=∠AED.(4分)∵BF⊥AE,∴∠AFB=90°.∴∠AFB=∠D.(5分)∴△ABF∽△EAD.(6分)点评:考查相似三角形的判定定理,关键是找准对应的角.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。
中考数学《图形的相似》专项练习题及答案一、单选题1.一块含30°角的直角三角板(如图),它的斜边AB=8cm,里面空心△DEF的各边与△ABC的对应边平行,且各对应边的距离都是1cm,那么△DEF的周长是()A.5cm B.6cm C.(6-√3)cm D.(3+√3)cm2.如图,DE△BC,EF△AB,现得到下列结论:AEEC=BFFC,ADBF=ABBC,EFAB=DEBC,CECF=EABF其中正确的比例式的个数有()A.4个B.3个C.2个D.1个3.如图,△ABC与△ADE成位似图形,位似中心为点A,若AD:AB=1:3,则△ADE与△ABC面积之比为()A.1:2B.1:3C.1:9D.1:164.如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条5.如图,已知△ABC和△EDC是以点C为位似中心的位似图形,且△ABC和△EDC的位似比为1:2,△ABC面积为2,则△EDC的面积是()A.2B.8C.16D.326.如图,△ADE△△ABC,若AD=2,BD=4,则△ADE与△ABC的相似比是()A.1:2B.1:3C.2:3D.3:27.如图,以A为位似中心,将△ADE放大2倍后,得位似图形△ABC,若s1表示△ADE的面积,s2表示四边形DBCE的面积,则s1:s2=()A.1︰2B.1︰3C.1︰4D.2︰38.如图,按如下方法,将△ABC的三边缩小到原来的12,任取一点O,连AO、BO、CO,并取它们的中点D、E、F得△DEF,则下列说法正确的是()①△ABC与△DEF是相似图形;②△ABC与△DEF的周长比为2:1;③△ABC与△DEF的面积比为4:1.A.①、②B.②、③C.①、③D.①、②、③9.如图,已知AB是半圆O的直径,弦AD,CB相交于点P,若∠DPB=45°,则S△CDP:S△ABP 的值()A.25B.23C.13D.1210.如图,AD△BE△CF,直线l1、l2这与三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4B.5C.6D.811.一个三角形的三边长分别为3,4,5,另一个与它相似的三角形中有一条边长为6.则这个三角形的周长不可能是()A.725B.18C.48D.2412.如图,小正方形的边长为均为1,下列各图(图中小正方形的边长均为1)阴影部分所示的三角形中,与△ABC相似的三角形是()A.B.C.D.二、填空题13.勾股定理是一个基本的几何定理,有数百种证明方法.“青朱出入图”是我国古代数学家证明勾股定理的几何证明法.刘徽描述此图“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,加就其余不动也,合成弦方之幂,开方除之,即弦也”.若图中BF=4,DF=2,则AE=.14.如图,矩形ABCD中,AB=3,BC=4,E是BC上一点,BE=1,AE与BD交于点F.则DF的长为.15.如图,点D在△ABC的边BC的延长线上,AD为△ABC的外角的平分线,AB=2BC,AC=3,CD=4,则AB的长为.16.如图,在△ABC中,△BAC=90°,AD△BC于D,BD=3,CD=12,则AD的长为17.在某一时刻,测得一根高为1m的竹竿的影长为2m,同时测得一栋高楼的影长为40m,这栋高楼的高度是m.18.如图,已知路灯离地面的高度AB为4.8m,身高为1.6m的小明站在D处的影长为2m,那么此时小明离电杆AB的距离BD为m.三、综合题19.如图,已知△BAC=90°,AD△BC于D,E是AC的中点,ED的延长线交AB的延长线于点F.求证:(1)△DFB△△AFD;(2)AB:AC=DF:AF.20.一次小组合作探究课上,小明将两个正方形按如图1所示的位置摆放(点E、A、D在同一条直线上).(1)发现BE与DG数量关系是,BE与DG的位置关系是.(2)将正方形AEFG绕点A按逆时针方向旋转(如图2),(1)中的结论还成立吗?若能,请给出证明;若不能,请说明理由.(3)把图1中的正方形分别改写成矩形AEFG和矩形ABCD,且AEAG=ABAD=23,AE=2,AB=4,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请直接写出这个定值.21.如图,已知点D在△ABC的外部,AD△BC,点E在边AB上,AB•AD=BC•AE.(1)求证:△BAC=△AED;(2)在边AC取一点F,如果△AFE=△D,求证:ADBC=AFAC.22.如图,在▱ABCD中,对角线AC,BD相交于点O,过点O作BD的垂线与边AD,BC分别交于点E,F,连接BE交AC于点K,连接DF。
九(上) 第四章图形的相似 分节练习第1节 成比例线段1、在某市城区地图(比例尺1:9000)上;新安大街的图上长度与光华大街的图上长度分别是16 cm 和10 cm . ★(1)新安大街与光华大街的实际长度各是多少米?(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?2、【基础题】已知P 是线段AB 上的一点;且AP :PB =2:5;则AB :PB =______. ★★★3、【基础题】已知a;b;c;d 是成比例线段;其中a =3 cm;b =2 cm;c =6 cm;求线段d 的长. ★【基础题】已知DC BD EA BF =;且3=BD ;2=DC ;4=EA ;则BF =______. ★★★ 4、【基础题】 (1)已知2=b a ;求b b a +; (2)已知25=b a ;求ba b a +-. ★★★ 5、【基础题】 若2===fe d c b a ;且4=++f d b ;则=++e c a ______. ★ k c b a b c a a c b =+=+=+ (0≠c b a ++);那么函数k kx y +=的图象一定不经过第______象限. ★6、【综合题】若235cb a ==;且8=+-c b a ;则a =______. ★ 6.1【提高题】已知151110a c c b b a +=+=+;求a :b :c ☆第2节 平行线分线段成比例 7、【基础题】如左下图;321l l l ∥∥;两条直线被它们所截; AB =2;BC =3;EF =4;求DE. ★7.1【综合题】如右上图;321////l l l ;AM =2;MB =3;CD =4.5;则ND =______;CN =______. ★8、如左下图;ABC △中;DE BC ∥;2AD =;3AE =;4BD =;则AC =______. ★★★8.1、【综合题】如右上图;在△ABC 中;EF ∥CD ;DE ∥BC ;求证:AF ·BD = AD ·FD ★l 3l 2l 1F E D C B A第3节 相似多边形9、【基础题】下列各组图形中;两个图形形状不一定相同的是( ) ★A 、两个等边三角形B 、有一个角是35°的两个等腰三角形C 、两个正方形D 、两个圆9.1、【综合题】下列各组图形中相似的图形是( ) ★A 、对应边成比例的多边形B 、四个角都对应相等的两个梯形C 、有一个角相等的两个菱形D 、各边对应成比例的两个平行四边形10、【基础题】以正方形各边中点为顶点;可以组成一个新正方形;求新正方形与原正方形的相似比. ★10.1、【综合题】两个正六边形的边长分别为a 和b ;请问它们是否相似?不相似请说明理由;相似求出相似比. ★11、【基础题】已知矩形草坪长20 m ;宽10 m ;沿草坪四周外围有1 m 宽的环形小路;小路内外边缘所成的矩形相似吗?为什么?11.1【综合题】如图有一张矩形纸片;折成一半后形成的矩形与原矩形相似;则原矩形的长、宽的比是多少? ★12、六边形ABCDEF ∽六边形111111F E D C B A ;ο62=B ∠;则1B ∠=______.第4节 探索三角形相似的条件13、【基础题】从下面这些三角形中;选出相似的三角形. ★★★13.1【基础题】如图;在下列每个图形中(每个图形都各自独立);是否存在相似的三角形;如果存在;把它们用字母表示出来;并简要说明识别的根据. ★★★14、【基础题】如左下图;D 、E 分别是△ABC 的边AB 、AC 上的点;DE ∥BC;AD =2;BD =3;DE =4;求BC 的长. ★★★14.1【基础题】如右上图;BD 和EC 相交于点A;ED ∥BC;BD =12;AD =4;EC =9;则AC =______. ★★★14.2、【基础题】如左下图;在△ABC 中;点D 、E 在BC 上;且FD ∥AB ;FE ∥AC ;那么△ABC 和△FDE是否相似;为什么? ★★★14.3【基础题】如右上图;为了估算河的宽度;我们可以在河对岸选定一个目标作为点A ;再在河的这一边选点B 和C ;使BC AB ⊥;然后再选点E ;使BC EC ⊥;确定BC 与AE 的交点为D ;测得120=BD 米;60=DC 米;50=EC 米;你能求出两岸之间AB 的大致距离吗? ★★★14.4【综合题】如左下图;△ABC 为等边三角形;双向延长BC 到D 、E;使得∠DAE =120°;求证:BC 是BD 、CE 的比例中项. ★15、【基础题】如右上图在Rt △ABC 中; ∠ACB =90°;CD ⊥AB 于D . ★★★(1)请指出图中所有的相似三角形; (2)你能得出AD CD =2·DB 吗?15.1、【综合题】如右图;正方形ABCD 的边长为2;AE =EB;MN =1;线段MN 的两端在CB 、CD 上滑动;当CM= 时;ΔAED 与N;M;C 为顶点的三角形相似. ★16、【综合题】右边四个三角形;与左边的三角形相似的是( ) ★★★16.1、【综合题】如右图;在大小为4×4的正方形网格中;是相似三角形的是 ( ) ★★★A. ①和②B. ②和③C. ①和③D. ②和④17、【综合题Ⅱ】(巴中)如图;在平行四边形ABCD 中;过点A 作AE ⊥BC;垂足为E;连接DE;点F 为线段DE 上一点;且∠AFE=∠B(1)求证:△ADF ∽△DEC;(2)若AB=8;AD=6;AF=4;求AE 的长.黄金分割18、【综合题Ⅰ】如图;点C 是线段AB 的黄金分割点(AC >BC );已知AB =2 cm;求AC 的长度和ABAC 的值. ★18.1【基础题】已知M 是线段AB 的黄金分割点;且AM >BM . (1)写出AB 、AM 、BM 之间的比例式;(2)如果AB =12 cm ;求AM 与BM 的长. ★【基础题】一支铅笔长16 cm ;把它按黄金分割后;较长部分涂上橘红色;较短部分涂上浅蓝色;那么橘红色部分的长是 _____ cm ;浅蓝色部分的长是 ____ cm . (结果保留一位小数) ★第5节 相似三角形判定定理的证明19、【综合题Ⅰ】如左下图;BC AE AB DE AC AD ==. 求证:AE AB =. ★20、【综合题Ⅲ】如右上图;在等边三角形ABC 中;点D 、E 、F 分别是三边上的点;且AE =BF =CD ;那么△ABC 与△DEF 相似吗?请说明理由. ☆21、【综合题Ⅲ】如图;在ABC △中(∠B ≠∠C );AB =8 cm;BC =16 cm;点P 从点A 开始沿边AB 向点B 以2 cm/s 的速度移动;点Q 从点B 开始沿边BC 向点C 以4 cm/s 的速度移动;如果点P 、Q 分别从点A 、B 同时出发; 经几秒钟△PBQ 与△ABC 相似?试说明理由. ★第6节 利用相似三角形测高22、【基础题】高4 m 的旗杆在水平地面上的影子长6 m;此时测得附近一个建筑物的影长24 m;求该建筑物的高.★★★、【基础题】旗杆的影子长6米;同时测得旗杆顶端到其影子顶端的距离是10米;如果此时附近的小树影子长3米;那么小树有多高? ★22.2【综合题Ⅰ】(2007湖南怀化)如图;九年级(1)班课外活动小组利用标杆测量学校旗杆的高度;已知标杆高度3m CD =;标杆与旗杆的水平距离15m BD =;人的眼睛与地面的高度 1.6m EF =;人与标杆CD 的水平距离2m DF =;人的眼睛E 、标杆顶点C 和旗杆顶点A 在同一直线;求旗杆AB 的高度. ★★★22.3、【综合题Ⅲ】张明同学想利用树影测校园内的树高。
第二十七章相似一、选择题1.如图,路灯OP距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A处,沿OA所在的直线行走14米到点B处时,人影的长度()A.变长了1.5米B.变短了2.5米C.变长了3.5米D.变短了3.5米2.若△ABC∽△A′B′C′,且△ABC与△A′B′C′的相似比为1∶2,则△ABC与△A′B′C′的面积比是() A. 1∶1B. 1∶2C. 1∶3D. 1∶43.如图,测量小玻璃管口径的量具ABC,AB的长为12 cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是()A. 8 cmB. 10 cmC. 20 cmD. 60 cm4.下列四边形ABCD和四边形EFGD是位似图形,它们的位似中心是()A.点EB.点FC.点GD.点D5.如图,D、E分别在△ABC的边AB、AC上,要使△AED∽△ABC,不能添加的条件是()A.DE∥BCB.AD·AC=AB·AEC.AD∶AC=AE∶ABD.AD∶AB=DE∶BC6.下面各组的两个比不能组成比例的是()A. 8∶7和16∶14B. 0.6∶0.2和3∶1C. 19∶110和10∶9D. 0.2∶1.2和∶2.47.在比例尺是1∶500的图纸上,测得一块长方形的土地长5厘米,宽4厘米,这块地的实际面积是()A. 20平方米B. 500平方米C. 5 000平方米D. 500 000平方米8.如图,线段BC的两端点的坐标分别为B(3,7),C(6,3),以点A(1,0)为位似中心,将线段BC缩小为原来的后得到线段DE,则端点D的坐标为()A. (1,)B. (2,)C. (1,2)D. (2,2)9.已知2∶x=3∶9,则x等于()A. 2B. 3C. 4D. 610.已知△ABC∽△DEF,且相似比为1∶2,则△ABC与△DEF的面积比为()A. 1∶4B. 4∶1C. 1∶2D. 2∶1二、填空题11.如图,小强和小华共同站在路灯下,小强的身高EF=1.8 m,小华的身高MN=1.5 m,他们的影子恰巧等于自己的身高,即BF=1.8 m,CN=1.5 m,且两人相距 4.7 m,则路灯AD的高度是____________.12.已知P是x轴的正半轴上的点,△ADC是由等腰直角三角形EOG以P为位似中心变换得到的,如图,已知EO=1,OD=DC=2,则位似中心P点的坐标是____________.13.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是______________.14.如图,若A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,为使△PQR∽△ABC,则点R应是甲乙丙丁四点中的__________.15.下列说法中:①所有的等腰三角形都相似;②所有的正三角形都相似;③所有的正方形都相似;④所有的矩形都相似.其中说法正确的序号是__________.16.如图,根据所给信息,可知的值为______________.17.已知△ABC的三边之比为2∶3∶4,若△DEF与△ABC相似,且△DEF的最大边长为20,则△DEF的周长为__________.18.如图,方格纸中的每一个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形,在建立平面直角坐标系后,点B的坐标为(-1,-1),在方格纸中把△ABC以点A为位似中心放大,使放大前后对应边的比为1∶2,则点B的对应点B′的坐标为______________.19.一个矩形的长为a,宽为b(a>b),如果把这个矩形截去一个正方形后所余下的矩形与原矩形相似,那么=__________.20.如图是临时暂停修建的一段乡村马路,高的一边已经修好,低的一边才刚做好路基.一辆汽车在高的一边沿箭头方向行驶时偏离了正常行驶路线后停止,但一侧的两个轮子已经驶入低的一边,经检查,地板AB刚接触到高的一边的路面边缘P,已知AB=130 cm,轮子A、B处在地板以下部分与地面的距离AC=BD=30 cm,两路面的高度差为50 cm.设路面是水平的,则PC的长是____________ cm.三、解答题21.如图,若△ADE∽△ABC,DE和AB相交于点D,和AC相交于点E,DE=2,BC=5,S△ABC=20,求S△ADE.22.如图所示,Rt△ABC~Rt△DFE,CM、EN分别是斜边AB、DF上的中线,已知AC=9 cm,CB =12 cm,DE=3 cm.(1)求CM和EN的长;(2)你发现的值与相似比有什么关系?得到什么结论?23.将下列各图形的变换与变换的名称用线连起来:24.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2∶1.(3)求出A2B2、C2三点的坐标.25.如图,△ABC三边长分别为AB=3 cm,BC=3.5 cm,CA=2.5 cm;△DEF三边长分别为DE=3.6 cm,EF=4.2 cm,FD=3 cm.△ABC与△DEF是否相似?为什么?26.如图,已知,直线l1,l2,l3依次截直线l4于点A、B、C,截直线l5于点E、B、F,截直线l6于点G、H、F,且l1∥l2∥l3,BE=2,BF=4,AB=2.5,FG=9.求BC、FH、GH的长.27.如图,已知E是平行四边形ABCD中DA边的延长线上一点,且AE=AD,连接EC分别交AB,BE于点F、G.(1)求证:BF=AF;(2)若BD=12 cm,求DG的长.28.如图,已知△ABC内接于⊙O,D是⊙O上一点,连结BD、CD,AC、BD交于点E.(1)请找出图中的相似三角形,并加以证明(不添加其他线条的情况下);(2)若∠D=45°,BC=4,求⊙O的面积.答案解析1.【答案】D【解析】设小明在A处时影长为x,B处时影长为y.∵AD∥OP,BC∥OP,∴△ADM∽△OPM,△BCN∽△OPN,∴=,=,即=,∴x=5;又=,∴y=1.5,∴x-y=3.5,故变短了3.5米.故选D.2.【答案】D【解析】∵△ABC∽△A′B′C′,且相似比为1∶2,∴△ABC与△A′B′C′面积比是1∶4.故选D.3.【答案】A【解析】∵DE∥AB,∴CD∶AC=DE∶AB,∴40∶60=DE∶12,∴DE=8 cm,故选A.4.【答案】D【解析】四边形ABCD和四边形EFGD是位似图形,它们的位似中心是点D.故选D.5.【答案】D【解析】A.当DE∥BC,则△AED∽ACB,所以A选项错误;B.当AD·AC=AB·AE,即AD∶AB=AE∶AC,而∠A公共,则△AED∽ACB,所以B选项错误;C.当AD∶AC=AE∶AB,而∠A公共,则△AED∽△ABC,所以C选项错误;D.AD∶AB=DE∶BC,而它们的夹角∠ADE和∠ABC不确定相等,则不能判断△AED与△ABC相似,所以D选项正确.故选D.6.【答案】C【解析】8∶7=16∶14,0.6∶0.2=3∶1,0.2∶1.2=0.4∶2.4,而19∶110≠10∶9,所以A、B、D选项中的比可组成比例,而C选项中的比不能组成比例.故选C.7.【答案】B【解析】∵比例尺是1∶500,长方形的土地长5厘米,宽4厘米,∴实际长为5÷=2 500厘米=25米,宽为4÷=2 000厘米=20米,∴实际面积为25×20=500平方米,故选B.8.【答案】B【解析】∵将线段BC缩小为原来的后得到线段DE,以点A(1,0)为位似中心,点B的坐标为(3,7),∴点D的坐标为(4×,7×),即(2,),故选B.9.【答案】D【解析】∵2∶x=3∶9,∴3x=18,∴x=6,故选D.10.【答案】A【解析】∵△ABC∽△DEF,且相似比为1∶2,∴△ABC与△DEF的面积比为1∶4,故选A.11.【答案】4 m【解析】设路灯的高度为x m,∵EF∥AD,∴△BEF∽△BAD,∴=,即=,解得DF=x-1.8,∵MN∥AD,∴△CMN∽△CAD,∴=,即=,解得DN=x-1.5,∵两人相距4.7 m,∴FD+ND=4.7,∴x-1.8+x-1.5=4.7,解得x=4.12.【答案】(,0)【解析】∵EO=1,DC=2,∴△ACD与△GOE的位似比是2∶1,∴AD∶OG=2∶1,∵△ADC是等腰直角三角形,∴AD⊥x轴,∴AD∥OG,∴△OPG∽△DPA∴PD∶OP=2∶1,∵OD=2,∴OP=,∴位似中心P点的坐标是(,0).13.【答案】(4,2)或(-4,-2)【解析】如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是(4,2)或(-4,-2).14.【答案】丙【解析】应该为丙,因为当R在丙的位置时,若设每一个小正方形的边长为1,则△PQR的三边分别为4,2,2.△ABC的各边分别为2,,.各边对应成比例且比例相等均为2,则可以得到两三角形相似.15.【答案】②③【解析】①所有的等腰三角形都相似,错误;②所有的正三角形都相似,正确;③所有的正方形都相似,正确;④所有的矩形都相似,错误.16.【答案】【解析】由题意可得:△ABC∽△A′B′C′,且=,故的值为.17.【答案】45【解析】∵△DEF∽△ABC,△ABC的三边之比为2∶3∶4,∴△DEF的三边之比为2∶3∶4,又∵△DEF的最大边长为20,∴△DEF的另外两边分别为10,15,∴△DEF的周长为10+15+20=45,18.【答案】(-5,-5)或(11,11)【解析】当B在第三象限,点B的对应点B′的坐标为(-5,-5),当B在在第一象限,点B的对应点B′的坐标为(11,11).19.【答案】【解析】由题意,得=,整理,得a2-ab-b2=0,解得a=b,则=,20.【答案】72【解析】已知如图:由题意可知四边形BEFD是矩形,AC=30 cm,CF=50 cm,∴BD=EF=30 cm,∴CE=20 cm,∵AB=130 cm,AE=50 cm,∴BE==120 cm,∵CP∥BE,∴△ACP∽△AEB,∴=,∴=,∴CP=72 cm.21.【答案】解∵△ADE∽△ABC,∴S△ABC∶S△ADE=,∴20∶S△ADE=,解得S△ADE=.【解析】由于△ADE∽△ABC,利用相似三角形面积比等于相似比的平方,可求S△ADE.22.【答案】解(1)在Rt△ABC中,AB===15,∵CM是斜边AB的中线,∴CM=AB=7.5,∵Rt△ABC~Rt△DFE,∴=,即==,∴DF=5,∵EN为斜边DF上的中线,∴EN=DF=2.5;(2)∵==,相似比为==,∴相似三角形对应中线的比等于相似比.【解析】(1)根据相似三角形的判定和性质解答即可;(2)根据相似三角形的性质解答即可.23.【答案】解【解析】旋转的基本特征是图形旋转前后“对应点到旋转中心的距离相等,并且各组对应点与旋转中心连线的夹角都等于旋转的角度”,经过旋转,图形上的每一点都绕旋转中心沿相同方向转动了相同的角度,对应点的排列次序相同;平移和旋转都是在平面内,图形变换前后的图形是全等的,对应线段相等,对应角相等,对应点的排列次序相同;由一个图形变为另一个图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫作图形轴对称变换.24.【答案】解(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;(3)A2、(3,6);B2(5,2);C2(11,4);【解析】(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;(3)直接利用图形得出各点坐标即可.25.【答案】解△ABC∽△DEF.理由如下:∵==,==,==,∴==.∴△ABC∽△DEF.【解析】三边对应成比例的两个三角形是相似三角形,根据题目给出的三角形的三边长可求出解.26.【答案】解∵l1∥l2∥l3,∴==,即=,∴BC=5,=.∵FG=9,∴GH=3,HF=6.【解析】由l1∥l2∥l3,得到==,代入数据即可得到结果.27.【答案】(1)证明∵平行四边形ABCD,∴AD∥BC,AD=BC.∴∠E=∠BCF.∵AE=AD,∴AE=BC.∵∠AFE=∠BFC,∴△AEF≌△BCF.∴BF=AF.(2)解∵BC∥DE,∴BC∶DE=BG∶DG.∵DE=2BC,∴DG=2BG.∴DG=BD.∵BD=12,∴DG=8.【解析】(1)欲证BF=AF,只需证△AEF≌△BCF即可.(2)DG是BD的一部分,要找DG与BD的关系,可找DG与BG的关系,由BC∥DE可以得出.28.【答案】解(1)结论:△ABE∽△DCE,证明:在△ABE和△DCE中,∵∠A=∠D,∠AEB=∠DEC,∴△ABE∽△DCE.(2)作⊙O的直径BF,连接CF,∴∠F=∠D=45°,∠BCF=90°.∴△BCF是等腰直角三角形.∵FC=BC=4,∴BF=4.∴OB=2.∴S⊙O=OB2·π=8π.【解析】(1)容易发现:△ABE与△DCE中,有两个角对应相等,根据相似三角形的判定可得到它们相似;(2)求⊙O的面积,关键是求⊙O的半径,为此作⊙O的直径BF,连接CF,得出△BCF是等腰直角三角形,由BC=2,求出BF的长,从而求出⊙O的面积.。
《图形的相似》学案1(第1课时)
江西省余江县教研室吕晓冬
导学目标知识点:
理解线段的比和成比例线段;理解并能运用相似图形的概念.
一、自主学习(课前预习)
1.你认为怎样的图形是相似图形?
2.你能判断出两个图形是否是相似图形吗?
二、探究学习(课堂导学)
(一)情境导入
1.看一看说一说
同学们知道五星红旗有几颗五角星?这些五角星的形状、大小有什么关系?
(二)新知探究
1.观察(多媒体给出)教材几幅图片.
请同学们看看教材中所给出图形的形状、大小有什么关系?思考并说出你的观点.2.理解并记录相似图形概念.
3.两条线段的比.
4.成比例线段(所有问题用自己的语言归纳表达)
(三)例题讲解
例1(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?
(1)如果a=125cm,b=75cm,那么长与宽的比是多少?
(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?
例2(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少?
(四)巩固新知
1.下列说法正确的是()
A.小明上幼儿园时的照片和初中毕业时的照片相似
B.商店新买来的一副三角板是相似的
C.所有的课本都是相似的
D.国旗的五角星都是相似的
2.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?
(五)作业布置
教材习题
(六)课后感悟
说说本节课你有何感悟.。