定积分求图形的面积和旋转体的
- 格式:ppt
- 大小:1.17 MB
- 文档页数:21
定积分求旋转体体积的公式
定积分求旋转体体积的公式是指,在平面直角坐标系中,给定一个函数 $f(x)$ 和两条直线 $x=a$ 和 $x=b$,以 $x$ 轴为旋转轴,将由 $f(x)$,$x=a$,$x=b$ 和 $x$ 轴围成的图形绕 $x$ 轴旋转一周所得到的旋转体的体积公式。
该公式可以表示为:
$V=pi intlimits_{a}^{b} [f(x)]^2 dx$
其中,$V$ 表示旋转体的体积,$pi$ 表示圆周率,$[f(x)]^2$ 表示由 $f(x)$,$x=a$,$x=b$ 和 $x$ 轴围成的图形在绕 $x$ 轴旋转一周后所得到的圆柱的截面积,$intlimits_{a}^{b} [f(x)]^2
dx$ 表示对 $[f(x)]^2$ 进行定积分,即将其在区间 $[a,b]$ 上的面积求出来。
需要注意的是,当 $f(x)$ 取负值时,旋转体的体积计算方式也会有所不同,需要将 $f(x)$ 的负值部分沿着 $x$ 轴翻折到正半轴上再进行计算。
- 1 -。
定积分的应用绕y轴旋转体的体积
绕y轴旋转体的体积可以使用定积分来计算。
假设我们要计算在x轴上由函数y=f(x)和y=g(x)所围成的区域绕y轴旋转一周
形成的体积。
首先,我们可以将该区域在y轴上的投影表示为两个曲线
y=f(x)和y=g(x)之间的区域,即:
ΔV = π * (f(x)² - g(x)²) * Δx
其中,ΔV表示该区域在y轴上的投影扫过的小圆柱体的体积,π表示圆周率,f(x)² - g(x)²表示小圆柱体的底面积,Δx表示小
圆柱体的高度。
然后,我们可以将整个区域划分为许多小区间,每个小区间的宽度为Δx。
然后将所有小圆柱体的体积求和,即可得到整个
旋转体的体积:
V = ∫[a,b] π * (f(x)² - g(x)²) dx
其中,[a,b]表示区间[a,b]上的积分,表示我们要计算的区域的
范围。
通过对上述积分进行计算,我们可以得到绕y轴旋转体的体积。
请注意,这个方法适用于任何形状的曲线旋转体。
第六章定积分的应用教学目的1、理解元素法的基本思想;2、掌握用定积分表达和计算一些几何量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积)。
3、掌握用定积分表达和计算一些物理量(变力做功、引力、压力和函数的平均值等)。
教学重点:1、计算平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积。
2、计算变力所做的功、引力、压力和函数的平均值等. 教学难点:1、 截面面积为已知的立体体积.2、引力。
§6. 1 定积分的元素法回忆曲边梯形的面积:设y =f (x )≥0 (x ∈[a ,b ]).如果说积分,⎰=ba dxx f A )(是以[a ,b ]为底的曲边梯形的面积,则积分上限函数⎰=xa dtt f x A )()(就是以[a ,x ]为底的曲边梯形的面积.而微分dA (x )=f (x )dx 表示点x 处以dx 为宽的小曲边梯形面积的近似值∆A ≈f (x )dx , f (x )dx 称为曲边梯形的面积元素.以[a ,b ]为底的曲边梯形的面积A 就是以面积元素f (x )dx 为被积表达式,以 [a ,b ]为积分区间的定积分:⎰=ba dxx f A )(.一般情况下,为求某一量U ,先将此量分布在某一区间[a ,b ]上,分布在[a ,x ]上的量用函数U (x )表示,再求这一量的元素dU (x ),设dU (x )=u (x )dx ,然后以u (x )dx 为被积表达式,以[a ,b ]为积分区间求定积分即得⎰=ba dxx f U )(.用这一方法求一量的值的方法称为微元法(或元素法).§6. 2 定积分在几何上的应用一、平面图形的面积 1.直角坐标情形设平面图形由上下两条曲线y =f 上(x )与y =f 下(x )及左右两条直线x =a 与x =b 所围成,则面积元素为[f 上(x ) f 下(x )]dx ,于是平面图形的面积为dxx f x f S ba ⎰-=)]()([下上.类似地, 由左右两条曲线x =ϕ左(y )与x =ϕ右(y )及上下两条直线y =d 与y =c 所围成设平面图形的面积为⎰-=dc dyy y S )]()([左右ϕϕ。
782020年第 5 期中定积分在几何中的应用杨姜维一、平面图形的面积(一)以为积分变量的情形1.在直角坐标中,设曲线()与直线及轴所围成的平面图形面积为,则面积元素,面积。
例1:求曲线与直线及轴所围成的平面图形的面积。
解:如图1,面积元素,图形面积=2.设曲线与直线及轴所围成的图形面积为,则面积元素,面积。
3.设由,所围成的平面图形的面积:函数由大减小(上减下),积分从左到右;那么,第一种情况里面的面积公式,也可以看作是,轴即直线。
例2:求直线与抛物线所围成的平面图形的面积。
解:由图2分析可知,交点面积元素,图形面积4.任意由所围成的平面图形(图3)的面积。
例3:求抛物线,与轴及直线在第一象限所围成的平面图形的面积。
解:如图4,由交点面积+(二)以为积分变量的情形1.由曲线、直线及轴围成的平面图形面积:。
2.由曲线、直线及轴围成的平面图形面积:。
3.由曲线直线及轴围成的平面图形面积:若,。
可看作是函数由大减小(右减左),积分从下到上。
例4:计算抛物线与直线所围成的图形的面积。
定积分在几何中的应用,主要体现在求解平面图形的面积和旋转体的体积等,文中主要介绍了求解平面图形面积的几种情形,即分别以为积分变量来讨论;求旋转体体积的两种情况,即曲线分别围绕轴和轴旋转一周所得的立体体积。
JIAO HAI TAN HANG/教海探航解:如图5,由交点为方便计算,选取为积分变量,则有4.任意由曲线直线及轴围成的平面图形面积:。
二、旋转体的体积一个平面图形围绕其所在平面上的一条直线旋转一周而成的立体即为旋转体,常见的旋转体有圆柱体、圆锥、圆台、球体等,这些都有对应的体积公式,面对日常生活中所用到的水杯、花瓶等立体物件,求解体积时可考虑以下情况:(一)曲线绕轴旋转的情形由连续曲线与直线及轴所围成的曲边梯形绕轴旋转一周而成的立体,选为积分变量,该旋转体的体积元素,体积为。
(二)曲线绕轴旋转的情形由曲线、直线及轴围成的平面图形绕轴旋转一周所得的立体,选为积分变量,该旋转体的体积元素,体积为。