蛙坐骨神经干动作电位的记录与观察
- 格式:pdf
- 大小:753.84 KB
- 文档页数:7
神经干动作电位实验报告
一、实验目的
1. 学习蛙的坐骨神经干标本的剥制方法;
2.学习动作电位的测定方法;
3.了解双相和单相神经动作电位产生的基本原理。
二.原理
神经或肌肉发生兴奋时,兴奋部位发生电位变化,这种可扩布性的电位变化即为动作电位。
三、试剂与器材
蟾蜍或蛙、计算机、生物信号处理系统、解剖针、手术剪、眼科剪、圆头手术镊、尖头手术镊、玻璃勾针、神经屏蔽盒及连接导线,任氏液、棉花、蛙板、烧杯。
四、实验内容(步骤)
(一)坐骨神经标本的制备(看示范和录象)
(二)连接实验装置
(三)实验观察
1. 动作电位的观察:
2. 倒换神经干的放置方向,动作电位有无变化。
3. 在两记录电极之间滴上KCl溶液,观察动作电位的变化。
观察到变化后,用任氏液洗掉KCl溶液,直至动作电位恢复。
4. 在两电极之间滴上普鲁卡因,观察动作电位的变化。
(四)不应期的测定
采用双刺激。
调节刺激器的“延时”,逐渐缩短两刺激之间的时间间隔。
观察出现的效应
五.注意事项
标本剥制过程,尽量减少神经的损伤;
刺激参数设置要合理,过大会损毁神经。
双刺激的参数要一致。
六、结果和目标
观察和记录神经干动作电位并对其特性进行分析;
测出动作电位的各个时期;
测出绝对不应期和相对不应期。
一、实验目的:1. 学习蛙坐骨神经干标本的制备2. 观察坐骨神经干的双相动作电位波形,并测定最大刺激强度3. 测定坐骨神经干双相动作电位的传导速度4. 学习绝对不应期和相对不应期的测定方法5. 观察机械损伤或局麻药对神经兴奋和传导的影响二、实验材料1. 实验对象:牛蛙2. 实验药品和器材:任氏液,2%普鲁卡因,各种带USB接口或插头的连接导线,神经屏蔽盒,蛙板,玻璃分针,粗剪刀,眼科剪,眼科镊,培养皿,烧杯,滴管,蛙毁髓探针,BL-420N 系统三、主要方法和步骤:1. 捣毁脑脊髓2. 别离坐骨神经3. 安放引导电极4. 安放刺激电极5. 启动试验系统6. 观察记录7. 保存8. 编辑输出四、实验结果和讨论1. 观察神经干双相动作电位引导〔单通道,单刺激〕如图,观察到一个双相动作电位波形。
-15 -I-20L00V2. 神经干双相动作电位传导速度测定(双通道,单刺激)00:00 000 00:00. 002 00-00.004 00:00 DOS 00<:00.000< 00 00.010 00:00 012 00:00 014 00:00.016 OO'OO 01S(1) 选择“神经骨骼肌实验〞一“…传导速度测定〞 (2) 改变单刺激强度(3)传导速度=传导距离(R 1--R 2-)/传导时间(t 2-t 1) 如下图,两个波峰之间的传导时间 △ t = (t2-t 1) = 0.66ms实验中,我们设定在引导电极1和3之间的距离 △ R = (R 1--R 2-) = 1cm故传导速度 v = △ R/ △ t = 1cm / 0.66ms = 15.2 m/sDO:DO. OOD00:DO. 00400:00.008D o 2 10s1.00V创 11 2M0&H1 2.0 ms △却 ・丫巴[].閱佃Page. 1 20000Hz 2.0 ms 2 mV 4 25ms3.神经干双相动作电位不应期观察时间:频率:最大值最小值:平均值:面稅SnCJ由上图可知,当刺激间隔时间为 4.61ms 时,两双相动作电位开始融合,此时为总不应期;当刺激间隔时间为1.05ms 时,双相动作电位完全融合,此时为绝对不应期。
一、实验目的1. 观察牛蛙坐骨神经干的结构特点。
2. 学习神经传导的基本原理和实验方法。
3. 了解神经兴奋传导过程中动作电位的变化规律。
4. 掌握神经生理学实验的基本操作技术。
二、实验原理牛蛙坐骨神经干是神经传导的重要组织,由大量神经纤维构成,是神经冲动的传递通路。
神经冲动传导是指类似于电流的生物信号通过神经纤维传递到靶细胞上的过程。
在实验中,通过观察牛蛙坐骨神经干在兴奋传导过程中的动作电位变化,可以了解神经传导的基本原理和规律。
三、实验材料与仪器1. 实验材料:牛蛙一只,任氏液,生理盐水,细线,剪刀,手术刀,眼科镊,玻璃分针,蛙板,蛙钉,培养皿,滴管,电子刺激器。
2. 实验仪器:生物显微镜,神经生理实验装置,记录仪,示波器。
四、实验步骤1. 准备工作:将牛蛙处死,置于生理盐水中浸泡,使其肌肉松弛。
将牛蛙背部朝上,用剪刀剪开皮肤,暴露坐骨神经干。
2. 制备标本:用眼科剪和眼科镊小心地分离坐骨神经干,将其固定在蛙板上。
用生理盐水清洗坐骨神经干,去除杂质。
3. 连接仪器:将牛蛙坐骨神经干与神经生理实验装置连接,确保连接牢固。
将记录仪和示波器连接到实验装置上。
4. 观察动作电位:调整刺激器的参数,对坐骨神经干进行电刺激。
观察示波器上动作电位的变化,记录动作电位波形。
5. 重复实验:改变刺激强度和频率,重复实验,观察动作电位的变化规律。
6. 数据处理:将实验数据记录在表格中,分析动作电位的变化规律。
五、实验结果与分析1. 观察到牛蛙坐骨神经干的结构特点,包括神经纤维、神经膜和神经髓鞘等。
2. 在实验过程中,随着刺激强度的增加,动作电位幅度逐渐增大;随着刺激频率的增加,动作电位潜伏期逐渐缩短。
3. 当刺激强度达到一定值时,动作电位幅度达到最大,此时称为阈刺激强度。
在此强度以下,动作电位幅度逐渐增大;在此强度以上,动作电位幅度保持不变。
4. 随着刺激频率的增加,动作电位潜伏期逐渐缩短,说明神经传导速度与刺激频率有关。
反射时测定和反射弧分析神经干动作电位的测定2013级生命科学3班张柏辉学号:201325010761.实验目的1.观察蛙坐骨神经干动作电位的基本波形,并了解其产生的基本原理;2.学习测定反射时的方法,了解反射弧的组成;3.了解脊髓反射的功能特性。
2.实验原理(一)反射时测定和反射弧分析反射是指对某一刺激无意识的应答。
反射活动的结构基础称为反射弧,包括感受器、传入神经、神经中枢、传出神经和效应器。
从皮肤接受刺激至机体出现反应的时间称为反射时。
反射时是反射通过反射弧所用的时间。
反射弧的任何一部分缺损,原有的反射不再出现。
中枢的兴奋和抑制同时存在又相互影响。
在脊髓反射的中枢之间或高位脑和脊髓对低位脊髓反射中枢均存在抑制作用,这些抑制作用保证了机体活动的协调性。
(二)神经干动作电位的测定神经干在受到有效刺激后可以产生复合动作电位,标志着兴奋的产生。
如果在立体神经干的一端施加刺激,从另一端引导传来的兴奋冲动可以记录出双相动作电位,假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,此时可以记录到单相动作电位。
3.实验对象与实验材料(一)材料:虎纹蛙(二)器具:手术剪、手术镊、手术刀、金冠剪、眼科剪、毁髓针、玻璃分针、木质蛙板、固定针、锌铜弓、瓷盘、污物缸、滴管、纱布、粗棉线、滤纸片、支架、蛙嘴夹、小烧杯、秒表、神经屏蔽盒、PowerLab、刺激线、USB线、电脑(三)试剂:任氏液、2%普鲁卡因、0.5%及1%硫酸溶液4.实验方法与步骤(一)反射时与反射弧的测定1. 屈反射取一只虎纹蛙,只毁脑髓制成脊蛙(只毁脑),用蛙嘴夹夹住蛙下颌悬挂在支架上,右后肢最长趾浸入0.5%硫酸溶液中2~3mm(<10s),同时开始计时。
当出现屈反射时立即停止计时,并用清水冲洗受刺激皮肤,纱布擦干,重复测屈反射时3次。
同样方法测左后肢最长趾的屈反射时。
2.损毁感受器用手术剪自后肢最长趾基部环切皮肤,后用手术镊剥净长趾上的皮肤,用0.5%硫酸溶液刺激去皮皮肤,并记录侧时结果。
神经干动作电位与不应期的测定实验人:张优学号:13941202 实验日期:2013年9月25日一.实验目的1. 记录与观察蛙坐骨神经干动作电位,了解其产生机制。
2. 测定神经干不应期和阈值。
二.实验原理1.刺激是指能引起细胞兴奋的内外环境理化因素的改变。
这种变化一般应是相当快的,能被细胞所感受的,才能构成所谓的刺激。
刺激条件包括刺激的强度、强度的变化率和刺激持续的时间,常称为刺激的三要素。
2.刺激强度、刺激持继时间和刺激的强度-时间变化率,量化后均应达到某一临界值,才能成为有效的刺激而引起组织细胞兴奋,产生功能活动。
构成有效刺激的三个条件又具有“此消彼长”的相互关系。
3.阈值:刺激持续时间和(强度-时间)变化率固定时,引起组织兴奋所需的最小刺激强度。
(三要素组合构成的有效刺激的最小值)阈刺激:强度等于阈值的刺激。
阈下刺激:强度小于阈值的刺激。
阈上刺激:强度大于阈值的刺激。
4.在峰电位期间,由于大多数钠通道处于失活状态,不可能再接受任何新的刺激而出现新的峰电位,这一时期称为绝对不应期。
绝对不应期之后为相对不应期,标志着一些失活的钠通道已开始恢复,这时只有那些较正常更强的刺激才能引起新的兴奋。
5.实验仪器及试剂刺激伪迹主要由于刺激电极与引导电极之间的电阻性与电容性成分的联系而形成。
电阻性成分包括两条途径,一是刺激电极与放大器的引导电极都有一个公共接地点,刺激电极间的电流也可分流一部分经引导电极进入地线,因而在引导电极与地线之间增加了一个额外的电压降,形成刺激伪迹。
三.实验仪器与试剂1.实验仪器实验台、剪刀、探针、培养皿、吸管、蛙板、玻璃针、细线、RM6240多道生理信号采集系统2.试剂任氏液四.实验材料活青蛙一只五.方法与步骤1.解剖获得青蛙坐骨神经(1)处死青蛙将蛙抓在手中,用食指将其头部压向下方,使其头部与躯干约40°角。
将探针在枕骨大孔处垂直插入,先是左右摆动探针以横断脑和脊髓的联系,再将探针向前方插入颅腔,旋转并摆动探针以捣毁蟾蜍的脑组织。
神经干双向动作电位的引导传导速度及不应期的测定组员:陈良鹏肖瑶伍思静袁果曼罗冰清实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。
实验对象:蟾蜍实验药品和器材:蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液等。
实验原理:1、神经动作电位是神经兴奋的客观标志。
当神经受到有效刺激时,处于兴奋部位的膜外电位负于静息电位;当动作电位通过后,兴奋处的膜外电位又恢复到静息时水平。
神经干兴奋过程所发生的膜电位变化称神经复合动作电位。
如果将两个引导电极置于神经干表面时(双极引导),动作电位将先后通过两个引导电极处,可记录到两个相反的电位偏转波形,称为双向动作电位。
2、神经纤维兴奋的标志是产生一个可传播的动作电位。
测定神经干上的神经冲动的传导速度,可以了解神经的兴奋状态。
在示波器上测量动作电位传导一定距离所耗费的时间,便可计算出兴奋的传导速度。
3、神经与肌肉等可兴奋组织兴奋性在一次兴奋过程中可发生系列变化,即绝对不应期相对不应期超常期和低常期,组织的兴奋性才逐渐恢复。
为了测定神经干在兴奋过程中的兴奋性变化,可先给一个条件刺激以引起神经兴奋,然后再用另一检验性刺激,检查神经对检验性刺激反应的兴奋阈值以及所引起的动作电位(AP)幅度,即可观察到神经组织兴奋性的变化过程。
在本次实验中,主要观察的是不应期的变化,而非整个兴奋性的周期性变化。
实验对象:蟾蜍实验步骤及方法:1.坐骨神经—腓神经标本的制备。
2.将标本放入神经屏蔽盒,(注意刺激电极端为神经干的中枢端)。
3.仪器连接。
4.BL-410的操作。
实验内容:1、刺激坐骨神经时诱发产生的动作电位由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.32ms,时程t1为 1.92ms ,波幅为11.08mV。
实验四、神经干动作电位的观测实验报告实验名称:神经干动作电位的观测一、实验目的1、观察蛙坐骨神经干复合动作电位的基本波形,并了解其产生的基本原理。
2、学习测定蛙或蟾蜍离体神经干上神经冲动传导速度的方法和原理。
3、学习测定神经干兴奋不应期的基本原理和方法。
二、实验原理神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。
如果在离体神经干的一端施加刺激,从另一端引导传来的兴奋冲动,可以记录出双相动作电位;假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,这时候记录出的动作电位就称为单相动作电位。
神经细胞的动作电位是以“全或无”的方式发生的。
但是,复合动作电位的幅值在一定刺激强度下是随刺激强度的增大而增大的。
如果在远离刺激点的不同距离处分别引导离体神经干动作电位,两引导点之间的距离为 m,在两引导点分别引导出的动作电位的时相差为 s。
即可按照公式 u= m/s 来计算兴奋的传导速度(conduction velocity,CV)。
蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为 3~29 um,其中直径最粗的有髓纤维为 A 类纤维,传导速度在正常室温下为 35~40m/s。
神经每兴奋一次及其在兴奋以后的恢复过程中,其兴奋性都要经历一次周期性变化,其全过程依次包括绝对不应期、相对不应期、超常期和低常期 4 个时期。
为了测定坐骨神经在发生一次兴奋以后兴奋性所发生的周期性变化,首先要给神经施加一个条件性刺激(conditioning stimulus,S1)引起神经兴奋,然后在前一兴奋及其恢复过程的不同时相再施加一个测试性刺激(test stimulus,S2),用以检查神经的兴奋阈值以及所引起的动作电位的幅值,以判定神经兴奋性的变化。
当刺激间隔时间长于 25ms 时,S1 和 S2 分别所引起动作电位的幅值大小基本相同。
当 S2 距离 S1 接近 20ms 左右时,发现 S2 所弓引起的第二个动作电位幅值开始减小。