八年级数学上册第一章勾股定理练习题北师大版
- 格式:doc
- 大小:46.00 KB
- 文档页数:4
初二年级单元测试题数 学(第一章:勾股定理)一、填空题:(每题3分,共24分)1. 小明把一根70cm 长的木棒放到一个长、宽、高分别为30cm 、40cm 、50cm 的木箱中,他能放进去吗?答:_______________(填“能”、或“不能”)2. 有一个育苗棚,棚高0.5米,顶面的塑料薄膜面积为13平方米,棚长10米,可覆盖的种植面积为___________平方米。
3. 如图,∠OAB=∠OBC=∠OCD=90°, AB=BC=CD=1,OA=2,则OD 2=____________.4. 如图,△ABC 中,∠BAC=90°,D 是BC 上一点,AB=3,BD=1.8,AD=2.4,则DC=___________.5. 如图,在△ABC 中,CE 是AB 边上的中线,CD ⊥AB 于D,且AB=5,BC=4,AC=6,则DE 的长为_______.6. 已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为_______.7. 四边形ABCD 中,AD ⊥DC ,AD=8,DC=6,CB=24,AB=26.则四边形ABCD 的面积为____________.8. 如图是一个三级台阶,它的每一级的长宽和高分别为20dm 、3dm 、2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程是_____________.二、选择题(每题3分,共24分)9. 如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形 (B)锐角三角形 (C)钝角三角形 (D)a b cdO A BCDA B C ABC D 2032A BBCA B C以上答案都不对10. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )72425207152024257252024257202415(A)(B)(C)(D)11.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )(A)2cm (B)3cm (C)4cm (D)5cm12.如图,△ABC 中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P 到各边的距离相等,则这个距离是( )(A )1 (B)3 (C)4 (D)513.在△ABC 中,AB=15,AC=13,高AD=12,则三角形的周长是( ) (A )42 (B)32 (C)42或32 (D)37或33.14.已知一直角三角形的木版,三边的平方和为1800cm 2,则斜边长为( ). (A )80cm (B)30cm (C)90cm (D120cm. 15.如图,在边长为a 的正方形中挖掉一个边长为b的小正方形(a>b ),余下的部分拼成一个矩形(如图2),通过计算两个图形(阴影部分)的面积,验证了一个等式。
北师大版八年级上册数学第一章勾股定理含答案一、单选题(共15题,共计45分)1、如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为( )A.4B.8C.16D.642、已知一个直角三角形的两条直角边的长恰好是方程的两个根,则这个直角三角形的斜边长是()A. B.3 C.6 D.93、某水库大坝高20米,背水坝的坡度为1:,则背水面的坡长为()A.40米B.60米C.30 米D.20 米4、如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,,则下列结论中:①DE=3cm;②EB=1cm;③.正确的个数为()A.0个B.1个C.2个D.3个5、如图,∠ACD是△ABC的外角,CE平分∠ACB,交AB于E,CF平分∠ACD,EF//BC交AC,CF于M,F,若EM=3,则CE2+CF2的值为( )A.36B.9C.6D.186、如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()A.2B.8C.2D.27、如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了()步路(假设2步为1m),却踩伤了花草A.4B.6C.7D.88、若菱形的周长为24cm,一个内角为60°,则菱形的面积为()A.4 cm 2B.9 cm 2C.18 cm 2D.36 cm 29、在5×5的正方形网格中,每个小正方形的边长为1,用四边形覆盖如图所示,被覆盖的网格线中,竖直部分的线段的长度之和记作m,水平部分的线段的长度之和记作n,则m﹣n=()A.0B.0.5C.﹣0.5D.0.7510、如图,正方体的棱长为4cm,A是正方体的一个顶点,B是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A爬到点B的最短路径是()A.9B.C.D.1211、如图,在平面直角坐标系中,的斜边OA在第一象限,并与x轴的正半轴夹角为30度,C为OA的中点,BC=1,则A点的坐标为()A. B. C. D.12、已知,△ABC的三边分别为a,b,c,其对角分别为∠A,∠B,∠C.下列条件能判定△ABC一定不是直角三角形的是()A.a:b:c=::B.b 2﹣a 2=c 2C.∠A:∠B:∠C =2:3:5D.∠B=∠A+∠C13、已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.14414、如图,点O是矩形ABCD的对角线AC的中点,OM//AB交AD于点M,若OM=3,BC=10,则OB的长为()A.5B.4C.D.15、一个直角三角形的两条直角边分别是5和12,则斜边是()A.13B.12C.15D.10二、填空题(共10题,共计30分)16、如图,A是双曲线y= (k>0,x>0)上一点,B是x轴正半轴上一点,以AB 为直角边向右构造等腰直角三角形ABC,∠BAC=90°,过点A作AD⊥y轴于点D,以AD为斜边向上构造等腰直角三角形ADE,若点C,点E恰好都落在该双曲线上,△ABC与△ADE的面积之和为28,则k=________17、如图,在中,,两条直角边的长分别是6和8,则斜边AB的中线CD的长为________.18、在直角三角形中,斜边=2,则=________19、如图中的螺旋由一系列直角三角形组成,则第2017个三角形的面积为________.20、如图,在高3米,坡面线段距离AB为5米的楼梯表面铺地毯,则地毯长度至少需________米.21、顺次连接正方形各边中点,得到一个新正方形,则新正方形与原正方形的相似比是________.22、若等边三角形ABC的边长为a,且三角形内一点P到各边的距离分别是h a , hb, hc,则ha+hb+hc=________.23、如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是________.24、如图所示,在矩形中,,.矩形绕着点逆时针旋转一定角度得到矩形.若点的对应点落在边上,则的长为________.25、在Rt△ABC中,AC=9,BC=12,则AB=________.三、解答题(共5题,共计25分)26、如图,中,于D.求及的长.27、如图,在四边形ABCD中,AB=4,BC=3,CD=12,AD=13,∠B=90°,求四边形ABCD的面积.28、某工厂准备翻建新的大门,厂门要求设计成轴对称的拱形曲线.已知厂门的最大宽度AB=12m,最大高度OC=4m,工厂的运输卡车的高度是3m,宽度是5.8m.现设计了两种方案.方案一:建成抛物线形状(如图1);方案二:建成圆弧形状(如图2).为确保工厂的卡车在通过厂门时更安全,你认为应采用哪种设计方案?请说明理由.29、如图,四边形ACDE是证明勾股定理时用到的一个图形,a、b、c是Rt△ABC和Rt△BED边长,易知AE= c,这时我们把关于x的形如ax²+ cx+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:Ⅰ写出一个“勾系一元二次方程”;Ⅱ求证:关于x的“勾系一元二次方程”ax²+ cx+b=0必有实数根;Ⅲ若x=−1是“勾系一元二次方程”ax²+ cx+b=0的一个根,且四边形ACDE 的周长是,求△ABC面积.30、一游泳池长48m,小方和小朱进行游泳比赛,小方平均速度为3m/秒,小朱为3.1m/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14m.按各人的平均速度计算,谁先到达终点?参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、D5、A6、D7、D8、C9、A11、B12、A13、A14、D15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、28、29、。
北师大版八年级数学上【1】勾股定理练习题一、基础达标:1. 下列说法正确的是()A.若 a、b、c是△ABC的三边,则a2+b2=c2;B.若 a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若 a、b、c是Rt△ABC的三边, 90∠A,则a2+b2=c2;=D.若 a、b、c是Rt△ABC的三边, 90∠C,则a2+b2=c2.=2. Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是()A.cb+ D.+ C. ca<bba>a=+ B. c2c22+a=b3.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是()A、2kB、k+1C、k2-1D、k2+14. 已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42 或 32 D.37 或 337.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为()(A2d(B d(C)2d(D)d8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是.12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是,另外一边的平方是.18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是.19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是. 二、综合发展:1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AE 重合, AC B你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 小汽车 小汽车 B C 观测点所求直角三角形面积为21158602cm ⨯⨯=.答案:260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9.解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11.解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。
北师大版八年级上学期第一章勾股定理测试题一、单选题1、如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边BC 上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (除之C 外)相等的角的个数是( )A .2 B .3 C .4 D .52、已知x 、y 为正数,且|x 2-4|+(y 2-3)2=0,如果以x 、y为直角边长作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A .5B .25C .7D .153、如图,在△ABC 中,AB =AC =13,BC =10,点D 为BC 的中点.DE ⊥AB ,垂足为点E ,则DE 等于( )A .B .C .D .4、若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为( )A .18 cm B .20 cm C .24 cm D .25 cm 5、如图在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯长度至少应是( )A .13m B .17m C .18m D .25m 6、有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边长为5,14,3的三角形为直角三角形;③等腰三角形的两条边长为2,4,则等腰三角形的周长为10或8;④斜边和一条直角边对应相等的两个直角三角形全等;⑤一边上的中线等于这边长的一半的三角形是等腰直角三角形.其中正确的个数是( )A .5个 B .4个 C .3个 D .2个7、在Rt△ABC 中,∠C =90°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,若a =12,b =16,则c 为( )A .26 B .18 C .20 D .218、如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A 和B 是这个台阶的两个相对端点,A 点上有一只蚂蚁想到B 点去吃可口的食物,则它所走的最短路线长度是( ) A .71寸 B .73寸 C .100寸 D .1039、如图,直线a ⊥直线c ,直线b ⊥直线c ,若∠1=70°,则∠2=( )A .70° B .90° C .110° D .80°10、在△ABC 中,BC :AC :AB=1:1:,则△ABC 是( ) A .等腰三角形 B .钝角三角形 C .直角三角形 D .等腰直角三角形11、下列条件中,不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .斜边和一个锐角对应相等 C .斜边和一条直角边对应相等 D .一条直角边和一个锐角分别相等12、在直角三角形ABC 中,斜边AB=1,则222BC AC AB ++的值是( ) A .2 B .4 C .6 D .8 二、填空题13、如图:隔湖有两点A 、B ,为了测得A 、B 两点间的距离,从与AB 方向成直角的BC 方向上任取一点C ,若测得CA="50" m,CB="40" m ,那么A 、B 两点间的距离是________14、等腰△ABC 的腰长AB=10cm,底BC 为16cm ,则底边上的高为 ,面积为 .15、如图所示,一棵大树折断后倒在地上,请按图中所标的数据,计算大树没折断前的高度的结果是米.16、在直角三角形ABC中,∠C=90°,BC=12,AC=9,则AB=____.17、如图,将直角△ABC绕点C顺时针旋转90°至△A′B′C的位置,已知AB=10,BC=6,M是A′B′的中点,则AM=______.18、如图,小聪用一块有一个锐角为30°的直角三角板测量树高,已知小聪和树都与地面垂直,且相距3米,小聪身高AB为1.7米,则这棵树的高度= 米.19、在直角三角形ABC中,∠C=90°,∠A=23°,则∠B= °,与∠B相邻的外角为°.20、如图所示,某人在B处通过平面镜看见B处正上方3m处的A物体像A′,已知A离镜面的距离为2 m,则点B到A的像A′的距离是________.(不考虑平面镜的厚度)三、解答题21、一个三角形三条边的比为5∶12∶13,且周长为60cm,求它的面积.22、阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判定△ABC的形状.解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2+b2)(a2-b2) ②∴c2=a2+b2 ③∴△ABC是直角三角形问:上述解题过程,从哪一步开始出现错误?请写出该步的序号:_________;错误的原因为_________;本题正确的结论是_________.23、如图,Rt△ABC中,∠ACB=90°,AC=3,AB=5,将△ABC沿AB边所在直线向右平移3个单位,记平移后的对应三角形为△DEF(1)求DB的长;(2)求此时梯形CAEF的面积.24、如图是一个房屋的横截面,屋顶成直角,测量得斜梁AB=3米,AC=4米,墙面是矩形BCDE,BE=3.6米,选用一种规格为20cm×30cm的长方形瓷砖平铺墙面BCDE,请你算一算需要多少块瓷砖?25、如图,四边形ABCD中,∠BAD=90°,∠DBC=90°,AD=3,AB=4,BC=12.(1)求CD 的长;(2)求四边形ABCD的面积.26、27、如图所示,圆柱形的玻璃容器,高18cm,底面周长为24cm,在外侧距下底1cm的点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一只苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路径.28、如图在△CDE中,∠DCE=90°,DC=CE,DA⊥AB于A,EB⊥AB于B,试判断AB与AD,BE之间的数量关系,并证明.29、已知一个等腰三角形的底边和腰的长分别为12 cm和10 cm,求这个三角形的面积.30、小明在海边观景台O处,观测到北偏东60°的A处有一艘货船,该船正向南匀速航行,10分钟后再观察时,该船已航行到O的南偏东30°,且与O相距3km的B处,如图所示.(参考数据:4141.3=)(1)求∠A和∠B的度数;(2)求货船.2=,7321航行的速度?(结果精确到0.1km/h).试卷答案一、单选题21,120厘米222,③ a2-b2可以为零△ABC为等腰三角形或直角三角形23,(1)解:∵将△ABC沿AB边所在直线向右平移3个单位到△DEF∴AD=BE=3,∵AB=5,∴DB=AB﹣AD=2,答:DB的长是2.(2)解:作CG⊥AB于G,在△ACB中,∠ACB=90°,AC=3,AB=5,由勾股定理得:BC==4,由三角形的面积公式得:CG•AB=AC•BC,∴3×4=5×CG,∴CG=,梯形CAEF的面积为:(CF+AE)×CG=×(3+5+3)×=.答:此时梯形CAEF的面积是.24,解:由题意得:∠A=90°,AB=3米,AC=4米,所以BC==5米,∵矩形BCDE中BE=3.6米,∴矩形BCDE的面积为5×3.6=18米2,∵瓷砖的规格为:20cm×30cm=600cm2=0.06m2∴需要瓷砖18÷0.06=300块.25,解:(1)因为∠BAD=90°,AD=3,AB=4,所以在Rt△ADB中,BD=.同理,在Rt△BDC中,CD=13.(2)四边形ABCD的面积所以S=×AD×AB+×BD×CD=36.26, a2+b2=c2;BC2+AC2=AB2;a2+b2=c2;BC2+AC2=AB2.1.是;2.是;3.是;4.不是27,解:如图展开后连接SF,求出SF的长就是捕获苍蝇充饥的蜘蛛所走的最短路径,过S作SE⊥CD于E,则BC=SE=×24cm=12cm,EF=18cm﹣1cm﹣1cm=16cm,在Rt△FES中,由勾股定理得:SF===20(cm),答:捕获苍蝇充饥的蜘蛛所走的最短路径的长度是20cm.28,证明:AB=AD+BE.∵DA⊥AB于A,EB⊥AB于B.∴∠A=∠B;∵∠DCE=90°,∴∠ADC+∠ACD=90°,∠ACD+∠ECB=90°;∴∠ADC=∠ECB;又∵DC=CE,在△ACD和△BEC中,,∴△ACD≌△BEC;∴AD=BC,AC=BE;∴AB=AC+CB=BE+AD.29,48cm230,解:(1)∠A=60°,∠B=30°;(2)∵∠AOB=60°+30°=90°,∴直角△OAB中,AB===2≈3.46km,则每小时航行3.46÷≈20.8千米/时,故货船的速度为20.8千米/时.。
第一章勾股定理分节练习第1节探索勾股定理一、求边长问题. ★★★题型一:已知直角三角形的两边,求第三边.1、【基础题】求出下列两个直角三角形中x和y边的长度.、【基础题】(1)求斜边长为17 cm,一条直角边长为15 cm的直角三角形的面积.(2)已知一个Rt△的两边长分别为3和4,则第三边长的平方是________.、【综合Ⅰ】已知一个等腰三角形的两腰长为5 cm,底边长6 cm,求这个等腰三角形的面积.、【综合Ⅰ】如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米 B.10米C.12米D.14米、【综合Ⅰ】强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处,求旗杆折断之前有多高、【综合Ⅱ】如图,某储藏室入口的截面是一个半径为 m的半圆形,一个长、宽、高分别是 m、1 m、 m的箱子能放进储藏室吗题型二:用“勾股定理 + 方程”来求边长.2、【综合Ⅱ】一个直角三角形的斜边为20 cm,且两直角边的长度比为3∶4,求两直角边的长.【综合Ⅱ】 如图,小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,下端刚好接触地面,求旗杆AC 的高度.、【综合Ⅱ】在我国古代数学著作《九章算术》中记载了一个有趣的问趣,这个问题的意思是:如左下图,有一个边长是10尺的正方形水池,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边中点的水面,请问这个水池的深度和这根芦苇的长度各是多少【综合Ⅲ】如右上图,有一块直角三角形纸片,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长.【提高题】(2011年北京市竞赛题)两张大小相同的纸片,每张都分成7个大小相同的矩形,放置如图所示,重合的顶点记作A ,顶点C 在另一张纸的分隔线上,若BC =28,则AB 的长是 ______ .类型三: “方程 + 等面积” 求直角三角形斜边上的高.3、 直角三角形两直角边分别为5、12,则这个直角三角形斜边上的高为 ( ).(A )6 (B ) (C )1320 (D )1360二、面积问题. ★4、【基础题】求出左下图中A 、B 字母所代表的正方形的面积.、【综合Ⅰ】如右上图,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干图形,使它们的面积之和等于最大正方形1的面积,尝试给出两种方案.、【综合Ⅰ】如左下图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 2.、【综合题】如右上图2,以Rt△ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为( ).(A )9 (B )3 (C )49 (D )295、【综合Ⅲ】如图,在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则1S +2S +3S +4S =________三、证明问题6、【综合Ⅲ】1876年,美国总统加菲尔德利用右图验证了勾股定理,你能利用左下图验证勾股定理吗说一说这个方法和本节的探索方法的联系.7、【提高题】 如右上图,在Rt △ABC 中,∠A = 90,D 为斜边BC 的中点,DE ⊥DF ,求证:222CF BE EF +=.8、【提高题】 如图,AD 是△ABC 的中线,证明:)+(=+22222CD AD AC AB第2节 一定是直角三角形吗9、【基础题】一个零件的形状如图所示,按规定这个零件中∠A 和∠DBC 都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗并求出四边形ABCD 的面积.、【综合Ⅰ】如左下图,6个三角形分别标号,哪些三角形是直角三角形,哪些不是,请说明理由.、【综合Ⅰ】如右上图,在正方形ABCD 中,4=AB ,2=AE ,1=DF ,图中有几个直角三角形,说明理由.10、【基础题】下列各组中,不能构成直角三角形三边长度的是 ( )(A )9,12,15 (B )15,32,39 (C )16,30,34 (D )9,40,41、【基础题】(1)如果将直角三角形的三条边长同时扩大一个相同的倍数,得到的三角形还是直角三角形吗(2)下表中第一列每组数都是勾股数,补全下表,这些勾股数的2倍、3倍、4倍、10倍还是勾股数吗任意正整数倍呢说说你的理由。
北师大版八年级数学上册第一章勾股定理章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()B.C.D.A2、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能..用来证明勾股定理的是()A.B.C.D.3、如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A B C D4、如图,嘉嘉在A时测得一棵4米高的树的影长DF为8m,若A时和B时两次日照的光线互相垂直,则B时的影长DE为()A.2m B.C.4m D.5、《九章算术》被尊为古代数学“群经之首”,其卷九勾股定理篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这个木材,锯口深CD等于1寸,锯道AB长1尺,则圆形木材的直径是()(1尺=10寸)A .12寸B .13寸C .24寸D .26寸6、如图,所有阴影四边形都是正方形,所有三角形都是直角三角形,已知正方形A ,B ,C 的面积依次为2,4,3,则正方形D 的面积为( )A .9B .8C .27D .457、下列各组数据为三角形的三边,能构成直角三角形的是( )A .4,8,7B .2,2,2C .2,2,4D .13,12,58、如图,Rt ABC 中,90ACB ∠=︒,一同学利用直尺和圆规完成如下操作:①以点C 为圆心,以CB 为半径画弧,交AB 于点G ;分别以点G 、B 为圆心,以大于12GB 的长为半径画弧,两弧交点K ,作射线CK ;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于N,分别以M、N为圆心,以大于12MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;过点D作DF AB⊥交AB的延长线于点F,若12AC=,5BC=,则CE的长为()A.13 B.132C.52D.1529、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.50cm B.120cm C.140cm D.100cm10、如图,正方体盒子的棱长为2,M为BC的中点,则一只蚂蚁从A点沿盒子的表面爬行到M点的最短距离为()A.BC D第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_______尺.2、在△ABC中,∠C=90°,AB=10,AC=8,则BC的长为_____.3、如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.4、如图,台风过后,某希望小学的旗杆在离地某处断裂,且旗杆顶部落在离旗杆底部8m处,已知旗杆原长16m,你能求出旗杆在离底部________m位置断裂.5、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则△ADC的周长是__________三、解答题(5小题,每小题10分,共计50分)1、如图,在四边形ABCD中,∠B=∠D=90°,∠C=60°,AD=1,BC=2,求AB、CD的长.2、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假设宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?3、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?4、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.5、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B 是CD的中点,E是BA延长线上的一点,且∠CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF⊥AB交AB的延长线于点F,求BFBC值.-参考答案-一、单选题1、A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【详解】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH在Rt△AHC中,∠ACB=45°,=∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,90BFD CKDBDF CDKBD CD∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC综上所述,AE+BF故选:A .【考点】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.2、A【解析】【分析】由题意根据图形的面积得出,,a b c 的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A 、不能利用图形面积证明勾股定理;B 、根据面积得到()2222142c ab a b a b =⨯+-=+; C 、根据面积得到()22142a b ab c +=⨯+,整理得222+=a b c ; D 、根据面积得到22111()2222a b c ab +=+⨯,整理得222+=a b c . 故选:A.【考点】本题考查勾股定理的证明,熟练掌握利用图形的面积得出,,a b c 的关系,即可证明勾股定理.3、A【解析】【详解】先用勾股定理耱出三角形的三边,再根据勾股定理的逆定理判断出△ABC 是直角三角形,最后设BC 边上的高为h ,利用三角形面积公式建立方程即可得出答案.解:由勾股定理得:AC =AB 221310BC ,222(5)+= ,即222AB AC BC += ∴△ABC 是直角三角形,设BC 边上的高为h ,则1122ABCS AB AC h BC =⋅=⋅,∴AB AC h BC ⋅=故选A.点睛:本题主要考查勾股理及其逆定理.借助网格利用勾股定理求边长,并用勾股定理的逆定理来判断三角形是否是直角三角形是解题的关键.4、A 【解析】【分析】根据勾股定理,求出FC=DE =x ,在Rt CDE △中,EC 2=22DE CD +,在Rt CFE 中,EC 2=22FE CF -=22DE CD +,代入求解即可.【详解】解:由题意,得∠ECF =∠CDF =∠CDE =90°,CD =4m ,DF =8m ,由勾股定理,得FC=EC 2=22DE CD +,EC 2=22FE CF -,∴22FE CF -=22DE CD +,令DE =x ,则EF =x +8,∴222816x x +-=+(), 整理,得16x =32,解得x =2.故选:A .【考点】本题考查利用勾股定理求线段长,拓展一元一次方程,正确的运算能力是解决问题的关键.5、D【解析】【分析】连接OA 、OC ,由垂径定理得AC =BC =12AB =5寸,连接OA ,设圆的半径为x 寸,再在Rt △OAC 中,由勾股定理列出方程,解方程可得半径,进而直径可求.【详解】解:连接OA 、OC ,如图:由题意得:C 为AB 的中点,则O 、C 、D 三点共线,OC ⊥AB ,AB=5(寸),∴AC=BC=12设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故选:D【考点】本题主要考查了垂径定理的应用,勾股定理的应用,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.6、A【解析】【分析】设正方形D的面积为x,根据图形得出方程2+4=x-3,求出即可.【详解】∵正方形A、B、C的面积依次为2、4、3,∴根据图形得:2+4=x−3.解得:x=9.故选A.【考点】本题考查了勾股定理,根据图形推出四个正方形的关系是解决问题的关键.7、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+72≠82,故不能构成直角三角形;B、22+22≠22,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D.【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形.8、D【解析】【分析】先证明CE=CD=DF,BC=BF=5,利用勾股定理求出AB,设CE=CD=DF=x,在Rt△ADF中,利用勾股定理构建方程求解即可.【详解】解:由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB +∠3=∠2+∠CDE =90°,∴∠CEB =∠CDE ,∴CD =CE ,在△DBC 和△DBF 中,21BCD BFD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BDC ≌△BDF (AAS ),∴CD =DF ,BC =BF =5,∵∠ACB =90°,AC =12,BC =5,∴AB13,设EC =CD =DF =x ,在Rt △ADF 中,则有(12+x )2=x 2+182,∴x =152, ∴CE =152,【考点】本题考查作图-复杂作图,全等三角形的判定和性质,等腰三角形的判定,以及勾股定理等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.9、D【解析】【分析】画出图形,利用勾股定理即可求解.【详解】解:如图,81080OA =⨯=cm ,61060OB =⨯=cm ,∴在Rt AOB ∆中,100AB ===cm ,故选:D【考点】本题考查了勾股定理的应用,理解题意,画出图形是解题的关键.10、B【分析】先利用展开图确定最短路线,再利用勾股定理求解即可.【详解】解:如图,蚂蚁沿路线AM 爬行时距离最短;∵正方体盒子棱长为2,M 为BC 的中点,∴23AD MD ==,,∴AM =故选:B .【考点】本题考查了蚂蚁爬行的最短路径为题,涉及到了正方形的性质、正方体的展开图、勾股定理、两点之间线段最短等知识,解题关键是牢记相关概念与灵活应用.二、填空题1、25.【解析】【详解】 解:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题.=(尺).25故答案为:25.2、6【解析】【分析】根据勾股定理求解即可.【详解】∵Rt△ABC中,∠C=90°,AB=10,AC=8,∴BC故答案为:6.【考点】本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3【解析】【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【详解】】解:由勾股定理得:AC=∵S △ABC =3×4-12×1×2-12×3×2-12×2×4=4, ∴12AC •BD =4,∴12=4,∴BD【考点】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.4、6【解析】【分析】设AC x =,则16AB x =-,在Rt ACB △中,利用勾股定理列方程,即可求解.【详解】解:如图,由题意知,90C ∠=︒,8BC =,设AC x =,则16AB x =-,在Rt ACB △中,222AB AC BC =+,即222(16)8x x -=+,解得6x =,因此旗杆在离底部6m 位置断裂.故答案为:6.【考点】本题考查勾股定理的实际应用,读懂题意,根据勾股定理列出方程是解题的关键.5、454【解析】【分析】首先根据勾股定理设DB x =,求出AD 、CD ,再求出AB ,相加即可.【详解】解:∵折叠直角三角形ABC 纸片,使两个锐角顶点A 、C 重合,∴AD DC =,设DB x =,则4AD x =-,故4DC x =-,∵90DBC ∠=︒,∴222DB BC DC +=,即2223(4)x x +=-, 解得78x =,∴78 BD=.则725488 AD CD==-=在Rt ABC中,由勾股定理得222AB BC AC+=∴AC=5∴ADC周长为AD+CD+AB=454.故答案为:454.【考点】本题考查了勾股定理的应用以及折叠的性质,掌握勾股定理和折叠的性质是解题的关键.三、解答题1、AB=2,CD=4【解析】【分析】此题为几何题,看题目只是一个四边形,要求两条未知边,那肯定要添辅助线.过点D作DH⊥BA延长线于H,作DM⊥BC于M.构建矩形HBMD.利用矩形的性质和解直角三角形来求AB、CD的长度.【详解】如图,过点D作DH⊥BA延长线于H,作DM⊥BC于点M.∵∠B=90°,∴四边形HBMD 是矩形.∴HD=BM ,BH =MD ,∠ABM=∠ADC=90°,又∵∠C=60°,∴∠ADH=∠MDC=30°,∴在Rt△AHD 中,AD =1,∠ADH=30°,则AH =12AD =12,DH∴MC=BC -BM =BC -DH =2∴在Rt△CMD 中,CD =2MC =4DM CD .∴AB=BH -AH =DM -AH 12=2 【考点】 本题考查了勾股定理和矩形的判定与性质.此题的关键是根据题意作出辅助线,构建矩形.2、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传.【解析】【分析】(1)直接比较村庄A 到公路MN 的距离和P 广播宣传距离即可;(2)过点A 作AB MN ⊥于点B ,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间.【详解】解:(1)村庄能听到宣传,理由:∵村庄A 到公路MN 的距离为600米<1000米,∴村庄能听到宣传;(2)如图:过点A 作AB MN ⊥于点B ,假设当宣讲车行驶到P 点开始影响村庄,行驶Q 点结束对村庄的影响,则1000AP AQ ==米,600AB =米,∴800BP BQ ==(米),∴1600PQ =米,∴影响村庄的时间为:16002008÷=(分钟),∴村庄总共能听到8分钟的宣传.【考点】本题主要考查了垂线的性质,勾股定理,仔细审题获取相关信息合理作出图形是解题的关键.3、速度为30米每秒【解析】【分析】根据勾股定理求得BC 的长度,再根据速度等于路程除以时间即可求得敌方汽车的速度.【详解】400,500,90AB AC B ==∠=︒,300BC ∴,3001030÷=米每秒,答:敌方汽车的速度为30米每秒.【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.4、证明见解析【解析】【分析】连接AC ,根据四边形ABCD 面积的两种不同表示形式,结合全等三角形的性质即可求解.【详解】解:连接AC ,∵△ABE ≌△BCD ,∴AB =BC ,AE =BD ,BE =CD ,∠BAE =∠CBD ,∵∠ABE +∠BAE =90°,∴∠ABE +∠CBE =90°,∴∠ABC =90°,∴S 四边形ABCD =2111111222222ABD BDC S S BD AE BD CD AE AE BD BE AE BD BE ∆∆+=⋅+⋅=⋅+⋅=+⋅, 又∵S 四边形ABCD =2111111222222ABC ADC S S AB BC CD DE AB AB BE DE AB BE DE ∆∆+=⋅+⋅=⋅+⋅=+⋅, 2211112222AE BD BE AB BE DE +⋅=+⋅,∴AB 2=AE 2+BD •BE -BE •DE ,∴AB 2=AE 2+(BD -DE )•BE ,即AB 2=BE 2+AE 2.【考点】本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.5、 (1)33.4海里 (2)725【解析】【分析】(1)利用勾股定理求出CD ,再根据斜边的中线等于斜边的一半求出BE ,则AB 可求;(2)设BF =x 海里.利用勾股定理先表示出CF 2,在Rt △CFE 中,∠CFE =90°,利用勾股定理有CF 2+EF 2=CE 2,即222500-(50)6400x x ++=,解方程即可得解.(1)在△DCE 中,∠CED =90°,DE =60海里,CE =80海里,由勾股定理可得100CD =(海里),∵B 是CD 的中点, ∴1502BE CD ==(海里),∴AB =BE -AE =50-16.6=33.4(海里)答:小岛两端A 、B 的距离是33.4海里;(2)设BF =x 海里.在Rt △CFB 中,∠CFB =90°,∴CF 2=CB 2-BF 2=502-x 2=2500-x 2,在Rt △CFE 中,∠CFE =90°,∴CF 2+EF 2=CE 2,即222500-(50)6400x x ++=,解得x =14, ∴725BF BC 答:BF BC 值为725. 【考点】本题主要考查了勾股定理的实际应用的知识,在直角三角形中灵活利用勾股定理是解答本题的关键.。
第1章检测卷勾股定理(时间:100分钟满分:120分)题号一二三总分得分一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是 ( )A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a²=c²−b²D. a:b:c=3:4:62.下列各组数中,不能作直角三角形三边长的是 ( )A.3,4,5B.5,12,13C.7,24,25D.7,9,133.若直角三角形的三边长为6,8,m,则m²的值为 ( )A.10B.100C.25D.100 或284.如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为( )A.13B.14C.15D.165.将一根长为25 cm的筷子置于底面直径为5cm,高为12 cm的圆柱形水杯中,设筷子露在杯子外的长为h cm,则 h的取值范围是 ( )A.12≤h≤13B.11≤h≤12C.11≤h≤13D.10≤h≤126.如图,高速公路上有A,B两点相距10km,点 C,D 为两村庄,已知DA=4km,CB=6km. DA⊥AB于点A,CB ⊥AB于点B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,则EA的长是( )A. 4kmB. 5kmC.6kmD.7 km7.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草( )A.1B.2C.3D.48.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为 ( )A.0.7 米B.1.5米C.2.2 米D.2.4米9.在我国古代数学著作《九章算术》的第九章《勾股》中记载了这样的一个问题:“今天有开门去阔(kǔn)一尺,不合二寸,问门广几何?”意思是:如图,推开两扇门(AD 和BC),门边缘 D,C 两点到门槛AB的距离是1 尺(1尺=10寸),两扇门的间隙CD为2寸,那么门的宽度(两扇门的宽度和)AB为 ( )A.101 寸B.100寸C.52寸D.96寸10.如图,圆柱形容器高为18 cm,底面周长为24 cm,在杯内壁离杯底4 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B 处的最短距离为( )A.13cmB.12 cmC.16 cmD.20cm二、填空题(每小题3分,共15 分)11.三个正方形如图摆放,其中两个正方形的面积分别为S₁=25,S₂=144,则第三个正方形的面积为S₃=.12.如图,∠C=90°,AB=12,BC=3,CD=4,AD=13,则∠ABD=.13.一直角三角形的两边长分别为4和5,明明以第三边为正方形的一边,画了个正方形,则明明画的这个正方形的面积等于 .14.如图,每个小正方形的边长都为1,则△ABC的三边长a,b,c的大小关系是 .(用“>”连接)15.如图为一个三级台阶,每一级台阶的长、宽、高分别是50cm,30cm,10cm,A 和B是这个台阶的两个相对的端点,A点上有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A点出发,沿着台阶面爬到 B 点,最短路线的长是 cm.三、解答题(本大题共8个小题,共75分)16.(8分)有一朵荷花,花朵高出水面1尺,一阵大风把它吹歪,使花朵刚好落在水面上,此时花朵离原位置的水平距离为3尺,此水池的水深有多少尺?17.(8分)如图所示的一块草坪,已知AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块草坪的面积.18.(8 分)如图,在长方形ABCD 中,AB=3cm,AD=9cm,,将此长方形折叠,使点 B 与点 D 重合,折痕为 EF,求△ABE的面积.19.(9 分)如图,在△ABC中,D 是BC 上一点,若AB=10,BD=6,AD=8,AC=17.(1)求 DC 的长;(2)求△ABC的面积.20.(9分)如图,长方体中AB=BB′=2,AD=3,,一只蚂蚁从A点出发,在长方体表面爬到C′点,求蚂蚁怎样走最短,最短路径是多少.21.(10分)如图,牧童在A 处放羊,其家在B 处,A,B 到河岸的距离分别为AC=400m,BD=200m,C,D间的距离为800 m,牧童从A处把羊牵到河边饮水后再回家,试问:羊在何处饮水所走路程最短?在图中画出最短路径并求出最短路径的长度是多少.22.(11 分)如图,在△ABC中,∠C=90°,AB=5cm,BC=3cm..若点 P 从点 A出发,以每秒2cm的速度沿A→C→B→A运动,设运动时间为ts(t⟩0).(1)当点P在AC上,且满足.PA=PB时,求t的值;(2)若点 P 恰好在∠BAC的平分线上,求t的值.23.(12分)勾股定理神秘而美妙,它的证法多样,其中的巧妙各有不同,其中的“面积法”给了小聪灵感,他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明勾股定理.下面是小聪利用图1 证明勾股定理的过程.将两个全等的直角三角形按图1所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².解:连接DB,过点D作DF⊥BC,,交 BC的延长线点于点 F,则DF=EC=b−a.因为S四边形ADCB =SACD+SABC=12b2+12ab,S四边形ADCB =SABD+SDCB=12c2+12a(b−a).所以12b2+12ab=12c2+12a(b−a).所以a²+b²=c².请参照上述方法,回答下面的问题.将两个全等的直角三角形按图2所示的方式摆放,其中∠DAB=90°.试说明:a²+b²=c².第1章检测卷勾股定理1. D2. D3. D4. B5. A6. C7. D8. C9. A 10. D 11.16912.90° 13.41或9 14. c>a>b 1 5.13016.解:设水深x尺,那么荷花径的长为(x+1)尺.由勾股定理得x²+3²=(x+1)².解得x=4.答:水池的水深有4 尺.17.解:如图,连接AC,则在Rt△ADC中,AC²=AD²+CD²=12²+9²=225,所以AC=15.在△ABC中,.AB²=1521.因为AC²+BC²=15²+36²=1521,所以AB²=AC²+BC².所以△ABC是直角三角形,∠ACB=90°.所以SABC −SAcD=12AC⋅BC−12AD⋅CD=12×15×36−12×12×9=270-54=216(m²).答:这块草坪的面积是216平方米.18.解:因为四边形ABCD 是长方形,所以∠A=90°.设BE=x cm.由折叠的性质可得DE=BE=x cm.所以AE=AD-DE=(9-x) cm.在Rt△ABE中,BE²=AE²+AB²,所以x²=(9−x)²+3².解得x=5.所以DE=BE=5cm,AE=4 cm.所以SABE =12AB⋅AE=12×3×4=6(cm2).19.解:(1)因为在△ABD中,.AB=10,BD=6,AD=8,所以AB²=100,BD²+AD²=36+64=100.所以AB²=BD²+AD².所以△ABD是直角三角形.所以AD⊥BC,即∠ADC=90°.在Rt△ADC中,AD=8,AC=17,由勾股定理得DC²=17²−8²=225,所以DC=15.(2)SABC =12AD⋅BC=12AD⋅(BD+DC)=84.20.解:①如图1,把长方体沿.A→A′→D′→C′→C→D→A剪开,则成长方形ACC'A',宽为AA′=BB′=2,长为AD+DC=AD+AB=5.连接AC',则点A,C,C'构成直角三角形,由勾股定理得AC′²= (AD+DC)²+DD′²=5²+2²=29.②如图2,把长方体沿. A→A ′→B ′→C ′→D ′→D→A 剪开,则成长方形ADC'B',宽为AD=3,长为 DD ′+D ′C ′=BB ′+AB =4.连接AC',则点A,D,C'构成直角三角形,由勾股定理得 AC ′²=AD²+(DD ′+D ′C ′)=3²+4²=25.因为25<29,所以最短路径是5.21.解:作点 B 关于 CD 的对称点 B',连接AB'交 CD 于点 P,连接PB,此时PA+PB 的值最小,最小值为AB'的长.过点 A 作AE⊥B'B 交B'B 的延长线于点 E.在 Rt△AED'中,因为AE=CD=800 m,B'E=AC +B'D =AC +BD=400+200=600(m),所以 AB ′²=AE²+B ′E²=800²+600².所以 AB ′=1000m.即最短路程的长度是1 000 m.22.解:(1)因为AB=5cm,BC =3cm,∠C=90°,所以由勾股定理得 AC²=AB²−BC²=5²−3²=16,所以 A C=4 cm.当PA=PB =2t cm 时,PC=(4-2t) cm.在 Rt△PCB 中,由勾股定理得 PC²+BC²=PB².即 (4−2t )²+3²=(2t )².解得 t =2516.所以PA=PB 时,t 的值为 2516.(2)当点 P 在∠BAC 的平分线上时,如图,过点 P 作 PE⊥AB 于点 E.此时BP=(7-2t) cm,PE=PC=(2t-4) cm,BE=5-4=1(cm),其中0<t<3.5.在 Rt△BEP 中,由勾股定理得 PE²+BE²=BP².即 (2t−4)²+1²=(7−2t )²,解得 t =83.当t=6时,点P 与点A 重合,也符合条件.所以点 P 恰好在∠BAC 的平分线上时,t 的值为 83或6.23.解:连接BD,过点B 作BF⊥DE,交DE 的延长线于点 F,易知BF=b-a.因为S CBED =S ABC +S ABD +S BDE =12ab +12c 2+ 12a (b−a ),S ACBED =S ACBE +S ADE =12b (a +b )+12ab,所以12ab +12c 2+12a (b−a )=12b (a +b )+12ab.所以 a²+b²=c².。
北师大版数学八年级上册第一章勾股定理专项练习(含答案)练习一1. 如图字母B 所代表的正方形的面积是 ( ) A. 12 B. 13 C. 144 D. 1942.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远 的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和 岸边的水平刚好相齐,河水的深度为( ). A.2m B.2.5cm C.2.25m D.3m3.△ABC 中,若AB=15,AC=13,高AD=12,则△A BC 的周长是( ) A.42 B.32 C.42或32 D.37或334、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一 个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )A 、5B 、25C 、7D 、155. 直角三角形的两条直角边长为a,b,斜边上的高为h,则下列各式中总能成立的是 ( )A. ab=h 2B. a 2+b 2=2h 2C. a 1+b 1=h 1D. 21a +21b =21h6.已知,如图,在矩形ABCD 中,P 是边AD 上的动点,AC PE ⊥于E ,BD PF ⊥于F ,如果AB=3,AD=4,那么( ) A.512=+PF PE ; B. 512<PF PE +<513; C. 5=+PF PE D. 3<PF PE +<47.(1)在Rt△ABC 中,∠C=90°.①若AB=41,AC=9,则BC=_______;②若AC=1.5,BC=2,则AB=______,△ABC 的面积为________.8.在布置新年联欢会的会场时,小虎准备把同学们做的拉花用上,•他搬来了一架高为2.5米的梯子,要想把拉花挂在高2.4米的墙上,•小虎应把梯子的底端放在距离墙________米处.9.在△ABC中,∠C=900,,BC=60cm,CA=80cm,一只蜗牛从C 点出发,以每分20cm 的 速度沿CA-AB-BC 的路径再回到C 点,需要______分的时间.10.如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm 、3dm 、2dm , A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的 食物,则蚂蚁沿着台阶面爬到B 点的最短路程是_________B16925第6题11.已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0, 则第三边长为______.12.如图7所示,Rt△ABC 中,BC 是斜边,将△A BP 绕点A 逆时针旋转后,能与 △ACP′重合,如果AP=3,你能求出PP′的长吗?13.如图4为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的 长度至少需要多少米?14.如图2,小李准备建一个蔬菜大棚,棚宽4米,高3米,长20米,棚的斜面 用塑料布遮盖,不计墙的厚度,请计算阳光透过的最大面积15.如图,每个小方格的边长都为1.求图中格点四边形ABCD 的面积.CBA D16.如图所示,有一条小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,•则这条小路的面积是多少?5米3米317、4个全等的直角三角形的直角边分别为a 、b ,斜边为c .现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中 的道理吗?请试一试.b18. 如图3,长方体的长BE=15cm,宽AB=10cm,高AD=20cm,点M 在CH 上,且CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M,需要爬行的最短距离是多少?19.《中华人民共和国道路交通安全法》规定:小汽车在城市街路上行驶速度不得超过70km/h .如图,一辆小汽车在一条城市道路上直道行驶,某一时刻 刚好行驶到路对面车速检测仪的正前方30m 处,过了2s •后,测得小汽车 与车速检测仪间距离为50m .这辆小汽车超速了吗?小汽车观察点小汽车C A20.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,长BC 为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想 一想,此时EC 有多长?BCB EF21.有一块三角形的花圃ABC,现可直接测得∠A=30,AC=40m,BC=25m,请你求出这 块花圃的面积.22.如图所示,△AB C 中,∠ACB=90°,CD⊥AB 于D,且AB+BC=18cm,若要求出CD •和AC 的长,还需要添加什么条件?DCA23.四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11 a ,按上述方法所作的正方形的边长依次为n a a a a ,,,,432 ,请求出432,,a a a 的值;⑵根据 以上规律写出n a 的表达式.24.已知:如图,在Rt△ABC 中,∠C=90°,∠ABC=60°,BC 长为3 p ,BB l 是∠ABC 的平分线交AC 于点B 1,过B 1作B 1B 2⊥AB 于点B 2,过B 2作B 2B 3∥BC 交AC 于点B 3,过B 3作B 3B 4⊥AB 于点B 4,过B 4作B 4B 5∥BC 交AC 于点B 5,过B 5作B 5 B 6⊥AB 于点B 6,…,无限重复以上操作.设b 0=BB l ,b 1=B 1B 2,b 2=B 2B 3,b 3=B 3B 4,b 4=B 4B 5,…,bn=BnBn +1,….(1)求b 0,b 3的长;(2)求bn 的表达式(用含p 与n 的式子表示,其中n 是正整数)25、已知:在Rt△ABC 中,∠C=900,∠A、∠B、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l . ⑴填表:⑵如果a +b -c =m ,观察上表猜想:S l=__________(用含有m 的代数式表示). ⑶证明⑵中的结论.26.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD 就是一个“格点四边形”.(1)求图(一)中四边形ABCD 的面积;(2)在图(二)方格纸中画一个格点三角形EFG ,使△EFG 的面积等于四边形ABCD 的面积且为轴对称图形.DCBA图(一) 图(二)练习二1. 有五组数:①25,7,24;②16,20,12;③9,40,41;④4,6,8;⑤32,42,52, 以各组数为边长,能组成直角三角形的个数为( ). A.1 B.2 C.3 D.42.三角形的三边长分别为6,8,10,它的最短边上的高为( ) A.6 B.4.5 C.2.4 D.83.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成 直角三角形的有( )A 、5组;B 、4组;C 、3组;D 、2组4.在同一平面上把三边BC=3,AC=4、AB=5的三角形沿最长边AB 翻折后得到 △ABC′,则CC′的长等于( ) A 、125 ; B 、135 ; C 、56 ; D 、2455、下列说法中, 不正确的是 ( )A. 三个角的度数之比为1:3:4的三角形是直角三角形B. 三个角的度数之比为3:4:5的三角形是直角三角形C. 三边长度之比为3:4:5的三角形是直角三角形D. 三边长度之比为5:12:13的三角形是直角三角形6、如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能 构成一个直角三角形三边的线段是( )A. CD 、EF 、GHB. AB 、EF 、GHC. AB 、CD 、GHD. AB 、CD 、EF7.如图4所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D 的面积的和是_______cm 2.7cmDCB A8.已知2条线段的长分别为3cm 和4cm ,当第三条线段的长为_______cm 时,这3条线段能组成一个直角三角形.9、在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的长方形的面积是________.(第6题)10. 传说,古埃及人曾用"拉绳”的方法画直角,现有一根长24厘米的绳子,请你利用它拉出一个周长为24厘米的直角三角形,那么你拉出的直角三角形三边的长度分别为_______厘米,______厘米,________厘米,其中的道理是______________________11.小芳家门前有一个花圃,呈三角形状,小芳想知道该三角形是不是一个直角三角形,请问她可以用什么办法来作出判断?你能帮她设计一种方法吗?12.给出一组式子:32+42=52,82+62=102,152+82=172,242+102=262……(1)你能发现上式中的规律吗?(2)请你接着写出第五个式子.13.观察下列各式,你有什么发现?32=4+5,52=12+13,72=24+25,92=40+41……这到底是巧合,还是有什么规律蕴涵其中呢?请你结合有关知识进行研究.如果132=b+c,则b、c的值可能是多少14.如图,是一块由边长为20cm的正方形地砖铺设的广场,一只鸽子落在点A 处,它想先后吃到小朋友撒在B、C处的鸟食,则鸽子至少需要走多远的路程?15.如图,在△ABC 中,AB=AC=13,点D 在BC 上,AD=12,BD=5,试问AD 平分∠BAC 吗?为什么?CAB16.如图,是一个四边形的边角料,东东通过测量,获得了如下数据:AB=3cm ,BC=12cm ,CD=13cm ,AD=4cm ,东东由此认为这个四边形中∠A 恰好是直角, 你认为东东的判断正确吗?如果你认为他正确,请说明其中的理由;如果 你认为他不正确,那你认为需要什么条件,才可以判断∠A 是直角?DCA B17. 学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a 2+b 2=c 2, 或许其他的三角形三边也有这样的关系”.让我们来做一个实验!(1)画出任意一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=______mm;b=_______mm;较长的一条边长c=_______mm. 比较a 2+b 2=______c 2(填写’’>’’ , ”<’’, 或’’=’’); (2)画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a=______mm;b=_______mm;较长的一条边长c=_______mm.比较a 2+b 2=______c 2(填写’’>’’ , ”<’’, 或’’=’’); (3)根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:_________________. 对你猜想22a b 与2c 的两个关系,利用勾股定理证明你的结论.(1)B A(2)CB A(3)CBA18.如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条? (2)试比较立体图中BAC ∠与平面展开图中B A C '''∠的大小关系?AC B 第17题图(1) 第17题图(2) A ' C 'B ' 第17题图(1)A ' C 'B 'D ' 第17题图(2) A ' C 'B '练习一答案1.C2.A3.C4.C5.D6.A7.(1)①40;②2.5;1.58.0.7 9. 12 10.25dm11.22或13或5 12.PP′=3. 13. 7米 14. 100平方米 15.12.516.=∴EC=84-80=4(m),∴S 阴=4×60=240(m 2).17.由图可知,边长为a 、b 的正方形的面积之和等于边长为c 的正方形的面积18. 25cm19.超速,经计算的小汽车的速度为72km/h20.由条件可以推得FC=4,利用勾股定理可以得到EC=3cm .21.提示:分锐角、钝角三角形两种情况:(1)S △ABC 2;(2)S △ABC 2.22.提示:可给特殊角∠A=∠BCD=30°,也可给出边的关系,如BC:AB=1:2等等. 23解:⑴11=a ;211222=+=a ()()222223=+=a ;2222224=+=a⑵12-=n n a∵12111==-a ;22122==-a ;22133==-a222144==-a ∴12-=n n a24.(1)b0=2p在Rt△B 1B 2中,b 1=P .同理.b 2=3 p/2b 3=3p/4(2)同(1)得:b 4=(3 /2)2p .∴bn=(3 /2)n-1(n 是正整数).25、⑴填表:⑵S l =m 4⑶证明:∵a+b -c =m ,∴a+b =m +c , ∴a 2+2ab +b 2=m 2+c 2+2mc .∵a 2+b 2=c 2,∴2ab=m 2+2mc∴ab 2=14m(m +2c) ∴S l =12ab a +b +c =14m(m +2c)m +c +c =m 426解:(1)方法一:S =12×6×4 =12方法二:S =4×6-12×2×1-12×4×1-12×3×4-12×2×3=12 (2)(只要画出一种即可)练习二答案1.C2.D3.B4.D5.B6.B7.49 8.5cmcm 9. 108 10. 6,6,10 勾股定理的逆定理11.方法不惟一.如:•分别测量三角形三边的长a 、b 、c (a≤b≤c),然后计算是否有a 2+b 2=c 2,确定其形状12.(1)(n 2-1)2+(2n)2=(n 2+1)2(n>1).(2)352+122=372.13.•其中的一个规律为(2n+1)=2n (n+1)+[2n (n+1)+1].当n=6时,2n (n+1)、[2n (n+1)+1]的值分别是84、•8514.AB=5cm ,BC=13cm .•所以其最短路程为18cm15.AD 平分∠BAC.因为BD 2+AD 2=AB 2,所以AD⊥BC,又AB=AC ,所以结论成立16.不正确.增加的条件如:连接BD ,测得BD=5cm .17.解:若△ABC 是锐角三角形,则有222a b c +>若△ABC 是钝角三角形,C ∠为钝角,则有222a b c +<.当△ABC 是锐角三角形时,a cb DC BA证明:过点A 作AD ⊥BC ,垂足为D ,设CD 为x ,则有BD =a x -根据勾股定理,得22222()b x AD c a x -==--即222222b x c a ax x -=-+-.∴2222a b c ax +=+∵0,0a x >>,∴20ax >.∴222a b c +>.当△ABC 是钝角三角形时,a cb D C BA证明:过B 作BD ⊥AC ,交AC 的延长线于D .设CD 为x ,则有222BD a x =-根据勾股定理,得2222()b x a x c ++-=.即2222a b bx c ++=.∵0,0b x >>,∴20bx >,∴222a b c +<.18解:(1如图(1)中的A C '',在A C D '''Rt △中13C D A D ''''==,,由勾股定理得:A C ''∴==答:这样的线段可画4条(另三条用虚线标出).(2)立体图中BAC ∠为平面等腰直角三角形的一锐角, 45BAC ∴∠=.在平面展开图中,连接线段B C '',由勾股定理可得:A B B C ''''==又222A B B C A C ''''''+=,由勾股定理的逆定理可得A B C '''△为直角三角形. 又A B B C ''''=,A B C '''∴△为等腰直角三角形.45B A C '''∴∠=. 所以BAC ∠与B A C '''∠相等. D '。
八年级数学上册《第一章勾股定理的应用》练习题-带答案(北师大版)一、选择题1.一艘轮船以16海里∕时的速度从港口A出发向东北方向航行,同时另一艘轮船以12海里∕时从港口A出发向东南方向航行.离开港口1小时后,两船相距( )A.12海里B.16海里C.20海里D.28海里2.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是( )A.6mB.8mC.10mD.12m3.一只蚂蚁沿直角三角形的边长爬行一周需2秒,如果将直角三角形的边长扩大1倍,那么这只蚂蚁再沿边长爬行一周需( ).A.6秒B.5秒C.4秒D.3秒4.如图,有一个由传感器控制的灯A装在门上方离地高4.5 m的墙上,任何东西只要移至距该灯5 m及5 m以内时,灯就会自动发光,请问一个身高1.5 m的学生要走到离墙多远的地方灯刚好发光?( )A.4 mB.3 mC.5 mD.7 m5.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )A.8米B.10米C.12米D.14米6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )A.5≤h≤12B.5≤h≤24C.11≤h≤12D.12≤h≤247.如图,A,B两个村庄分别在两条公路MN和EF的边上,且MN∥EF,某施工队在A,B,C三个村之间修了三条笔直的路.若∠MAB=65°,∠CBE=25°,AB=160km,BC=120km,则A,C 两村之间的距离为( )A.250kmB.240kmC.200kmD.180km8.如图,O是Rt△ABC的角平分线的交点,OD∥AC,AC=5,BC=12,OD等于( )A.2B.3C.1D.1二、填空题9.如图,两阴影部分都是正方形,如果两正方形面积之比为1:2,那么,两正方形的面积分别为.10.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.12.如图所示,由四个全等的直角三角形拼成的图中,直角边长分别为2,3,则大正方形的面积为________,小正方形的面积为________.13.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.14.等腰△ABC的底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以0.25cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,点P运动的时间应为秒.三、解答题15.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米,请算出旗杆的高度.16.如图①,一架梯子AB长2.5m,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5m,梯子滑动后停在DE的位置上.如图②所示,测得BD=0.5m,求梯子顶端A下滑的距离.17.如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶50000米.飞机每小时飞行多少千米?18.如图所示,某公路一侧有A、B两个送奶站,C为公路上一供奶站,CA和CB为供奶路线,现已测得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人从C处出发,沿公路边向右行走,速度为2.5km/h,问:多长时间后这个人距B送奶站最近?19.如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?20.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.C.2.D.3.C4.A.5.B6.C.7.C.8.A.9.答案为:12,24.10.答案为:8.11.答案为:10.12.答案为:13,1.13.答案为:17m.14.答案为:7或25.15.解:设旗杆的高度为x米,根据勾股定理得x2+52=(x+1)2解得:x=12;答:旗杆的高度为12米.16.解:在Rt△ABC中,AB=2.5m,BC=1.5m故AC=2m在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)=2m 故EC=1.5m故AE=AC﹣CE=2﹣1.5=0.5m答:梯子顶端A下落了0.5m.17.解:如图,在Rt△ABC中,根据勾股定理可知BC=3000(米).3000÷20=150米/秒=540千米/小时.所以飞机每小时飞行540千米.18.解:过B作BD⊥公路于D.∵82+152=172∴AC2+BC2=AB2∴△ABC是直角三角形,且∠ACB=90°.∵∠1=30°∴∠BCD=180°﹣90°﹣30°=60°.在Rt△BCD中∵∠BCD=60°∴∠CBD=30°∴CD=0.5BC=0.5×15=7.5(km).∵7.5÷2.5=3(h)∴3小时后这人距离B送奶站最近.19.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等即BC=CA设AC为x,则OC=45﹣x由勾股定理可知OB2+OC2=BC2又∵OA=45,OB=15把它代入关系式152+(45﹣x)2=x2解方程得出x=25(cm).答:如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是25cm.20.解:(1)设存在点P,使得PA=PB此时PA=PB=2t,PC=4﹣2t在Rt△PCB中,PC2+CB2=PB2即:(4﹣2t)2+32=(2t)2解得:t =∴当t =时,PA =PB ;(2)当点P 在∠BAC 的平分线上时,如图1,过点P 作PE ⊥AB 于点E 此时BP =7﹣2t ,PE =PC =2t ﹣4,BE =5﹣4=1在Rt △BEP 中,PE 2+BE 2=BP 2即:(2t ﹣4)2+12=(7﹣2t)2解得:t =83∴当t =83时,P 在△ABC 的角平分线上.。
八年级数学第一章《勾股定理》练习题
一.选择题(12×3′=36′)
1.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
2.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( )
A 、a=1.5,b=2,c=3
B 、a=7,b=24,c=25
C 、a=6,b=8,c=10
D 、a=3,b=4,c=5
3.若线段a ,b ,c 组成Rt △,则它们的比为( )
A 、2∶3∶4
B 、3∶4∶6
C 、5∶12∶13
D 、4∶6∶7
4.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )
A 、121
B 、120
C 、132
D 、不能确定
5.如果Rt △两直角边的比为5∶12,则斜边上的高与斜边的比为( )
A 、60∶13
B 、5∶12
C 、12∶13
D 、60∶169
6.如果Rt △的两直角边长分别为n 2-1,2n (n>1),那么它的斜边长是( )
A 、2n
B 、n+1
C 、n 2-1
D 、n 2+1
7.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )
A 、24cm 2
B 、36cm 2
C 、48cm 2
D 、60cm 2
8.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )
A 、56
B 、48
C 、40
D 、32
9.三角形的三边长为(a+b )2=c 2+2ab,则这个三角形是( )
A. 等边三角形;
B. 钝角三角形;
C. 直角三角形;
D. 锐角三角形.
10.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( )
A 、450a 元
B 、225a 元
C 、150a 元
D 、300a 元
11.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )
A 、6cm 2
B 、8cm 2
C 、10cm 2
D 、12cm 2
12.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )
A 、25海里
B 、30海里
C 、35海里
D 、40海里
二.填空题(8×3′=24′)
13.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt△ABC =________。
14.在由小方格组成的网格中,用数格子的方法判断出给定的钝角三角形和锐角三角形的三边不满足两边平方和等于第三边的平方,由此可想到________________________________________________。
15.直角三角形两直角边长分别为5和12,则它斜边上的高为__________。
16.在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已
150° 20m 30m 第10题图 第11题图 北 南 A 东 第12题图
知红莲移动的水平距离为2米,问这里水深是________m 。
17.已知两条线段的长为5c m 和12c m,当第三条线段的长为 c m 时,这三条线段能组成一个直角三角形.
18.已知:如图,△ABC 中,∠C = 90°,点O 为△ABC 的三条角平分线的交点,OD ⊥BC ,OE ⊥AC ,OF ⊥AB ,点D 、E 、F 分别是垂足,且BC = 8cm ,CA = 6cm ,则点O 到三边AB ,AC 和BC 的距离分别等于 cm
19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为
7cm ,则正方形A ,B ,C ,D 2。
20.在一棵树的1020米处的池塘的A 处。
另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_________________________米。
三.解答题(共60分)
21.(7分)小明的叔叔家承包了一个矩形鱼池,已知其面积为48m 2,其对角线长为10m ,为建栅栏,要计
算这个矩形鱼池的周长,你能帮助小明算一算吗?
22.(7分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
C O A B
D
E
F 第18题图 A 第20题图
A D
E B C 第22题图
23.(7分)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。
24.(7分)已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°,求四边形ABCD 的面积。
25.(8分)已知,如图,在Rt △ABC 中,∠C=90°,∠1=∠2,CD=1.5,BD=2.5,求AC 的长.
26.(8分)如图,在边长为c 的正方形中,有四个斜边为c 的全等直角三角形,已知其直角边长为a ,b.
A B C D
第24题图
C D A B 第25题图
利用这个图试说明勾股定理?
第26题图
27.(8分)已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。
28.(8分)如图,在△ABC中,AB=AC,P为BC上任意一点,请用学过的知识说明:AB2-AP2=PB×PC。
A
B C
第28题图。