2015高中数学 1.3.1第2课时 函数的最大(小)值课时跟踪检测 新人教A版必修1
- 格式:doc
- 大小:93.50 KB
- 文档页数:2
课题:§1.3.1函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.教学过程:一、引入课题画出下列函数的图象,并根据图象解答下列问题:○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x 二、新课教学(一)函数最大(小)值定义1.最大值一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x 0∈I ,使得f(x 0) = M那么,称M 是函数y=f(x)的最大值(Maximum Value ).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动)注意:○1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).2.利用函数单调性的判断函数的最大(小)值的方法○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);(二)典型例题例1.(教材P 36例3)利用二次函数的性质确定函数的最大(小)值.解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值. 巩固练习:如图,把截面半径为25cm 的圆形木头锯成矩形木料, 如果矩形一边长为x ,面积为y25试将y 表示成x 的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例2.(新题讲解)旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(⋅+x ,于是得 y =150·)160(x -·)%102055(⋅+x . 由于)%102055(⋅+x ≤1,可知0≤x ≤90. 因此问题转化为:当0≤x ≤90时,求y 的最大值的问题.将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例3.(教材P 37例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P 38练习4)三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论四、作业布置1. 书面作业:课本P 45 习题1.3(A 组) 第6、7、8题.提高作业:快艇和轮船分别从A 地和C 地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和15 km/h ,已知AC=150km ,经过多少时间后,快艇和轮船之间的距离最短?A BCD。
课时跟踪检测(十五) 函数的最大(小)值A 级——学考合格性考试达标练1.函数y =f (x )(-2≤x ≤2)的图象如右图所示,则函数的最大值、最小值分别为( )A .f (2),f (-2)B .f ⎝⎛⎭⎫12,f (-1)C .f ⎝⎛⎭⎫12,f ⎝⎛⎭⎫-32D .f ⎝⎛⎭⎫12,f (0)解析:选C 根据函数最值定义,结合函数图象可知,当x =-32时,有最小值f ⎝⎛⎭⎫-32;当x =12时,有最大值f ⎝⎛⎭⎫12. 2.函数y =x 2-2x +2在区间[-2,3]上的最大值、最小值分别是( )A .10,5B .10,1C .5,1D .以上都不对解析:选B 因为y =x 2-2x +2=(x -1)2+1,且x ∈[-2,3],所以当x =1时,y min =1,当x =-2时,y max =(-2-1)2+1=10.故选B.3.设函数f (x )=2x x -2在区间[3,4]上的最大值和最小值分别为M ,m ,则m 2M =( ) A.23B .38 C.32D .83 解析:选D 易知f (x )=2x x -2=2+4x -2,所以f (x )在区间[3,4]上单调递减,所以M =f (3)=2+43-2=6,m =f (4)=2+44-2=4,所以m 2M =166=83. 4.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1-x 2+2,x <1的最大值为( ) A .1D .2 C.12 D .13解析:选B 当x ≥1时,函数f (x )=1x为减函数,此时f (x )在x =1处取得最大值,最大值为f (1)=1;当x <1时,函数f (x )=-x 2+2在x =0处取得最大值,最大值为f (0)=2.综上可得,f (x )的最大值为2,故选B.5.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1D .0 C .1 D .2解析:选C 因为f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a ,所以函数f (x )图象的对称轴为直线x =2.所以f (x )在[0,1]上单调递增.又因为f (x )min =-2,所以f (0)=-2,即a =-2.所以f (x )max =f (1)=-1+4-2=1.6.函数y =-1x ,x ∈[-3,-1]的最大值与最小值的差是________.解析:易证函数y =-1x 在[-3,-1]上为增函数,所以y min =13,y max =1, 所以y max -y min =1-13=23. 答案:237.若函数f (x )=x 2-6x +m 在区间[2,+∞)上的最小值是-3,则实数m 的值为________.解析:函数f (x )=x 2-6x +m 的对称轴是直线x =3,开口向上,所以函数f (x )在[2,3]上单调递减,在(3,+∞)上单调递增,故函数在x =3处取得最小值,由f (3)=32-6×3+m =-3,解得m =6.故实数m 的值为6.答案:68.用长度为24 m 的材料围成一个中间加两道隔墙的矩形场地,要使矩形的面积最大,则隔墙的长度为________m .解析:设隔墙的长度为x m ,场地面积为S m 2,则S =x ·24-4x 2=12x -2x 2=-2(x -3)2+18,所以当x =3时,S 有最大值18.答案:39.求函数f (x )=x x -1在区间[2,5]上的最大值与最小值. 解:任取2≤x 1<x 2≤5,则f (x 2)-f (x 1)=x 2x 2-1-x 1x 1-1=x 1-x 2(x 2-1)(x 1-1). 因为2≤x 1<x 2≤5,所以x 1-x 2<0,x 2-1>0,x 1-1>0.所以f (x 2)-f (x 1)<0.即f (x 2)<f (x 1).所以f (x )=x x -1在区间[2,5]上是单调减函数. 所以f (x )max =f (2)=22-1=2,f (x )min =f (5)=55-1=54. 10.若二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=2.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围.解:(1)设f (x )=ax 2+bx +c(a ≠0),∵f (0)=2,∴c =2,∴f (x )=ax 2+bx +2.∵f (x +1)-f (x )=2x ,∴2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,∴f (x )=x 2-x +2.(2)由题意知x 2-x +2>2x +m 在[-1,1]上恒成立,即x 2-3x +2-m >0在[-1,1]上恒成立.令g(x )=x 2-3x +2-m =⎝⎛⎭⎫x -322-14-m (x ∈[-1,1]), 则g(x )在区间[-1,1]上是减函数,∴g(x )min =g(1)=1-3+2-m >0,∴m <0,即实数m 的取值范围为(-∞,0).B 级——面向全国卷高考高分练1.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1],则f (x )的最大值与最小值分别为( ) A .10,6D .10,8 C .8,6 D .以上都不对解析:选A ∵x ∈[1,2]时,f (x )max =2×2+6=10,f (x )min =2×1+6=8;x ∈[-1,1]时,f (x )max =1+7=8,f (x )min =-1+7=6,∴f (x )max =10,f (x )min =6.2.(2019·西安高一检测)设f (x )=⎩⎪⎨⎪⎧-x +a ,x ≤0,x +1x,x >0,若f (0)是f (x )的最小值,则实数a 的取值范围是( )A .(-∞,2]D .(-∞,2) C .(2,+∞) D .[2,+∞)解析:选A 由题意,当x >0时,f (x )的最小值为f (1)=2,当x ≤0时,f (x )的最小值为f (0)=a .若f (0)是f (x )的最小值,则a ≤2.3.已知函数y =x 2-2x +3在闭区间[0,m]上有最大值3,最小值2,则m 的取值范围是( )A .[1,+∞)D .[0,2] C .(-∞,2] D .[1,2]解析:选D f (x )=(x -1)2+2,∵f (x )min =2,f (x )max =3,且f (1)=2,f (0)=f (2)=3,∴1≤m ≤2,故选D.4.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元D .60万元 C .120万元 D .120.25万元解析:选C 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎫x -1922+30+1924, ∴当x =9或10时,L 最大为120万元.5.已知-x 2+4x +a ≥0在x ∈[0,1]上恒成立,则实数a 的取值范围是________.解析:法一:-x 2+4x +a ≥0,即a ≥x 2-4x ,x ∈[0,1],也就是a 应大于或等于f (x )=x 2-4x 在[0,1]上的最大值,函数f (x )=x 2-4x 在x ∈[0,1]的最大值为0,∴a ≥0.法二:设f (x )=-x 2+4x +a ,由题意知⎩⎪⎨⎪⎧f (0)=a ≥0,f (1)=-1+4+a ≥0,解得a ≥0. 答案:[0,+∞)6.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.解析:如图可知f (x )在[1,a ]内是单调递减的,又∵f (x )的单调递减区间为(-∞,3],∴1<a ≤3.答案:(1,3]7.某商场经营一批进价是每件30元的商品,在市场试销中发现,该商品销售单价x (不低于进价,单位:元)与日销售量y (单位:件)之间有如下关系:(1)确定x 与y ).(2)若日销售利润为P 元,根据(1)中的关系式写出P 关于x 的函数关系式,并指出当销售单价为多少元时,才能获得最大的日销售利润?解:(1)因为f (x )是一次函数,设f (x )=ax +b (a ≠0),由表格得方程组⎩⎪⎨⎪⎧45a +b =27,50a +b =12,解得⎩⎪⎨⎪⎧a =-3,b =162,所以y =f (x )=-3x +162.又y ≥0,所以30≤x ≤54,故所求函数关系式为y =-3x +162,x ∈[30,54].(2)由题意得,P =(x -30)y =(x -30)(162-3x )=-3x 2+252x -4 860=-3(x -42)2+432,x ∈[30,54].当x =42时,最大的日销售利润P =432,即当销售单价为42元时,获得最大的日销售利润.C 级——拓展探索性题目应用练已知函数y =x +t x有如下性质:如果常数t >0,那么该函数在(0, t]上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域; (2)对于(1)中的函数f (x )和函数g(x )=-x -2a ,若对于任意的x 1∈[0,1],总存在x 2∈[0,1],使得g(x 2)=f (x 1)成立,求实数a 的值.解:(1)f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],则1≤u ≤3,故y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以递减区间为⎣⎡⎦⎤0,12;当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以递增区间为⎣⎡⎦⎤12,1. 由f (0)=-3,f ⎝⎛⎭⎫12=-4,f (1)=-113,得f (x )的值域为[-4,-3]. (2)由于g(x )=-x -2a ,x ∈[0,1]为减函数,故g(x )∈[-1-2a ,-2a ].由题意,知f (x )的值域为g(x )的值域的子集,从而⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,解得a =32。
函数的最大(小)值一、选择题1.下列函数在[1,4]上最大值为3的是( )A .y =1x+2 B .y =3x -2 C .y =x 2 D .y =1-x2.函数f (x )=⎩⎪⎨⎪⎧ x +7 x ∈[-1,,2x +6 x ∈[1,2],则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对3.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .24.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( )A .(-∞,1]B .(-∞,0]C .(-∞,0)D .(0,+∞)5.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元二、填空题6.函数y =1x -1在[2,3]上的最小值为________. 7.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.8.对于函数f (x )=x 2+2x ,在使f (x )≥M 成立的所有实数M 中,我们把M 的最大值M max =-1叫做函数f (x )=x 2+2x 的下确界,则对于a ∈R ,且a ≠0,a 2-4a +6的下确界为________.三、解答题9.已知函数f (x )=2x +1x +1. (1)用定义证明函数在区间[1,+∞)上是增函数;(2)求该函数在区间[2,4]上的最大值与最小值.10.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P (万元)和Q (万元),它们与投入资金x (万元)的关系有经验公式:P =x 5,Q =35x .今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得的最大利润是多少?答 案课时跟踪检测(十)1.选A B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.2.选A 当-1≤x <1时,6≤x +7<8,当1≤x ≤2时,8≤2x +6≤10.∴f (x )min =f (-1)=6,f (x )max =f (2)=10.故选A.3.选C ∵f (x )=-(x 2-4x +4)+a +4=-(x -2)2+4+a ,∴函数f (x )图象的对称轴为x =2.∴f (x )在[0,1]上单调递增.又∵f (x )min =-2,∴f (0)=-2,即a =-2.∴f (x )max =f (1)=-1+4-2=1.4.选C 令f (x )=-x 2+2x ,则f (x )=-x 2+2x =-(x -1)2+1.又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0.∴a <0.5.选C 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-(x -192)2+30+1924, ∴当x =9或10时,L 最大为120万元.6.解析:作出图象可知y =1x -1在[2,3]上是减函数,y min =13-1=12. 答案:127.解析:如右图可知f (x )在[1,a ]内是单调递减的,又∵f (x )的单调递减区间为(-∞,3],∴1<a ≤3.答案:(1,3]8.解析:a 2-4a +6=(a -2)2+2≥2,则a 2-4a +6的下确界为2.答案:29.解:(1)证明:任取x 1,x 2∈[1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2x 1+x 2+.∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴函数f (x )在[1,+∞)上是增函数.(2)由(1)知函数f (x )在区间[2,4]上是增函数,∴f (x )max =f (4)=2×4+14+1=95, f (x )min =f (2)=2×2+12+1=53. 10.解:设对甲种商品投资x 万元,则对乙种商品投资(3-x )万元,总利润为y 万元,根据题意得y =15x +353-x (0≤x ≤3). 令3-x =t ,则x =3-t 2,0≤t ≤ 3. 所以y =15(3-t 2)+35t =-15(t -32)2+2120, t ∈[0, 3 ]. 当t =32时,y max =2120,此时x =0.75,3-x =2.25. 由此可知,为获得最大利润,对甲、乙两种商品的资金投入分别为0.75万元和2.25万元,获得的最大利润为1.05万元.。
课时作业(十) 函数的最大(小)值[学业水平层次]一、选择题1.函数f(x)在[-2,+∞)上的图象如图132所示,则此函数的最大、最小值分别为( )图132A.3,0B.3,1C.3,无最小值D.3,-2【解析】观察图象可以知道,图象的最高点坐标是(0,3),从而其最大值是3;另外从图象看,无最低点,即该函数不存在最小值.故选C.【答案】 C2.已知函数f(x)=2x-1(x∈[2,6]),则函数的最大值为( )A .0.4B .1C .2D .2.5【解析】 ∵函数f (x )=2x -1在[2,6]上是单调递减函数,∴f (x )max =f (2)=22-1=2. 【答案】 C3.函数f (x )=⎩⎪⎨⎪⎧2x +6 x ∈[1,2],x +7 x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对【解析】 当1≤x ≤2时,8≤2x +6≤10,当-1≤x <1时,6≤x +7<8.∴f (x )min =f (-1)=6,f (x )max =f (2)=10.故选A.【答案】 A4.函数y =x +2x -1的最值的情况为( )A .最小值为12,无最大值B .最大值为12,无最小值C .最小值为12,最大值为2D .无最大值,也无最小值【解析】 ∵y =x +2x -1在定义域⎣⎢⎡⎭⎪⎫12,+∞)上是增函数,∴函数最小值为12,无最大值,故选A. 【答案】 A二、填空题5.已知函数y =x 2-4x +6,当x ∈[1,4]时,则函数的值域为________.【解析】 ∵y =x 2-4x +6=(x -2)2+2,∴当x =2时,y 取得最小值2.∵函数y =x 2-4x +6在[1,2]上递减,在[2,4]上递增.又当x =1时,y =3,当x =4时,y =6,∴函数的最大值为6.∴函数的值域为[2,6].【答案】 [2,6]6.(2014·济宁高一检测)函数f (x )=1x 在[1,b ](b >1)上的最小值是14,则b =________. 【解析】 因为f (x )=1x 在[1,b ]上是减函数,所以f (x )在[1,b ]上的最小值为f (b )=1b =14,所以b =4. 【答案】 4图1337.(2013·陕西高考)在如图133所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为________(m).【解析】 设矩形花园的宽为y m ,则x 40=40-y 40,即y =40-x ,矩形花园的面积S =x (40-x )=-x 2+40x =-(x -20)2+400,当x =20 m 时,面积最大.【答案】 20三、解答题8.(2014·新田高一检测)已知函数f (x )=⎩⎪⎨⎪⎧-x ,-1≤x ≤0,x 2,0<x ≤1,x ,1<x ≤2.(1)求f ⎝ ⎛⎭⎪⎫-23,f ⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫32的值; (2)作出函数的简图;(3)求函数的最大值和最小值.【解】 (1)当-1≤x ≤0时,f (x )=-x ,所以f ⎝ ⎛⎭⎪⎫-23=-⎝ ⎛⎭⎪⎫-23=23, 当0<x ≤1时,f (x )=x 2, 所以f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫122=14, 当1<x ≤2时,f (x )=x , 所以f ⎝ ⎛⎭⎪⎫32=32. (2)如图:(3)由图象可知:f (x )max =f (2)=2;f (x )min =f (0)=0.9.(2014·宁波高一检测)已知f (x )=3x 2-12x +5,当f (x )的定义域为下列区间时,求函数的最大值和最小值.(1)[0,3];(2)[-1,1];(3)[3,+∞).【解】作出f(x)=3x2-12x+5的图象如图所示,(1)由图可知,函数f(x)在[0,2]上单调递减,在[2,3]上单调递增.且f(0)=5,f(2)=-7,f(3)=-4.故在区间[0,3]上,当x=2时,f(x)min=-7;当x=0时,f(x)max=5.(2)由图可知,f(x)在[-1,1]上单调递减,∴f(x)min=f(1)=-4,f(x)max=f(-1)=20.(3)由图可知,f(x)在[3,+∞]上单调递增,∴f(x)min=f(3)=-4,无最大值.[能力提升层次]1.已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为( )A.-1 B.0 C.1 D.2【解析】f(x)=-(x2-4x+4)+a+4=-(x-2)2+4+a,∴函数f(x)图象的对称轴为直线x=2,∴f(x)在[0,1]上单调递增.又∵f(x)min=f(0)=a=-2,∴f(x)max=f(1)=-1+4-2=1.【答案】 C2.已知函数y=x2-2x+3在闭区间[0,m]上有最大值3,最小值2,则m的取值范围是( )A.[1,+∞) B.[0,2]C.(-∞,-2] D.[1,2]【解析】f(x)=(x-1)2+2,∵f(x)min=2,f(x)max=3,且f(1)=2,f(0)=f(2)=3,∴1≤m≤2,故选D.【答案】 D3.已知f(x)=x2+2(a-1)x+2在区间[1,5]上的最小值为f(5),则a的取值范围是________.【解析】对称轴方程为x=1-a,因为f(x)在区间[1,5]上的最小值为f(5),所以1-a≥5,得a≤-4.【答案】a≤-44.为减少空气污染,某市鼓励居民用电(减少燃气或燃煤),采用分段计费的方法计算.电费每月用电不超过100度时,按每度0.57元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.5元计算.(1)设月用电x度时,应交电费y元,写出y关于x的函数关系式;(2)小明家第一季度缴纳电费情况如下:【解】 (1)由题可得y =⎩⎪⎨⎪⎧0.57x ,0≤x ≤100,57+12(x -100)=12x +7,x >100. (2)一月用电12x +7=76,即x =138; 二月用电12x +7=63,即x =112; 三月用电0.57x =45.6,即x =80; ∴138+112+80=330(度)∴第一季度共用电330度.。
1.3.1.2函数的最大(小)值双基限时练 新人教A 版必修11.函数y =1x -1在[2,3]上的最小值为( ) A.13 B .-12C .1 D.12解析 函数y =1x -1在[2,3]上是减函数,∴当x =3时,取最小值为12. 答案 D2.若f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1,则函数f (x )的最大值和最小值分别为( )A .8,6B .8,8C .10,6D .10,8解析 当x ∈[1,2]时,f (x )∈[8,10];当x [-1,1)时,f (x )∈[6,8),∴f (x )的最大值和最小值分别为10,6.答案 C3.函数y =|x +1|+2的最小值是( ) A .0 B .-1 C .2D .3解析 y =|x +1|+2的图象如下:所以最小值为2. 答案 C4.函数f (x )=x 2+2x -1,x ∈[-3,2]的最大值、最小值分别为( ) A .9,0 B .7,3 C .2,-2D .7,-2解析 f (x )=x 2+2x -1=(x +1)2-2,∴当x =-1时,有最小值-2,当x =2时,有最大值7.答案 D5.函数f (x )=2x -1+x 的值域是( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝⎛⎦⎥⎤-∞,12C .(0,+∞)D .[1,+∞)解析 易知当x ≥12时,函数f (x )为增函数,故值域为⎣⎢⎡⎭⎪⎫12,+∞.答案 A6.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,若该公司在两地共销售15辆(销售量单位:辆),则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析 设在甲地销售x 辆,则在乙地销售(15-x )辆,则利润y =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎪⎫x -1922+4814∴当x =9或10时,可获最大利润120万元. 答案 C7.函数y =1x 在[1,a ]上的最小值为14,则a =______.解析 ∵y =1x在[1,a ]上是减函数,∴最小值为f (a )=1a =14,∴a =4.答案 4 8.函数f (x )=xx -1在区间[2,5]上的值域为________.解析 f (x )=xx -1=1+1x -1,易知f (x )在[2,5]上为减函数,∴最小值为f (5)=54,最大值为f (2)=2,故f (x )的值域为⎣⎢⎡⎦⎥⎤54,2.答案 ⎣⎢⎡⎦⎥⎤54,2 9.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则实数m 的取值范围是________.解析 y =x 2-2x +3=(x -1)2+2,作出图象,由图象知,1≤m ≤2.答案 [1,2]10.函数f (x )=ax 2-2ax +2+b (a ≠0)在[2,3]上有最大值5和最小值2,求a ,b 的值. 解 由f (x )=ax 2-2ax +2+b 的对称轴为x =1知,无论f (x )的单调性怎样,f (x )在[2,3]上存在最值的情况有两种:⎩⎪⎨⎪⎧f =2,f=5,或⎩⎪⎨⎪⎧f =5,f=2.解得⎩⎪⎨⎪⎧a =1,b =0,或⎩⎪⎨⎪⎧a =-1,b =3.11.已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最值; (2)若f (x )是单调函数,求实数a 的取值范围.解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,∵x ∈[-5,5],∴当x =1时,f (x )取得最小值1;当x =-5时,f (x )取得最大值37.(2)函数f (x )=x 2+2ax +2的图象是抛物线,其对称轴为x =-a . 若函数f (x )=x 2+2ax +2,x ∈[-5,5]. 是单调函数,则有-a ≤-5,或-a ≥5, ∴a ≥5,或a ≤-5.故所求实数a 的取值范围是(-∞,-5]∪[5,+∞). 12.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=1,∴c =1, ∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x , ∴2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0.∴⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立, 即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数, ∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.。
【金版新学案】2014-2015学年高中数学 1.3.3 函数的最大(小)值与导数课时练 新人教A 版选修2-2一、选择题(每小题5分,共20分)1.函数f (x )=x +2cos x 在区间⎣⎢⎡⎦⎥⎤-π2,0上的最小值是( ) A .-π2B .2C .π6+ 3D .π3+1解析: f ′(x )=1-2sin x ,∵x ∈⎣⎢⎡⎦⎥⎤-π2,0, ∴sin x ∈[-1,0],∴-2sin x ∈[0,2].∴f ′(x )=1-2sin x >0在⎣⎢⎡⎦⎥⎤-π2,0上恒成立,∴f (x )在⎣⎢⎡⎦⎥⎤-π2,0上单调递增.∴f (x )min =-π2+2cos ⎝ ⎛⎭⎪⎫-π2=-π2.答案: A2.函数y =ln xx的最大值为( )A .e -1B .eC .e 2D .103解析: 令y ′=1-ln x x2=0,则x =e 当x ∈(0,e)时,y ′>0,当x ∈(e ,+∞)时,y ′<0. ∴当x =e 时y 取最大值1e ,故选A.答案: A3.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A.-37 B.-29C.-5 D.以上都不对解析:∵f′(x)=6x2-12x=6x(x-2),∵f(x)在(-2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大.∴当m=3,从而f(-2)=-37,f(2)=-5.∴最小值为-37.故选A.答案: A4.下列关于函数f(x)=(2x-x2)e x的判断正确的是( )①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③B.①②③C.②D.①②解析:由f(x)>0得0<x<2,故①正确.f′(x)=(2-x2)e x,令f′(x)=0,得x=±2,当x<-2或x>2时,f′(x)<0.当-2<x<2时,f′(x)>0.∴x=-2时,f(x)取得极小值,当x=2时,f(x)取得极大值,故②正确.当x→-∞时,f(x)<0,当x→+∞时,f(x)<0.综合函数的单调性与极值画出函数草图(如下图).∴函数f(x)有最大值无最小值,故③不正确.答案: D二、填空题(每小题5分,共10分)5.函数f(x)=1x+1+x(x∈[1,3])的值域为________.解析: f ′(x )=-1x +12+1=x 2+2xx +12,所以在[1,3]上f ′(x )>0恒成立,即f (x )在[1,3]上单调递增,所以f (x )的最大值是f (3)=134,最小值是f (1)=32.故函数f (x )的值域为⎣⎢⎡⎦⎥⎤32,134. 答案: ⎣⎢⎡⎦⎥⎤32,134 6.设函数f (x )=12x 2e x,若当x ∈[-2,2]时,不等式f (x )>m 恒成立,则实数m 的取值范围是________.解析: f ′(x )=x e x+12x 2e x=ex2·x (x +2), 由f ′(x )=0得x =0或x =-2.当x ∈[-2,2]时,f ′(x ),f (x )随x 的变化情况如下表:x -2 (-2,0) 0 (0,2) 2 f ′(x ) 0-+f (x )min 要使f (x )>m 对x ∈[-2,2]恒成立, 只需m <f (x )min ,∴m <0. 答案: m <0三、解答题(每小题10分,共20分)7.已知函数f (x )=x 3-ax 2+3x ,x =3是函数f (x )的极值点,求函数f (x )在x ∈[1,5]上的最大值和最小值.解析: 根据题意,f ′(x )=3x 2-2ax +3,x =3是函数f (x )的极值点,得f ′(3)=0, 即27-6a +3=0,得a =5. 所以f (x )=x 3-5x 2+3x .令f ′(x )=3x 2-10x +3=0,得x =3或x =13(舍去).当1<x <3时,f ′(x )<0,函数f (x )在[1,3)上是减函数; 当3<x <5时,f ′(x )>0,函数f (x )在(3,5]上是增函数.由此得到当x =3时,函数f (x )有极小值f (3)=-9,也就是函数f (x )在[1,5]上的最小值;又因为f (1)=-1,f (5)=15,即函数f (x )在[1,5]上的最大值为f (5)=15.综上,函数f (x )在[1,5]上的最大值为15,最小值为-9. 8.设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上的最大值为12,求a 的值.解析: 函数f (x )的定义域为(0,2),f ′(x )=1x -12-x+a .(1)当a =1时,f ′(x )=-x 2+2x 2-x ,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2).(2)当x ∈(0,1]时,f ′(x )=2-2xx 2-x+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.尖子生题库☆☆☆(10分)已知函数f (x )=-23x +13x +ln x 在⎣⎢⎡⎦⎥⎤14,2上存在x 0使得不等式f (x 0)-c ≤0成立,求c 的取值范围.解析: 在⎣⎢⎡⎦⎥⎤14,2上存在x 0,使得不等式f (x 0)-c ≤0成立,只需c ≥f (x )min ,由f ′(x )=-23-13x 2+1x=-2x 2-3x +13x 2=-2x -1x -13x2, ∴当x ∈⎝ ⎛⎭⎪⎫14,12时,f ′(x )<0, 故f (x )在⎝ ⎛⎭⎪⎫14,12上单调递减;当x ∈⎝ ⎛⎭⎪⎫12,1时,f ′(x )>0, 故f (x )在⎝ ⎛⎭⎪⎫12,1上单调递增;当x ∈(1,2)时,f ′(x )<0, 故f (x )在(1,2)上单调递减.∴f ⎝ ⎛⎭⎪⎫12是f (x )在⎣⎢⎡⎦⎥⎤14,2上的极小值. 而f ⎝ ⎛⎭⎪⎫12=13+ln 12=13-ln 2,f (2)=-76+ln 2,且f ⎝ ⎛⎭⎪⎫12-f (2)=32-ln 4=ln e 32-ln 4,又e 3-16>0,∴ln e 32-ln 4>0,∴在⎣⎢⎡⎦⎥⎤14,2上f (x )min =f (2), ∴c ≥f (x )min =-76+ln 2.∴c 的取值范围为⎣⎢⎡⎭⎪⎫-76+ln 2,+∞.。
1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。
函数的最大(小)值
一、选择题
1.下列函数在[1,4]上最大值为3的是( ) A .y =1
x
+2 B .y =3x -2
C .y =x 2
D .y =1-x
2.函数f (x )=⎩
⎪⎨
⎪⎧
x +7 x ∈[-1,1 ,
2x +6 x ∈[1,2],则
f (x )的最大值、最小值分别为( )
A .10,6
B .10,8
C .8,6
D .以上都不对
3.已知函数f (x )=-x 2
+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )
A .-1
B .0
C .1
D .2 4.当0≤x ≤2时,a <-x 2+2x 恒成立,则实数a 的取值范围是( )
A .(-∞,1]
B .(-∞,0]
C .(-∞,0)
D .(0,+∞)
5.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为L 1=-x 2
+21x 和L 2=2x .若该公司在两地共销售15辆,则能获得的最大利润为( )
A .90万元
B .60万元
C .120万元
D .120.25万元 二、填空题
6.函数y =1
x -1在[2,3]上的最小值为
________.
7.已知函数f (x )=x 2
-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.
8.对于函数f (x )=x 2+2x ,在使f (x )≥M 成立的所有实数M 中,我们把M 的最大值M max =-1叫做函数f (x )=x 2
+2x 的下确界,则对于a ∈R ,且a ≠0,a 2-4a +6的下确界为________.
三、解答题
9.已知函数f (x )=2x +1
x +1
.
(1)用定义证明函数在区间[1,+∞)上是增函数;
(2)求该函数在区间[2,4]上的最大值与最小
值.
10.有甲、乙两种商品,经营销售这两种商品所能获得的利润依次是P (万元)和Q (万元),它们与投入资金x (万元)的关系有经验公式:P =x
5,Q
=
3
5
x .今有3万元资金投入经营甲、乙两种商品,为获得最大利润,对甲、乙两种商品的资金投入分别应为多少?能获得的最大利润是多少?
答 案 课时跟踪检测(十)
1.选A B 、C 在[1,4]上均为增函数,A 、D 在[1,4]上均为减函数,代入端点值,即可求得最值,故选A.
2.选A 当-1≤x <1时,6≤x +7<8, 当1≤x ≤2时,8≤2x +6≤10. ∴f (x )min =f (-1)=6,
f (x )max =f (2)=10.故选A.
3.选C ∵f (x )=-(x 2
-4x +4)+a +4=-(x -2)2
+4+a ,
∴函数f (x )图象的对称轴为x =2. ∴f (x )在[0,1]上单调递增.
又∵f (x )min =-2,∴f (0)=-2,即a =-2. ∴f (x )max =f (1)=-1+4-2=1.
4.选C 令f (x )=-x 2
+2x ,则f (x )=-x 2
+2x =-(x -1)2
+1.
又∵x ∈[0,2],∴f (x )min =f (0)=f (2)=0. ∴a <0.
5.选C 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,公司获利为L =-x 2
+21x +2(15-
x )=-x 2+19x +30
=-(x -192)2+30+19
2
4
,
∴当x =9或10时,L 最大为120万元. 6.解析:作出图象可知y =1
x -1
在[2,3]上是减函数,y min =13-1=1
2
.
答案:12
7.解析:如右图可知f (x )在[1,a ]内是单调递减的,
又∵f (x )的单调递减区间为(-∞,3], ∴1<a ≤3. 答案:(1,3] 8.解析:a 2-4a +6=(a -2)2
+2≥2, 则a 2
-4a +6的下确界为2. 答案:2
9.解:(1)证明:任取x 1,x 2∈[1,+∞),且
x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1
x 2+1
=x 1-x 2
x 1+1 x 2+1
.
∵1≤x 1<x 2,∴x 1-x 2<0,(x 1+1)(x 2+1)>0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), ∴函数f (x )在[1,+∞)上是增函数. (2)由(1)知函数f (x )在区间[2,4]上是增函数,
∴f (x )max =f (4)=2×4+14+1=9
5
,
f (x )min =f (2)=
2×2+12+1=5
3
. 10.解:设对甲种商品投资x 万元,则对乙种商品投资(3-x )万元,总利润为y 万元,根据题意得y =15x +3
5
3-x (0≤x ≤3).
令3-x =t ,则x =3-t 2,
0≤t ≤ 3. 所以y =15(3-t 2
)+35t =-15(t -32)2+2120
,
t ∈[0, 3 ].
当t =32时,y max =21
20,此时x =0.75,3-x =
2.25.
由此可知,为获得最大利润,对甲、乙两种商品的资金投入分别为0.75万元和2.25
万元,获得的最大利润为1.05万元.。