八年级数学下册暑假培优提高作业(8)不等式与不等式组 人教新课标版
- 格式:doc
- 大小:104.00 KB
- 文档页数:6
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题16.1专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•南湖区校级期中)要使二次根式有意义,x的值可以是( )A.4B.2C.1D.0【分析】根据二次根式有意义的条件可得x﹣3≥0,再解即可.【解答】解:要使二次根式有意义,则x﹣3≥0,解得:x≥3,故x的值可以是4.故选:A.2.(2022秋•北碚区校级期中)要使式子有意义,则a的取值范围是( )A.a≠0B.a≥﹣2C.a>﹣2且a≠0D.a≥﹣2且a≠0【分析】根据分子的被开方数不能为负数,分母不能为零,可得答案.【解答】解:由题意得,a+2≥0且a≠0,即a≥﹣2且a≠0,故选:D.3.(2022秋•惠山区期中)下列各式中,一定是二次根式的是( )A.B.C.D.【分析】根据二次根式的定义进行判断.【解答】解:A.被开方数为负数,不是二次根式,故此选项不合题意;B.根指数是3,不是二次根式,故此选项不合题意;C.a﹣1的值不确定,被开方数的符号也不确定,不能确定是二次根式,故此选项不合题意;D.被开方数恒为正数,是二次根式,故此选项符合题意.4.(2022秋•奉贤区期中)使二次根式有意义的x的取值范围是( )A.B.C.D.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:2x﹣1>0,解得:x>,故选:B.5.(2022秋•南湖区校级期中)已知y=++4,y x的平方根是( )A.16B.8C.±4D.±2【分析】根据二次根式有意义的条件可得,据此可得x的值,进而得出y的值,再代入所求式子计算即可.【解答】解:∵y=++4,∴,解得x=2,∴y=4,∴y x=42=16.∴y x的平方根是±4.故选:C.6.(2022秋•通州区期中)已知n是一个正整数,且是整数,那么n的最小值是( )A.6B.36C.3D.2【分析】先把=2,从而判断出6n是完全平方数,所以得出答案正整数n的最小值是6.【解答】解:=2,则6n是完全平方数,∴正整数n的最小值是6,故选:A.7.(2022秋•新蔡县校级月考)已知x、y为实数,且y=+1,则x+y的值是( )A.2022B.2023C.2024D.2025【分析】根据二次根式有意义的条件:被开方数是非负数求出x的值,代入求得y的值,代入代数式求【解答】解:∵x﹣2023≥0,2023﹣x≥0,∴x﹣2023=0,∴x=2023,∴y=1,∴x+y=2023+1=2024,故选:C.8.(2022春•东平县期中)已知a满足|2018﹣a|+=a,则a﹣20182=( )A.0B.1C.2018D.2019【分析】根据二次根式的被开方数是非负数求出a的取值范围,化简绝对值即可得出答案.【解答】解:根据题意得:a﹣2019≥0,∴a≥2019,∴原式可变形为:a﹣2018+=a,∴=2018,∴a﹣2019=20182,∴a﹣20182=2019.故选:D.9.已知a为实数,若在实数范围内有意义,那么等于( )A.a B.﹣a C.﹣1D.0【分析】根据非负数的性质与被开方数大于等于0列式计算即可得解.【解答】解:根据非负数的性质a2≥0,所以,﹣a2≤0,又∵﹣a2≥0,∴﹣a2=0,∴=0.故选:D.10.(2022春•荣昌区校级期末)若二次根式有意义,且关于分式方程﹣3=有正整数解,则符合条件的整数m的和是( )A.5B.3C.﹣2D.0【分析】根据二次根式有意义,可得m≤4,解出关于x的分式方程﹣3=的解为x=,解为正整数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.【解答】解:去分母得,2﹣3(x﹣1)=﹣m,解得x=,∵关于x的分式方程﹣3=有正整数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣2∴m≠﹣2,∵有意义,∴4﹣m≥0,∴m≤4,因此﹣5<m≤4且m≠﹣2,∵m为整数且关于x的分式方程﹣3=有正整数解,∴m可以为1,4,其和为5.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•南安市期中)若二次根式在实数范围内有意义,则x的取值范围是 x≤4 .【分析】根据二次根式的被开方数是非负数列出不等式,解不等式得到答案.【解答】解:由题意得:12﹣3x≥0,解得x≤4,故答案为:x≤4.12.(2022秋•罗湖区校级期中)若在实数范围内有意义,则x的取值范围是 x<4 .【分析】根据二次根式有意义的条件和分母不为0,即可求出x的取值范围.【解答】解:根据题意得:4﹣x>0,故答案为:x<4.13.(2022秋•海曙区校级期中)若,则x y= .【分析】直接利用二次根式有意义的条件得出x,y的值,进而代入得出答案.【解答】解:∵,∴2x﹣3≥0且3﹣2x≥0,解得:x=,则y=2,则x y=()2=.故答案为:.14.(2022秋•卧龙区校级月考)若y=+﹣3,则点P(x,y)在第 四 象限.【分析】根据二次根式的被开方数是非负数,求出x的值,进而得到y的值,再根据点的坐标特征解答即可.【解答】解:根据题意,得x﹣4≥0且4﹣x≥0,.所以x=4.所以y=﹣3.所以P(4,﹣3),位于第四象限.故答案为:四.15.(2022春•东莞市校级期中)若是整数,则满足条件的最小正整数n的值为 6 .【分析】24=22×6,所以要想能开平方,必须再乘一个6.【解答】解:=2,∵是整数,∴满足条件的最小正整数n=6.故答案为:6.16.(2022春•东平县期中)已知y=++2022,则x2+y﹣3的值为 2023 .【分析】根据二次根式有意义的条件得到x2=4,进而求出y的值,代入代数式求值即可.【解答】解:根据题意得:x2﹣4≥0,4﹣x2≥0,∴y=2022,∴原式=4+2022﹣3=2023.故答案为:2023.17.(2022•沙坪坝区校级开学)已知a,b分别为等腰三角形的两条边长,且a,b满足,则该三角形的周长为 10 .【分析】根据题意求出a、b的值,根据等腰三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,a﹣2≥0,2﹣a≥0,解得a≥2,a≤2,∴a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴该三角形的三边分别为2、4、4,∴此三角形的周长为2+4+4=10.18.(2021春•南通期中)实数a、b在数轴上对应点的位置如图所示,,b为整数,则a+b= ﹣2 .【分析】通过识图可得a<b<,从而利用二次根式的性质进行化简.【解答】解:∵a<b<,∵|b﹣2|=b﹣2,∵a+4≥0,b﹣2≥0,∴b≥2,∵b<,∴2≤b<,b为整数,∴b=2,将b=2代入|b﹣2|=b﹣2,∴a+b=﹣4+2=﹣2,故答案为:﹣2.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2021春•新泰市期中)(1)已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,求a+2b的平方根;(2)若x,y都是实数,且y=+8,求x+3y的立方根.【分析】(1)根据平方根的定义求出a、b的值,然后代入a+2b即可求出答案.(2)根据二次根式有意义的条件可求出x与y的值,然后代入原式即可求出答案.【解答】解:(1)由题意可知:2a﹣1=9,3a+b﹣1=16,∴a=5,b=2,∴a+2b=5+4=9,∴9的平方根是±3,即a+2b的平方根为±3.(2)由题意可知:,∴x=3,∴y=8,∴x+3y=3+24=27,∴27的立方根是3,即x+3y的立方根是320.(2019秋•松北区期末)已知a,b分别为等腰三角形的两条边长,且a,b满足b=4++3,求此三角形的周长.【分析】根据题意求出a、b的值,根据三角形的三边关系确定三角形的边长,求出此三角形的周长.【解答】解:由题意得,3a﹣6≥0,2﹣a≥0,解得,a≥2,a≤2,则a=2,则b=4,∵2+2=4,∴2、2、4不能组成三角形,∴此三角形的周长为2+4+4=10.21.(2022秋•济南期中)已知实数a,b,c满足:.(1)a= ﹣3 ;b= 5 ;c= 2 ;(2)求﹣b﹣3a+2c的平方根.【分析】(1)根据二次根式有意义的条件求得b=5,再根据绝对值以及算术平方根的非负性求得a与c.(2)将(1)中a、b与c的值代入,再求得﹣b﹣3a+2c的平方根.【解答】解:(1)由题意得,b﹣5≥0,5﹣b≥0.∴b=5.∴|a+3|+=0.∵|a+3|≥0,,∴a+3=0,c﹣2=0.∴a=﹣3,c=2.故答案为:﹣3;5;2.(2)由(1)得,a=﹣3,b=5,c=2.∴﹣b﹣3a+2c=﹣5+9+4=8.∴﹣b﹣3a+2c的平方根是±=.22.(2022秋•锦江区校级月考)(1)若m﹣2=+,求n m的值;(2)已知有理数a,b,c在数轴上对应位置如图所示:①用“<”或“>”填空:a+c < 0,b﹣c > 0;②化简:|a+c|﹣+.【分析】(1)利用二次根式有意义的条件得到n﹣3≥0且3﹣n≥0,则n=3,所以m﹣2=0,则m=2,然后利用乘方的意义计算n m;(2)①利用数轴表示数的方法进行判断;②根据二次根式的性质和立方根的定义得到原式|=|a+c|﹣|b﹣c|+b+c,再利用①中的结论去绝对值,然后取括号合并即可.【解答】解:(1)根据题意得n﹣3≥0且3﹣n≥0,解得n=3,∴m﹣2=0,解得m=2,∴n m=32=9;(2)①a+c<0,b﹣c>0;故答案为:<,>;②|a+c|﹣+=|a+c|﹣|b﹣c|+b+c=﹣(a+c)﹣(b﹣c)+b+c=﹣a﹣c﹣b+c+b+c=﹣a+c.23.(2022春•定远县期末)在学习了算术平方根和二次根式等内容后,我们知道以下的结论:结论①:若实数a≥0时,=a;结论②:对于任意实数a,=|a|.请根据上面的结论,对下列问题进行探索:(1)若m<2,化简:+|m﹣3|.(2)若=4,|b|=8,且ab>0,求a+b的值.(3)若A=+|1﹣m|有意义,化简A.【分析】(1)先根据二次根式的性质和绝对值进行计算,再算加减即可;(2)先根据二次根式的性质和绝对值求出a、b的值,再求出a+b的值即可;(3)根据二次根式的性质得出m﹣2≥0,求出m≥2,再进行化简即可.【解答】解:(1)分为两种情况:①当m≤﹣3时,+|m﹣3|.=|m+3|+|m﹣3|=﹣m﹣3﹣m+3=﹣2m,②当﹣3<m<2时,+|m﹣3|=|m+3|+|m﹣3|=m+3+3﹣m=6;(2)∵,∴|a|=4,∴a=±4,∵|b|=8,∴b=±8,∵ab>0,∴a=4,b=8或a=﹣4,b=﹣8,当a=4,b=8时,则a+b=4+8=12,当a=﹣4,b=﹣8时,则a+b=﹣4﹣8=﹣12,∴a+b=±12;(3)∵有意义,∴m﹣2≥0,∴m≥2,∴1﹣m<0,∴A=m﹣2+m﹣1=2m﹣3.24.(2022春•天门校级月考)二次根式的双重非负性是指被开方数a≥0,其化简的结果≥0,利用的双重非负性解决以下问题:(1)已知=0,则a+b的值为 ﹣2 ;(2)若x,y为实数,且x2=+9,求x+y的值;(3)已知实数m,n(n≠0)满足|2m﹣4|+|n+2|++4=2m,求m+n的值.【分析】(1)利用非负数的性质,可求a,b的值,从而求得a+b的值为﹣2;(2)利用二次根式有意义的条件,可得y值,进而求x值,最终得x+y的值;(3)是上两个题目的综合运用,利用(1)(2)可出得m+n的值.【解答】解:(1)∵,且,∴a﹣1=0,且3+b=0,∴a=1,b=﹣3,∴a+b=﹣2.(2)∵,∴y﹣5≥0且5﹣y≥0,∴y≥5且y≤5,∴y=5,∴x2=9,∴x=±3,当x=3时,x+y=3+5=8;当x=﹣3时,x+y=﹣3+5=2.(3)∵|2m﹣4|+|n+2|++4=2m,∴(m﹣3)n2≥0,∴m≥3,∴2m﹣4>0,∴|2m﹣4|+|n+2|++4=2m2m﹣4+|n+2|++4=2m∴|n+2|+=0,∵|n+2|≥0,≥0,∴n+2=0,(m﹣3)n2=0,∴n=﹣2,m=3,∴m+n=3﹣2=1.。
【快乐假期】2011年八年级数学暑假培优提高作业及答案【快乐假期】2011年八年级数学暑假培优提高作业3 直线型几何综合题学生姓名家长签字一、学习指引 1.知识要点:三角形及四边形的基本性质,特殊三角形、特殊四边形、全等三角形的判定和性质,轴对称、平移、旋转、相似等变换的性质,一次函数图象和性质。
2.方法指导:(1)解决动态几何型问题的策略:化“动”为“静”――利用运动中特殊点的位置将图形分类;“静”中求“动”――针对各类图形,分别解决动态问题。
(2)解决图形分割问题的思维方式是:从具体问题出发→观察猜想→实验操作→形成方案→严密计算与论证;图形分割问题的解题策略:比较原图形与分割后图形在边、角、面积等方面的变化是解决图形分割问题的着手点;(3)新概念性几何题解题策略:正确理解问题中的“新概念”,然后抓住“新概念”的特征,结合相关的数学知识综合解决问题。
二、典型例题例1.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程之间的函数图象大致是()例2.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm( ),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD 或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N 为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.例3.三张形状、大小完全相同的平行四边形透明纸片,分别放在方格纸中,方格纸中的每个小正方形的边长均为1,并且平行四边形纸片的每个顶点与小正方形的顶点重合(如图1、图2、图3).分别在图1、图2、图3中,经过平行四边形纸片的任意一个顶点画一条裁剪线,沿此裁剪线将平行四边形纸片裁成两部分,并把这两部分重新拼成符合下列要求的几何图形.要求如下:(1)在左边的平行四边形纸片中画一条裁剪线,然后在右边相对应的方格纸中,按实际大小画出所拼成的符合要求的几何图形;(2)裁成的两部分在拼成几何图形时要互不重叠且不留空隙;(3)所画出的几何图形的各顶点必须与小正方形的顶点重合.例4.如图,两个边长分别为4和3的正方形,请用线段将它们进行适当分割,剪拼成一个大正方形,请在下图中分别画出两种不同的拼法,并将剪拼前、后的相同区域用相同数字序号标出.例5.如图,在梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.(1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或CB上时的坐标(用含x的代数式表示,不要求写出x的取值范围);(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半.①试用含x的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如果有可能,求出相应的x的值和P、Q的坐标,如不可能,请说明理由.例6.如图,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm,等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止。
八年级数学暑期培优(二) 一、选择题: 1.要使分式11x +有意义,则x 必须满足的条件是 A .x ≠1 B .x ≠-1 C .x ≠0 D .x >1 2.下列各式化简正确的是 A .13455= B .21233= C .1316224= D .234323= 3.反比例函数1m y x-=的图象在第一、第三象限,则m 可能取的一个值为 A .0 B .1 C .2 D .3 4.若a 、b 为实数,且满足22a b -+-,则b -a 的值为A .2B .0C .-2D .以上都不对5.下列说法中错误的是A .所有的等边三角形都相似B .所有的等腰三角形都相似C .有一对锐角相等的两个直角三角形相似D .全等的三角形一定相似6.若关于x 的方程1011m x x x --=--有增根,则m 的值是 A .-1 B .1 C .2 D .37.下列命题中,真命题是A .四边相等的四边形是正方形B .对角线相等的菱形是正方形C .正方形的两条对角线相等,但不互相垂直平分D .矩形、菱形、正方形都具有“对角线相等”的性质8.已知反比例函数2y x=-,下列结论不正确的是 A .图象经过点(-2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >-1时,y >2 9.某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个.设A 型包装箱每个可以装x 件文具,根据题意列方程为A .108010801215x x =+- B .108010801215x x =-- C .108010801215x x =-+ D .108010801215x x =++ 10.如图,已知AD 为△ABC 的角平分线,DE 23AE EC =AB AC 231325352a b b ÷k y x =1432311x m x x -=+++211a x +=+221112a a a a a ---÷+21133x x x x =+++2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭2ky x =23AB BC =ky x =60kg480kg10cm6cm2cm1cmθθ把小棒依次摆放在两射线A B ,AC 之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A 1A 2为第1根小棒. 数学思考:(1)小棒能无限摆下去吗答: .(填“能”或“不能”)(2)设AA 1=A 1A 2=A 2A 3=1.①θ= 度;②若记小棒A 2n-1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,),求此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).图甲 图乙活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2= AA 1. 数学思考:(3)若已经向右摆放了3根小棒,则1θ= ,2θ= ,3θ= ;(用含θ的式子表示)(4)若只能..摆放4根小棒,求θ的范围.。
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【人教版】专题19.1函数专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•定远县校级月考)球的体积是V,球的半径为R,则V=πR3,其中变量和常量分别是( )A.变量是V,R;常量是,πB.变量是R,π;常量是C.变量是V,R,π;常量是D.变量是V,R3;常量是π【分析】根据常量和变量的概念解答即可.【解答】解:球的体积是V,球的半径为R,则V=πR3,其中变量是V,R;常量是,π故选:A.2.(2022春•沙坪坝区校级月考)在函数中,自变量x的取值范围是( )A.x>2B.x≥2C.x<2D.x≠2【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:x﹣2>0,解得:x>2,故选:A.3.(2022春•封丘县月考)一本数学错题笔记本的售价为6元,若小青买x本共付y元,则x和6分别是( )A.常量,变量B.变量,常量C.常量,常量D.变量,变量【分析】根据变量、常量的定义,结合具体的问题情况进行判断即可.【解答】解:小青购买错题本的本数x是变化的,因此x是变量,而单价为每本6元,是不变的量,因此6是常量,故选:B.4.(2022秋•蜀山区校级月考)下列各图象中,y不是x的函数有( )A .B .C .D .【分析】根据函数的定义解决此题.【解答】解:A .选项中的图象,在定义域内,任意x 值,总有一个y 值与之对应,那么y 是x 的函数,故A 不符合题意.B .该选项中的图象,在定义域内,任意x 值,总有一个y 值与之对应,那么y 是x 的函数,故B 不符合题意.C .该选项中的图象,在定义域内,任意x 值,总有一个y 值与之对应,那么y 是x 的函数,故C 不符合题意.D .该选项中的图象,在定义域内,存在x 值,存在两个y 值与之对应,那么y 不是x 的函数,故D 符合题意.故选:D .5.(2021秋•建邺区期末)如果某函数的图象如图所示,那么y 随着x 的增大而( )A .增大B .减小C .先减小后增大D .先增大后减小【分析】根据函数图象可以得到y 随x 的增大如何变化,本题得以解决.【解答】解:由函数图象可得,y 随x 的增大而增大,故选:A .6.(2022春•观山湖区期中)骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,如图所示,下列说法错误的是( )A.一天中,8时到24时骆驼的体温的变化范围是37℃到40℃B.点A表示的是12时骆驼的温度是39℃C.0时到16时骆驼体温一直上升D.骆驼第一天12时体温与次日12时和20时的温度相同【分析】结合图象逐一判断即可.【解答】解:A.一天中,8时到24时骆驼的体温的变化范围是37℃到40℃,说法正确,故本选项不合题意;B.点A表示的是12时骆驼的温度是39℃,说法正确,故本选项不合题意;C.0时到16时骆驼体温一直上升,说法错误,0时到4时,骆驼体温在下降,故本选项符合题意;D.骆驼第一天12时体温与次日12时和20时的温度相同,说法正确,故本选项不合题意.故选:C.7.(2022秋•东营月考)近几年来,随着打工大潮的涌动,某校从2011年到2017年留守儿童的人数y(人)与时间t(年)有如下关系:时间/年2011201220132014201520162017人数/人5080100150200270350则下列说法不正确的是( )A.如表反映了留守儿童的人数与时间之间的关系B.y(人)随时间t(年)的推移逐渐增大C.自变量是时间t(年),因变量是留守儿童的人数y(人)D.自变量是留守儿童的人数y(人),因变量是时间t(年)【分析】根据函数相关概念依次判断即可.【解答】解:A.如表反映了留守儿童的人数与时间之间的关系,正确,不合题意;B.y(人)随时间t(年)的推移逐渐增大,正确,不合题意;C .自变量是时间t (年),因变量是留守儿童的人数y (人),正确,不合题意;D .自变量是时间t (年),因变量是留守儿童的人数y (人),原题说法不正确,符合题意;故选:D .8.(2022•南岗区校级模拟)某油库有一储油量为40吨的储油罐,在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的储油量(吨)与时间(分)的函数关系如图所示,现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是( )分钟.A .20B .24C .26D .28【分析】首先由已知函数关系计算出每分钟进油量,再由函数图象计算出既开进油管,又开出油管的每分钟进油量,那么能求出每分钟的出油量,从而求出放完全部油所需的时间.【解答】解:由已知函数图象得:每分钟的进油量为:24÷8=3(吨),每分钟的出油量为:3﹣(40﹣24)÷(24﹣8)=2(吨),所以放完全部油所需的时间为:40÷2=20(分钟).故选:A .9.(2022春•胶州市期中)某商店销售一批玩具时,其收入y (元)与销售数量x (个)之间有如下关系:销售数量x (个)1234…收入y (元)8+0.316+0.624+0.932+1.2…则收入y 与销售数量x 之间的关系式可表示为( )A .y =8.3xB .y =8x +0.3C .y =8+0.3xD .y =8.3+x【分析】本题通过观察表格内的x 与y 的关系,可知y 的值相对x =1时是成倍增长的,由此可得出方程.故选:A.10.(2022•嵩县模拟)如图1,矩形ABCD中,点E是边AD的中点,点F在边AB上,且BF=2AF,动点P从点F出发,以每秒1cm的速度沿F→B→C→D的方向运动,到达点D时停止.设点P运动x(秒)时,△AEP的面积为y(cm2),如图2是y关于x的函数图象,则图2中a,b的值分别是( )A.16,2B.15,C.13,D.13,3【分析】根据动点P的运动情况分三段分别分析即可得出答案.【解答】解:由图可知,当点P从点F到点B时,∵用了4秒,∴FB=4,∵BF=2AF,∴AF=2,∴AB=CD=6,当点P从点B到点C时,∵用了3秒,∴BC=AD=3,∴a=4+3+6=13,∵点E是AD的中点,∴b=×AE×AF=×2=,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•文登区期中)函数y=+的自变量x的取值范围是 x>﹣3且x≠1 .【分析】根据二次根式被开方数≥0,分式分母不等于0,求公共解集.解得x>﹣3,x≠1,∴自变量x的取值范围是x>﹣3且x≠1,故答案为:x>﹣3且x≠1.12.(2022秋•武清区校级月考)已知一个直角三角形的两条直角边的和为10cm,若设此直角三角形的面积为Scm2,其中一条直角边为x,则S与x的函数关系式为 S=﹣x²+5x ,自变量的取值范围是 0<x<10 .【分析】根据题意可得,直角三角形的另一条边是10﹣x,根直角三角形的面积计算方法进行计算即可得出答案,根据直角三角形的边0<x<10,即可得出答案.【解答】解:根据题意可得,S=x(10﹣x)=﹣x²+5x,自变量的取值范围是0<x<10.故答案为:S=﹣x²+5x,0<x<10.13.(2022秋•临洮县校级月考)篮球联赛中,每两个球队之间进行两场比赛,设有x个球队参赛计划共打y场比赛,则y与x之间的函数关系为 y=x2﹣x .【分析】根据题意找到比赛场数与球队数量的关系即可.【解答】解:每只球队可以和剩下的(x﹣1)只球队比赛,排除重复的,实际比赛场数为:.∴y==x2﹣x.故答案为:y=x2﹣x.14.(2022春•封丘县月考)如图所示的是我省某市某天的气温随时间变化的情况,则这天的最高气温为 8℃ .【分析】根据观察函数图象的纵坐标,可得最高气温.【解答】解:由纵坐标看出这天的最高气温为8℃,故答案为:8℃.15.(2022春•青山区期中)若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时(t为整数),电话费y(元)与通话时间t(分)之间的关系式为 y=0.5t+0.3(t≥3) .【分析】根据题干分析可得,3分钟以内都收1.8元,当t≥3时,除了收1.8元还需要收(t﹣3)×0.5,进行计算即可.【解答】解:当通话时间t≥3分钟时(t为整数),y=1.8+(t﹣3)×0.5,∴y=0.5t+0.3.故答案为:y=0.5t+0.3(t≥3).16.(2022秋•定远县校级月考)如图,根据流程图中的程序,当输入数值x为10时,输出数值y为 9 .【分析】根据题意可得,因为10≥1,所以把x=10代入y=x+3中,计算即可得出答案.【解答】解:根据题意可得,∵10≥1,∴把x=10代入y=x+3中,得y=+3=9.故答案为:9.17.(2022•沙坪坝区校级开学)在弹簧限度内,弹簧挂上物体后弹簧的长度与所挂物体的质量之间的关系如表:所挂物体的质量/千克12345678弹簧的长度/cm12.51313.51414.51515.516则不挂物体时,弹簧的长度是 12 cm.【分析】根据表格数据可得y与x成一次函数关系,设y=kx+b,取两点代入可得出y与x的关系式,当所挂物体质量为0时,即是弹簧不挂物体时的长度.【解答】解:由表格可得:y随x的增大而增大;设y=kx+b,将点(1,12.5),(2,13)代入可得:,解得:.故y=0.5x+12.当x=0时,y=12.即不挂物体时,弹簧的长度是12cm.故答案为:12.18.(2022秋•利川市校级月考)如图1,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x 表示线段AP的长,y表示线段BP的长,y与x之间的关系如图2所示,则边BC的长是 .【分析】由图象可知,BP⊥AC时,AP=1,由勾股定理求出BP,再求PC求BC即可.【解答】解:由图象可知,AB=3,AC=6如图,当x =1时,BP ⊥AC Rt △ABP 中,BP =,∵PC =6﹣1=5,∴Rt △CBP 中,BC =,故答案为:.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•泾阳县期中)我们知道:“距离地面越高,气温就越低.”下表表示的是某地某时气温t (℃)随高度h (km )变化而变化的情况:距离地面高度(km )012345温度(℃)201482﹣4﹣10(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)请说明温度是怎样随距离地面高度的增加而变化的;(3)已知某山顶的气温为﹣22℃,求此山顶距离地面的高度.【分析】(1)根据表中数量关系判断.(2)根据表中数据变化情况判断.(3)找到变化规律后求解.【解答】解:(1)上表反映了温度和高度两个变量之间的关系.高度是自变量,温度是因变量.(2)由表格可知温度随着距离地面高度的增加而降低.(3)由表格可知当高度每上升1km 时,温度下降6℃,所以当高度为6km 时,温度为﹣16℃,当高度为7km 时,温度为﹣22℃,所以此山顶距离地面的高度是7km.20.(2022春•泾阳县期中)如图是某地区一天的气温随时间变化的图象:(1)气温在哪段时间是下降的?(2)最高气温和最低气温分别是多少摄氏度?【分析】(1)直接根据图象信息回答即可;(2)直接根据图象信息回答即可.【解答】解:(1)由图象可知,气温在0到4时和14到22时是下降的;(2)由图象可知,最高气温是8℃,最低气温是﹣2℃.21.(2022春•晋州市校级期末)已知一个圆柱的底面半径是3cm,当圆柱的高h(cm)变化时,圆柱的体积V(cm3)也随之变化.(1)在这个变化过程中,写出圆柱的体积V与高h的关系式(结果保留π);(2)当圆柱的高由3cm变化到6cm时,圆柱的体积V增大多少(结果保留π)?【分析】(1)利用圆柱的体积公式求解;(2)分别计算出h=3和6对应的函数值可得到V的变化情况.【解答】解:(1)V=π•32•h=9πh;(2)当h=3cm时,V=27πcm3;当h=6cm时,V=54πcm3;54π﹣27π=27π(cm3),所以圆柱的体积V增大27πcm3.22.(2022春•招远市期末)背景资料:“低碳生活”是指人们生活中尽量减少所耗能量,从而降低(特别是二氧化碳的)排放量的一种生活方式.低碳生活的理念也已逐步被人们所接受.相关资料统计了一系列排根据图中信息,解决问题:(1)若x表示耗油量,开私家车的二氧化碳排放量为y,则开私家车的二氧化碳排放量与耗油量的关系式为 y=2.7x .(2)在上述关系中,耗油量每增加1L,二氧化碳排放量就增加 2.7 kg;当耗油量从3L增加到8L时,二氧化碳排放量就从 8.1 6g增加到 21.6 kg.(3)小明家本月家居用电约100kw•h,天然气10m3,自来水6t,开私家车耗油80L,请你计算一下小明家这几项二氧化碳排放量的总和.【分析】(1)根据题意可以直接写出开私家车的二氧化碳排放量y与耗油量x之间的关系式;(2)根据(1)的结论解答即可;(3)根据题意可以列式计算出小明家本月这几项的二氧化碳排放总量;【解答】解:(1)由题意可得y=2.7x;故答案为:y=2.7x.(2)由y=2.7x可知,耗油量每增加1L,二氧化碳排放量增加2.7kg.当耗油量从3L增加到8L时,二氧化碳排放量从8.1kg增加到21.6kg;故答案为:2.7,8.1,21.6.(3)100×0.785+80×2.7+10×0.19+6×0.91=301.86(kg),小明家本月这几项的二氧化碳排放总量为301.86kg.23.(2022春•泰和县期末)泰和工农兵大道安装的护栏平面示意图如图所示,假如每根立柱宽为0.2米,立柱间距为3米.(1)根据如图,将表格补充完整.立柱根数12345…护栏总长度(米)0.2 3.4 6.6 9.8 13 …(2)在这个变化过程中,自变量、因变量各是什么?(3)设有x根立柱,护栏总长度为y米,则y与x之间的关系式是什么?(4)求护栏总长度为61米时立柱的根数?【分析】(1)根据题意计算即可;(2)根据护栏总长度随立柱根数的变化而变化可以得出答案;(3)根据等量关系:护栏总长度=(每根立柱宽+立柱间距)×立柱根数﹣1个立柱间距,就可以求出解析式;(4)根据关系式就可以计算.【解答】解:(1)根据题意可以计算:当立柱根数为3时,护栏总长度为3.2×3﹣3=6.6(米),当立柱根数为5时,护栏总长度为3.2×5﹣3=13(米),故答案为:6.6,13.(2)在这个变化过程中,护栏总长度随立柱根数的变化而变化,∴自变量是立柱根数,因变量是护栏总长度,(3)由题意得y与x之间的关系式为y=(0.2+3)x﹣3=3.2x﹣3.故答案为:y=3.2x﹣3.(4)当y=61时,3.2x﹣3=61,解得x=20,答:护栏总长度为61米时立柱的根数为20.24.(2022春•开江县期末)某中学为筹备校庆活动,准备印制一批校庆纪念册,该纪念册每册需要10张A4大小的纸,其中4张为彩色页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成.制版费与印数无关,价格为:彩色页200元/张,黑白页50元/张;印刷费与印数的关系见下表印数a(单位:册)1≤a<50005000≤a<10000彩色(单位:元/张) 2.2 2.0黑白(单位:元/张)0.60.5(1)直接写出印制这批纪念册的制版费为多少元;(2)若印制6000册,那么共需多少费用?(3)若印制x(1≤x<10000)册,所需费用为y元,请写出y与x之间的关系式.【分析】(1)根据制版费=彩页制版费+黑白制版费,代入数据即可求出数值;(2)根据总费用=制版费+印刷费,代入数据即可求出数值;(3)分1≤x<5和5≤x<10两种情况找出y关于x的函数关系式,合并在一起即可得出结论.【解答】解:(1)200×4+50×6=1100(元),(2)6000(2×4+0.5×6)+1100=67100(元),∴共需费用67100元.(2)当1≤x<5000时,y=1100+2.2×4x+0.6×6x=12.4x+1100,当5000≤x<10000时,y=1100+2×4x+0.5×6x=11x+1100,。
⼈教版数学⼋年级暑假作业答案2021⼀提到暑假作业,⼤家⼀定都很发愁呢,影响我们快乐的⼼情了~但是⼤家还是要完成暑假作业的。
下⾯是⼩编为⼤家收集的关于⼈教版数学⼋年级暑假作业答案五篇2021。
希望可以帮助⼤家。
⼈教版数学⼋年级暑假作业答案篇⼀(⼀)基本概念:1、离散,2、极差,3、值,最⼩值,4、⼤,⼩,⼀致,作业:1、4973850,2、32,3、-8,4、-2或8,5、4,6、D,7、D,8、3040,9、13,10、16(⼆)⼀,知识回顾(1)平均数A:40.0B:40.0极差A.4B:0.4(2)不能⼆,基本概念,略三,例题分析:⽅差,A:0.012B:0.034标准差,略A更稳定四,作业:(1)B(2)B(3)C(4)8(5)200,10(6)100(7)⽅差:甲0.84⼄0.61所以⼄更稳定(三)1、12;2、①,②,③;3、2;4、;5、2,;6、100;7、⼄;8、⼄;9、4、3;10、0;11、C;12、C;13、C;14、D;15、B;16、A;17、B;18、C;19、C;20、C;21、(1)A:极差8,平均数99,⽅差6.6;B:极差9,平均数100,⽅差9;(2)A;22、(1)甲组及格率为0.3,⼄组及格率为0.5,⼄组的及格率⾼;(2)甲组⽅差为1,⼄组⽅差为1.8,甲组的成绩较稳定;23、(1)甲班的优秀率为60℅,⼄班的优秀率为40℅;(2)甲班的中位数为100,⼄班的中位数为97;(3)估计甲班的⽅差较⼩;(4)根据上述三个条件,应把冠军奖状发给甲班。
(四)⼀、选择题(本⼤题共10⼩题,每⼩题3分,共30分)题号12345678910答案CBAABDCCBD⼆、填空题(本⼤题共8⼩题,每题4分,共32分)11.212.13.14.6.1815.16.对⾓线互相平分的四边形是平⾏四边形17.318.⼈教版数学⼋年级暑假作业答案篇⼆《暑假乐园》(⼀)答案:1-8、DABDDDCA;9、1,2,3;10、a≤b;11、a<4且a≠0;12、a>-1;13、7;14、(1)x<2,(2)x<-3;15、a≤ ;16、1;17、18厘⽶;18、2121、18题;22、(1)a=0.6 ,b=0.4;(2)35%到50%之间(不含35%和50%)。
不等式提高练习一、选择题(每小题3分,共30分)1..下列不等式一定成立的是( )A.5a >4aB.x +2<x +3C.-a >-2aD.aa 24> 2.不等式-3x +6>0的正整数有( )A.1个B.2个C.3个D.无数多个3. .在数轴上与原点的距离小于8的点对应的x 满足( )A.-8<x <8B.x <-8或x >8C.x <8D.x >84.若不等式组⎩⎨⎧>≤11x m x 无解,则m 的取值范围是( )A.m <11B.m >11C.m ≤11D.m ≥115.要使函数y =(2m -3)x +(3n +1)的图象经过x 、y 轴的正半轴,则m 与n 的取值应为( )A.m >23,n >-31B.m >3,n >-3C.m <23,n <-31D.m <23,n >-31 6. 如右图,当0<y 时,自变量 x 的范围是( )A 、2-<xB 、2->xC 、2<xD 、2>x7. 如果10<<x ,则下列不等式成立的( )A 、x x x 12<<B 、x x x 12<<C 、21x x x <<D 、x x x<<21 8. 若a>b>0, 则下列结论正确的是 ( )(A) -a>-b (B)ba 11> (C)a 3<0 (D)a 2>b 29.某射击运动员在一次比赛中前6次射击共中52环,如果他要打破89环(10次射击)的记录,第七次射击不能少于( )环(每次射击最多是10环)A 、5B 、6C 、7D 、810.初三的几位同学拍了一张合影作留念,已知冲一张底片需要0.80元,洗一张相片需要0.35元.在每位同学得到一张相片、共用一张底片的前提下,平均每人分摊的钱不足0.5元,那么参加合影的同学人数 .A.至多6人 B.至少6人 C.至多5人 D.至少5人11.不等式组⎪⎩⎪⎨⎧≤-->84332x x 的最小整数解为 ( ) (A)–1 (B) 0 (C)1 (D) 412、如果10<<x ,则下列不等式成立的( )A 、x x x 12<<B 、x x x 12<<C 、21x x x <<D 、x x x<<21 13、在平面直角坐标系内,点P (3-m ,5-m )在第四象限,则m 的取值范围是( )A 、35<<-mB 、53<<-mC 、53<<mD 、35-<<-m二、填空题:(每题3分,共15分)1、若11|1|-=--x x ,则x 的取值范围是_______ 2、 如果关于x 的不等式5)1(+<-a x a 和42<x 的解集相同,则a 的值为________.3、若b a <,用“<”或“>”号填空:2a______b a +,33a b -_____. 4、 点A (-5,1y )、B (-2,2y )都在直线x y 2-=上,则1y 与2y 的关系是 。
初二数学不等式组练习题在初二的数学学习中,不等式组是一个非常重要的概念。
通过解不等式组,我们可以进一步巩固和拓展对不等式的理解,提高解决实际问题的能力。
下面是一些初二数学不等式组的练习题,供同学们进行巩固和提高。
1. 解不等式组:① 2x - 4 > 8, 3x + 5 < 20② 4y + 3 ≥ 15, 6y - 2 < 202. 解不等式组,并表示出解的范围:① 2x - 5 > 3, x + 2 < 7② 3y + 4 < 10, 7y - 2 ≥ 283. 解不等式组:① 2a + 3 ≥ 11, 3a - 1 < 8② 4b - 5 > 7, 2b + 1 ≤ 54. 解不等式组,并表示出解的范围:① 3x - 1 < 8, 2x + 5 > 3② 5y + 6 ≤ 13, 4y - 3 ≥ 75. 解不等式组:① 2a + 7 > 15, 3a - 5 ≤ 16② 4b + 5 < 9, 2b - 3 > 46. 解不等式组,并表示出解的范围:① 5x + 2 ≤ 17, 4x - 3 > 5② 3y - 4 < 10, 2y + 5 ≥ 137. 解不等式组:① 2a - 3 ≤ 5, a + 4 > 10② 5b + 7 ≥ 24, 3b - 2 < 138. 解不等式组,并表示出解的范围:① 4x - 5 > 3x + 2, 2x + 4 < 6x - 1② 3y + 6 ≤ 15, 5y - 4 ≥ 179. 解不等式组:① 2a + 5 < 9, 3a - 4 ≤ 10② 4b - 3 ≥ 5, 2b + 2 > 910. 解不等式组,并表示出解的范围:① 5x - 3 > 4x + 2, 2x + 6 < 7x - 5② 5y + 4 ≤ 8, 3y - 2 ≥ 7以上是一些初二数学不等式组的练习题。
A CB D E F )α 30°( 八 年 级 数 学 培 优 辅 导 练 习 姓名一、填空 1.若222=+-aa ,则1-+a a 的值为 . 2..若方程有增根,则增根为 . 3.已知,,,则、、的大小关系是 .4.如图,在直角坐标系中,点A 、B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点, 且A 、B 、C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是 .5.当x 分别取、、、….、、、、1、、、…、、、时, 计算分式的值,再将所得结果相加,其和等于 . 6.在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 的度数为__________.7.若关于x 的分式方程22231--=-x a x x 有非负数解,则a 的取值范围是 . 8.若二次三项式4x 2+3mx +9是完全平方式,则实数m 的值可能是_________.9.如图,在Rt △ABC 中,∠C =90°,AM 、BN 分别平分∠CAB 、∠ABC ,AM 与BN 相交于点O , OD ⊥AB ,AB =10,AC =8,BC =6,则OD = .10.如图,△ABC 中,△ACB =90°,△A =30°,将△ABC 绕C 点按逆时针方向旋转α角(0°<α<90°) 得到△DEC ,设CD 交AB 于F ,连接AD ,当旋转角α度数为 时△ADF 是等腰三角形.11.如图,点A 的坐标为(8,0),点B 为y 轴负半轴上的一点,分别以OB ,AB 为直角边在第三、第四 象限作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交y 轴于P 点,则PB 的长为 .12.如图,△ABC 是等边三角形,点D 为 AC 边上一点,以BD 为边作等边△BDE, 连接CE . 若CD =1,CE =3,则BC = .13.如图,△ABC 的外角∠ACD 的平分线CP 与内角∠ABC 平分线BP 交于点P ,若∠BPC=38°, 则∠CAP = .14.如图,Rt ∠ACB 中,∠ACB =90°,∠ABC 的角平分线AD 、BE 相交于点P ,过P 作PF ∠AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:(1)∠APB =135°; (2)PF =P A ; (3)AH +BD =AB ;(4)DH ∥EP ;其中正确的是 (填序号).15.能使分式的值为零的所有的值是 .16.若ab=1,则1111+++b a 的值为 ;当x 时,分式21x x +的值为正数. 342(2)a x x x x =+--3181=a 4127=b 619=c a b c 2014-2013-2012-2-1-012131201212013120142211x x -+1212+--x x x x17.已知关于x 的分式方程111=--++x k x k x 的解为负数,则k 的取值范围是 . 18.已知x =1是方程111x k x x x x +=--+的一个增根,则k =_______. 19.若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 20.已知4)4(422+++=+x C Bx x A x x ,则B =_______. 21.关于x 的方程的解是正数,则a 的取值范围是__________. 二、解答题22.因式分解:(1)y y x 8212- (2)a a a 10323--(3) 222)1(4+-a a (4)(x -1)(x +4)-3623.计算:(1) 22224421y xy x y x y x y x ++-÷+-- (2) x y y x y x y x -+-+-+212224.解方程:(1)33122x x x -+=-- (2)214111x x x ++=--.25.已知12,4-=-=+xy y x ,求1111+++++y x x y 的值.211x a x +=-26.先化简,再求值:1211222+-+÷⎪⎭⎫ ⎝⎛--a a a a a a ,其中()()210a a +-=.27.下面,我们来研究代数式x 2+x +m 的一些相关问题:(1)如果对于任意的x ,代数式x 2+x +m 的值都是正数,那么m 的取值范围是什么?(2)当m = -1时,代数式x 2+x +m 的值等于0,试求以下代数式的值:①200820092010x x x -+ ②2010223-+x x28.定义:若两个分式的和为(n n 为正整数),则称这两个分式互为“n 阶分式”. 例如,分式31x +与31x x +互为“3阶分式”. (1)分式1032x x+与 互为“5阶分式”; (2)设正数x ,y 互为倒数,求证:分式22x x y +与22y y x +互为“2阶分式”; (3)若分式24a a b +与222b a b+互为“1阶分式”(其中a ,b 为正数),求ab 的值.D M NE C BA 29.如图,△ABC 中,090=∠BAC ,AB =AC ,在直线AC 上截取AE =CD ,作AM ⊥BD 于M , AM 交BC 于N ,连接EN .求证:E D ∠=∠30.已知△ABC 中,∠ABC =90゜,AB =BC ,点A 、B 分别是x 轴和y 轴上的一动点.(1)如图1,若点C 的横坐标为-4,求点B 的坐标;(2)如图2,BC 交x 轴于D ,若点C 的纵坐标为3,A (5,0),求点D 的坐标.(3)如图3,分别以OB 、AB 为直角边在第三、四象限作等腰直角△OBF 和等腰直角△ABE ,EF 交y 轴于M ,求 S △BEM :S △ABO .。
2021年八年级数学下册暑假作业含参考答案一、选择题(本大题共l0小题.每小题3分.共30分.)1.下列不等式中,一定成立的是 ( )A. B. C. D.2.若分式的值为0,则x的值为 ( )A. 1B. 1C. ±1D.23.一项工程,甲单独做需天完成,乙单独做需天完成,则甲乙两人合做此项工程所需时间为 ( )A. 天B. 天C. 天D. 天4. 若反比例函数的图象经过点,则这个函数的图象一定经过点( )A.(1,2)B.(2,1)C.(1,2)D.(1,2)5. 下列关于x的一元二次方程中,有两个不相等的实数根的方程是( )A.x2+1=0B.x2-2x+1=0C.x2+x+2=0D.x2+2x-1=06.如图,DE∥FG∥BC,AE=EG=BG,则S1:S2:S3= ( )A.1:1:1B.1:2:3C. 1:3:5D. 1:4:97.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是( )8.如图,在矩形ABCD中,点E在AB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值为( )A. B. C. D.9.对于句子:①延长线段AB到点C;②两点之间线段最短;③轴对称图形是等腰三角形;④直角都相等;⑤同角的余角相等;⑥如果│a│=│b│,那么a=b.其中准确的句子有( )A.6个B.5个C.4个D. 3个10. 如图,在正方形ABCD中,点O为对角线AC的中点,过点O作射线OM、ON分别交AB、BC于点E、F,且∠EOF=90°,BO、EF交于点P.则下列结论中:(1)图形中全等的三角形只有两对;(2)正方形ABCD的面积等于四边形OEBF面积的4倍;(3)BE+BF=OA;(4)AE2+CF2=2OPOB,准确的结论有( )个.A、1B、2C、3D、4二、填空题(本大题共8小题,每小题2分,共l6分.)11.在比例尺为1:20的图纸上画出的某个零件的长是32cm,这个零件的实际长是 cm .12.小刚身高1.7m,测得他站立在阳光下的影子长为0.85m.紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起手臂超出头顶______________m.13.如图,D,E两点分别在△ABC的边AB,AC上,DE与BC不平行,当满足_______________条件(写出一个即可)时,△A14.如图, 点A的坐标为(3,4),点B的坐标为(4,0), 以O为位似中心, 按比例尺1:2将△AOB放大后得△A1O1B1, 则A1坐标为______________.15. 若关于x的分式方程有增根,则 .16. 已知函数,其中表示当时对应的函数值,如,则=_______.17. 如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE=________.18.两个反比例函数(k>1)和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定准确的是 (把你认为准确结论的序号都填上).三、解答题(本大题共10小题.共84分.)19.(本题满分15分)(1)解不等式组 (2)解分式方程: (3)求值:3tan230+220.(本题满分5分)计算:先化简再求值:,其中.21.(本题满分8分) 如图,已知反比例函数(k1>0)与一次函数相交于A、B两点,AC⊥x轴于点C. 若△OAC的面积为1,且tan∠AOC=2 .(1)求出反比例函数与一次函数的解析式;(2)请求出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值?22.(本题满分8分) 健身运动已成为时尚,某公司计划组装A、B 两种型号的健身器材共40套,捐给社区健身中心.组装一套A型健身器材需甲种部件7个和乙种部件4个,组装一套B型健身器材需甲种部件3个和乙种部件6个.公司现有甲种部件240个,乙种部件196个.(1)公司在组装A、B两种型号的健身器材时,共有多少种组装方案?(2)组装一套A型健身器材需费用20元,组装一套B型健身器材需费用18元,求总组装费用最少的组装方案,最少总组装费用是多少?23.(本题满分8分) 学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互确定,所以边长与角的大小之间能够相互转化.类似的,能够在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时sad A=.容易知道一个角的大小与这个角的正对值也是相互确定的.根据上述对角的正对定义,解下列问题:(1)sad60°的值为( )A. B.1 C. D.2(2)对于0°(3)已知sinα=,其中α为锐角,试求sadα的值.24. (本题满分8分)如图,一架飞机由A向B沿水平直线方向飞行,在航线AB的正下方有两个山头C、D.飞机在 A处时,测得山头C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了6千米到B处时,往后测得山头C的俯角为30°,而山头D恰好在飞机的正下方.求山头C、D之间的距离.(结果保留根号)25.(本题8分) 如图(1),将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起。
初二不等式练习题附答案初二时代是学习数学的关键时期,不等式作为数学知识的重要一环,需要我们掌握和熟练运用。
为了帮助同学们更好地巩固不等式的知识,以下是一些初二不等式练习题及其答案,供大家参考和练习。
一、填空题1. 若 x + 3 > 7,求 x 的取值范围。
解答:x > 7 - 3,即 x > 4。
2. 若 2y - 5 < 13,求 y 的取值范围。
解答:2y < 13 + 5,即 2y < 18;又因为 2 > 0(正数),所以当 2y < 18 时,y 的取值范围为 y < 9。
3. 若 4x - 7 ≥ 5,求 x 的取值范围。
解答:4x ≥ 5 + 7,即4x ≥ 12;又因为 4 > 0,所以当4x ≥ 12 时,x的取值范围为x ≥ 3。
二、选择题1. 下列不等式中,与 x > 2 等价的不等式是:A) x < 2B) x ≥ 2C) x ≤ 2D) x ≠ 2解答:B) x ≥ 22. 若不等式 3 - 2x > 7 的解集为 S,下列解集中符合不等式的是:A) S = {x | x > 2}B) S = {x | x < -2}C) S = {x | x < 2}D) S = {x | x > -2}解答:B) S = {x | x < -2}三、简答题1. 解不等式 5x - 9 > 6 的过程。
解答:首先将不等式化简为 5x > 6 + 9,即 5x > 15。
然后除以 5(注意 5 > 0),得到 x > 15/5,即 x > 3。
所以解集为 {x | x > 3}。
2. 解不等式 -2y + 4 ≤ 8 的过程。
解答:首先将不等式化简为 -2y ≤ 8 - 4,即 -2y ≤ 4。
然后除以 -2(注意 -2 < 0),得到y ≥ 4 / -2,即y ≥ -2。
【快乐假期】2011年八年级数学暑假培优提高作业8不等式与不等
式组
学生姓名 家长签字
【学习目标】
1、了解不等式、不等式组及其解的意义, 掌握不等式的基本性质和不等式与不等式组的解法;
2、能够根据具体问题中的数量关系,列出不等式与不等式组,解决现实中的问题,培养用数学的意识和能力. 【基础探究】
1、下列四个命题①若a >b ,则a +1>b+1;②若a >b ,则a -l >b -1;③若a >b ,则-2a <-2b ; ④若a >b ,则2a <2b .其中正确的有 ( ) A .l 个 B .2个 C .3个 D .4个
2、如果2m 、m 、1-m 这三个实数在数轴上所对应的点从左到右依次排列,那么m 的取值范围是 ( ) A .m >0
B .m >0.5
C .m <0
D .0<m <0.5
3、若不等式组0,122x a x x +⎧⎨->-⎩
≥有解,则a 的取值范围是 ( )
A .1a >-
B .1a -≥
C .1a ≤
D .1a <
4、如图,直线y kx b =+经过点(1
2)A --,和点(20)B -,,直线2y x =过点A ,则不等式20x kx b <+<的解集为 ( )
A .2x <-
B .21x -<<-
C .20x -<<
D .10x -<<
5、不等式组3(2)412 1.3
x x x x --⎧⎪
+⎨>-⎪⎩≥,的解集是 .
6、如果不等式组2
223
x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .
7、已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是 .(2)若0b >
,且
225a b +=,则a b += .
8、已知关于x 的不等式组0521
x a x -⎧⎨
->⎩≥,
只有四个整数解,则实数a 的取值范围是 .
9、已知关于x 、y 的方程组⎩
⎨⎧-=++=+1341
23m y x m y x 的解满足x<y<0,求m 的范围.
10、小刚想给小东打电话,但忘了电话号码中的一位数字,只记得号码是2849456□(□表示忘记的数字).若□位置的数字是不等式组21101
42
x x x ->⎧⎪⎨+⎪⎩,
≤的整数解,求□可能表示的数字.
11、已知不等式组⎪⎩⎪⎨⎧-<-+>-a a a a 23
712
1)1(315的整数解a 满足⎩⎨⎧=+-=-43272y x y ax ,求(x+y)(x 2-xy+y 2
)的值.
12、我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3m/s 的时间共约
160天,其中日平均风速不小于6m/s 的时间约占60天,为了充分利用风能这种“绿色能源”,该地拟建一个小型风力发电场,决定选用A 、B 两种型号的风力发电机.根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:
根据上面的数据回答:(1)若这个发电场购x 台A 型风力发电机,则预计这些A 型风力发电机一年的发电总量至少为 kW ·h ;
(2)已知A 型风力发电机每台0.3万元,B 型风力发电机每台0.2万元,该发电场拟购置风力发电机共10台,希望购置的费用不超过2.6万元,而建成的风力发电场每年的发电总量不少于102000 kW ·h,请你提供符合条件的购机方案。
13、我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.
(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x
之间的函数关系式并写出自变量的取值范围.
(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案. 【综合探究】
14、 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1
的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3
参考阅读材料,解答下列问题:
(1)方程|3|4x +=的解为 (2)解不等式|3||4|x x -++≥9;
2
-2
1
(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围
15、小杰到学校食堂买饭,看到A 、B 两窗口前面排队的人一样多(设为a 人,a >8),就站在A 窗口队伍的后面,过了2分钟,他发现A 窗口每分钟有4人买了饭离开队伍上,B 窗口每分钟有6人买了饭离开队伍,且B 窗口队伍后面每分钟增加5人。
(1)此时,若小杰继续在A 窗口排队,则他到达窗口所花的时间是多少(用含a 的代数式表示)?
(2)此时,若小杰迅速从A 窗口队伍转移到B 窗口后面重新排队,且到达B 窗口所花的时间比继续在A 窗口排队到达A 窗口所花的时间少,求a 的取值范围(不考虑其它因素)。
16、“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B 两个蔬菜基地得知四川C 、D 两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已
知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.
请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;
设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;
经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.
17、某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围;
(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型
,型产产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B
品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?。