八年级数学上册 第12章 整式的乘除 12.1 幂的运算教案2 (新版)华东师大版
- 格式:doc
- 大小:109.00 KB
- 文档页数:3
12.1 幂的运算教课目的:1. 知识与技术目标:掌握同底数幂的除法的运算法例及其应用.2. 过程与方法目标: 经历研究同底数幂的除法的运算法例的过程,会进行同底数幂的除法运算 . 理解同底数幂的除法的运算算理,发展有条理的思虑及表达能力 .3. 感情态度与价值观目标:经历研究同底数幂的除法运算法例的过程,获取成功的体验,累积丰富的数学经验 . 浸透数学公式的简短美与和睦美 .教课要点:正确娴熟地运用同底数幂的除法运算法例进行计算.教课难点:依据乘、除互逆的运算关系得出同底数幂的除法运算法例 .教课策略1. 教法剖析:运用多种教课方法,显现获取知识和方法的思想过程,既有老师的解说,又有学生着手研究、师生共做、学生小组合作等.2. 学法剖析:以学生为主体,老师为主导,鉴于本节课的特色,应侧重采纳“研究 ----合作 ---- 沟通”的学习方法 .3. 数学思想方法剖析:本节课在教课中向学生浸透的数学思想主要有:转变思想教具:多媒体教课过程(一)创建情境1.表达同底数幂的乘法运算法例.2 .问题:一种数码照片的文件大小是2 8 K ,一个储存量为 2 6 10K )的挪动储存 M ( 1M=2器能储存多少张这样的数码照片?剖析:挪动器的储存量单位与文件大小的单位不一致,因此要先一致单位.挪动储存器的容量为 2 6 ×210 =216 K .因此它能储存这类数码照片的数目为 2 16 ÷28 .2 16 、2 8 是同底数幂,同底数幂相除怎样计算呢?这正是我们这节课要研究的问题. (引入课题)复习同底数 (二)指引研究学生试试,研究公式计算:(1)2522________;( 2)107103=________;(3)a7a3________(a≠0)【答案】( 1) 23;( 2)104;( 3)a4上述运算数有什么规律?学生以小组为单位,睁开议论(三)沟通评论学生显现沟通结果法例:同底数幂相除,底数不变,指数相减.即:a m÷a n=a m- n.(a0 )发问:指数 m, n 之间能否有大小关系?(m,n 都是正整数,而且 m>n)设计企图:学生经过自己的语言归纳同底数幂的除法的法例,能够进一步理解法例同时又培育了学生的语言表达能力.(四)试试应用例 1:计算:(1)a8÷a3; ( 2) (- a) 10÷(- a) 3 ; ( 3) (2 a) 7÷(2 a) 4;解:(8 3= 1)a÷a =(2) (- a) 10÷(- a) 3 == (3) (2 a) 7÷(2 a) 4=== 稳固练习:教材练习1及练习 2 (五)变式训练1.计算:(1)(c)5( c)3(2)( x y)m 3 ( x y)2(3) x10 ( x) 2 x32.若10x 7,10 y 49 ,则 102 x y等于?4【答案】 1.计算:(1)c2(2) ( x+y) m+15x(3)2.(六)小结升华本节课你有什么收获?还有什么疑问?(七)优选作业习题。
同底数幂的乘法教学目标知识与技能会说出同底数的幂乘法的运算法则,会写出它的字母表达式;知道同底数幂的乘法法则也三个或三个以上同底数幂相乘。
会判断两个幂是不是同底数幂,并正确地进行同底数幂乘法运算,其中包括指数是数字或字母;会区分同底数幂相乘和合并同类项是两种不同运算。
过程与方法在探索出同底数幂相乘法则的过程中,让学生从一系列具体实例中感悟这类算式的共同特征,并概括出公式。
以训练学生的归纳能力。
通过把三个同底数幂相乘,用结合律转化成两个同底数幂相乘。
让学生感悟从未知化成已知的化归思想。
情感态度与价值观让学生尝试,探究和利用以前学过的乘方知识,推导出同底数幂的乘法运算法则,使他们感受到数学知识的连贯性,体会到获得成功的乐趣,增强学好数学的信心。
教学重点会判断两个幂是不是同底数幂,并正确地进行同底数幂乘法运算。
教学难点会区分同底数幂相乘和合并同类项是两种不同运算。
教学内容与过程教法学法设计一.复习提问,回顾知识,请看下面的问题:1.请同学们看一看23×24, 53×54, a3×a4这几道题目有什么共同特点?请看算式的变形:23×24=(2 ×2 ×2)(2×2×2×2)=722.请你将另外两个式子进行类似的变形,你能行吗?3.他们的指数,底数各有什么关系?二.导入课题,研究知识本解我们就来研究这类问题-------------同底数幂的乘法面向全体学生提出相关的问题。
明确要研究,探索的问题是什么,怎样去研究和讨论。
.留给学生一定的思考和回顾知识的时间。
为学生创设表现才华的平台。
三.归纳知识:1.同底数的幂的乘法法则:同底数的幂的乘,底数不变,指数相加。
2. 同底数的幂的乘法法则表达式:a m·a n=a m+n3.法则推广:a m·a n·a p=a m+n+p四.应用知识,解决问题:例1.计算:⑴103×104⑵a·a3解:⑴103×104=103+4=107⑵ a·a3=a1+3=a4例2. 计算:⑴ 23×24×25⑵ a·a3·a5解:⑴ 23×24×25=23+4+5=212⑵ a·a3·a5=a1+3+5=a8例3. 下列计算是否对?为什么?⑴a4×b3=a3+4=a7⑵ a4+a4=a8⑶ -x4×(-x)3=-x3+4 =-x7五.课后小结:同底数幂的乘法法则:a m·a n=a m+n六.注意:只有同底数的幂相乘才能把指数相加。
【基本目标】1.理解同底数幂的除法法则.2.运用同底数幂的除法法则计算.【教学重点】掌握同底数幂的除法法则.【教学难点】同底数幂除法的应用.一、创设情景,导入新课×1012km3×1010km3,求地球的体积是月球的多少倍?如何列式?×1012)÷×1010)【教师活动】1012÷1010=?下面我们一起探究.二、师生互动,探究新知【教师活动】完成教材P22填空,由填空你得出了什么规律?【学生活动】经小组交流后,汇报结果.【教学说明】板书:a m÷a n=a m-n,(a≠0,m>n,且m、n为正整数)同底数相除,底数不变,指数相减.【教师活动】乘法与除法互为逆运算,我们能由同底数幂乘法法则来推导它吗?教师引导a n·()=a m.设()=a k.【学生活动】由小组讨论交流后汇报推导结果.【教学说明】我们的认知规律:猜测——归纳——证明.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分.【教学说明】根据反馈情况及时订正,并与法则对比,找准错因.四、典例精析,拓展新知例1一X数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少X这样的照片?【分析】用储量26M除以每X照片的存储量的大小.【答案】28X【教学说明】教师可将此问题类比成总价、单价与数量关系,从而化为同底数幂的除法.例2若32×92a+1÷27a+1=81,求a的值.【分析】将左右都化成3的指数幂再比较对应.【答案】a=3【教学说明】左右两边能否化成同底数幂的运算,如何使用幂的运算法则,强调转化思想.小组活动时注意对学困生的辅导.五、运用新知,深化理解12运算,它工作1015次运算需要秒时间.2m-1÷y=y2,求m+2的值.3【教学说明】由跟踪练习情况及时点评,如y的指数不是0等.六、师生互动,课堂小结这节课你学到了什么?有何收获?有何疑惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课探究新知部分,注意如何使学生从特殊中发现规律,得到一般性结论,再由同底数幂的乘法法则(同底数幂除法法则)证明规律.积极鼓励学生主动地探究数学问题,加深对数学问题的理解,养成良好思维习惯,提高学生的数学素养.。
同底数幂的除法2教学目标:使学生经历同底数幂的除法性质的探索过程。
使学生掌握同底数幂的除法性质,会用同底数幂除法法则进行计算。
重点难点:难点:同底数幂除法法则及应用重点:同底数幂的除法法则的概括。
教学过程:一、引入现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
如果设原来每天能装配x 台机器,那么不难列出方程: 326306=-+x x这个方程左边的式子已不再是整式,这就涉及到分式与分式方程的问题.为了解决这个问题,我们今天先学习同底数幂的除法。
二、探究新知1、探索同底数幂除法法则:我们知道同底数幂的乘法法则:n m n m a a a +=⋅,那么同底数幂怎么相除呢?2、试一试用你熟悉的方法计算:(1)=÷2522________;(2)=371010÷________;(3)=÷37a a ________(a ≠0)3、概括由上面的计算,我们发现:=÷252223= ; =371010÷104= ; =÷37a a .在学生讨论、计算的基础上,教师可提问,你能发现什么?由学生回答,教师板书,发现:=÷252223=25-2;=371010÷104=107-3; =÷37a a a4=a7-3.你能根据除法的意义来说明这些运算结果是怎么得到的吗?分组讨论:各组选出一个代表来回答问题,师生达成共知识,除法与乘法是逆运算,所以除法的问题实际上是“已知乘积和一个乘数,去求另一个乘数”的问题,于是上面的问题可以转化为乘法问题加以解决。
即( )×22=52 ( )×310=710 ( )×3a =7a一般地,设m 、n 为正整数,m>n ,a ≠0,有n m n m a a a -=÷. 这就是说,同底数幂相除,底数不变,指数相减。
12.1 幂的运算教学目标:1.知识与技能目标:掌握同底数幂的除法的运算法则及其应用.2.过程与方法目标:经历探索同底数幂的除法的运算法则的过程,会进行同底数幂的除法运算.理解同底数幂的除法的运算算理,发展有条理的思考及表达能力.3.情感态度与价值观目标:经历探索同底数幂的除法运算法则的过程,获得成功的体验,积累丰富的数学经验.渗透数学公式的简洁美与和谐美.教学重点:准确熟练地运用同底数幂的除法运算法则进行计算.教学难点:根据乘、除互逆的运算关系得出同底数幂的除法运算法则.教学策略1.教法分析:运用多种教学方法,展现获取知识和方法的思维过程,既有老师的讲解,又有学生动手探索、师生共做、学生小组合作等.2.学法分析:以学生为主体,老师为主导,基于本节课的特点,应着重采用“探究----合作----交流”的学习方法.3.数学思想方法分析:本节课在教学中向学生渗透的数学思想主要有:转化思想教具:多媒体教学过程(一)创设情境1.叙述同底数幂的乘法运算法则.2.问题:一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?分析:移动器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=216K.所以它能存储这种数码照片的数量为216÷28.216、28是同底数幂,同底数幂相除如何计算呢?这正是我们这节课要探究的问题.(引入课题)复习同底数(二)引导探究学生尝试,探索公式计算:(1)=÷2522________;(2)=371010÷________;(3)=÷37a a ________(a ≠0)【答案】(1)23;(2)104;(3)a 4上述运算数有什么规律?学生以小组为单位,展开讨论(三)交流评价学生展示交流结果法则:同底数幂相除,底数不变,指数相减.即:a m ÷a n =a m -n .(0≠a ) 提问:指数n m ,之间是否有大小关系?(m ,n 都是正整数,并且m >n )设计意图:学生通过自己的语言概括同底数幂的除法的法则,可以进一步理解法则同时又培养了学生的语言表达能力.(四)尝试应用例1:计算:(1)a 8÷a 3; (2)(-a )10÷(-a ) 3; (3)(2a )7÷(2a )4;解:(1)a 8÷a 3== (2)(-a )10÷(-a ) 3== (3)(2a )7÷(2a )4===巩固练习:教材练习1及练习2(五)变式训练1.计算:(1)35)()(c c -÷-(2)23)()(y x y x m +÷++(3)3210)(x x x ÷-÷ 2.若4910,4710==y x ,则y x -210等于? 【答案】1.计算:(1)c ²(2)(x +y )m +1(3)x 52.(六)小结升华本节课你有什么收获?还有什么疑问?(七)精选作业习题欢迎您的下载,资料仅供参考!。
八年级数学上册第12章整式的乘除12.1 幂的运算1 同底数幂的乘法教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第12章整式的乘除12.1 幂的运算1 同底数幂的乘法教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第12章整式的乘除12.1 幂的运算1 同底数幂的乘法教案(新版)华东师大版的全部内容。
同底数幂的乘法类型教具多媒体教学活动教学步骤师生活动设计意图回顾由学生独立完成下列题目,教师引导学生复习乘方的相关知识.多媒体展示活动内容如下:运用乘方知识完成下列各题.(1)n个相同因数积的运算叫做________,乘方的结果叫做________,则写成乘方的形式为:________,其中a叫________,n叫________,a n读作:________.(2)x3表示________个________相乘,把x3写成乘法的形式为:x3=________.(3)(3)x3,x5,x,x2,它们的指数相同吗?它们的底数相同吗?让学生回顾乘方的相关知识,为同底数幂的乘法的学习作铺垫.活动【课堂引入】1.a n表示的意义是什么?,其中a、n、a n分别叫做什从学生的已有的知识出。
整式乘除教学目标知识与技能理解掌握整式乘除法的法则.公式,并能够运用整式进行整式乘除法的运算。
过程与方法知识再认,运用理解,训练强化,巩固提高。
情感态度与价值观培养学生好的学习习惯。
教学重点整式乘除法的法则及、公式教学难点理解整式灵活解题。
教学内容与过程教法学法设计一. 复习提问,回顾知识,请看下面的问题:1. 整式乘法都有哪些?各种运算的法则是什么?2.乘法公式都有哪些?他们的表达形式各是什么?3.幂的运算公式有哪些?他们的表达形式各是什么?4.整式除法都有哪些?各种运算的法则是什么?二. 导入课题,研究知识:本节课我们来复习整式的乘法面向全体学生提出相关的问题。
明确要研究,探索的问题是什么,怎样去研究和讨论。
.留给学生一定的思考和回顾知识的时间。
为学生创设表现才华的平台。
三.归纳知识,培养能力: 1.整式的乘法法则; 2.整式的除法法则; 3..乘法公式;4. .幂的运算公式. 四.运用知识,分析解题: (一)知识填空: 1.yxxy 23233•-= ;2.()ba b a 6322332+•= ; 3.()()y x y x 2352-+= ; 4.()()m m 2121+-= ;5.()542+x = ;6.()()87+-y y = ; (二)计算题: 1.()()ca bc ba --÷•222332;2.()34232+-a a a ;3.xy xy y x x y 2643223÷⎪⎭⎫ ⎝⎛-+;4.()()95+-xy xy .五.课堂练习:请见教材,练习册。
六.课后小结:整式乘除法知识的复习 七.课后作业:复印给学生。
从习题中了解学生对知识的掌握程度,完善学生的不足。
1.带领学生核对基础知识练习的答案,鼓励学生总结每题所用的知识,并说出知识是怎样利用的。
2.引导学生做中等难度的练习,鼓励学生总结每题所用的知识。
3.引导学生分组讨论做出较难的练习,并鼓励学生在做题时能从多个侧面、多个出发点考虑问题,从而开阔学生的思路。
12.1.2 幂的乘方1.理解幂的乘方法则.2.运用幂的乘方法则计算.重点理解幂的乘方法则.难点幂的乘方法则的灵活运用.一、创设情境大家知道太阳、木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍.假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V =43πr 3) 学生活动:进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V 木星=43π(102)3. 二、探究新知做一做根据乘方的意义及同底数幂的乘法填空:(1)(23)2=23×23=2( );(2)(32)3=32×32×32=3( );(3)(a 3)4=a 3·a 3·a 3·a 3=a ( ).提出问题:(1)同学们通过上述这几道题的计算,观察一下,这几道题目有什么共同特点?(2)请同学们看一看自己的计算结果,想一想,这些结果有什么规律?教师活动:组织学生进行思考与交流,让学生通过讨论、争议,探究出规律.学生活动:合作学习.教学方法:合作探究.点评:学生通过“做一做”以及探索规律,充分应用乘方的意义和同底数幂的乘法法则导出规律:(23)2=23×2=26,(32)3=32×3=36,(a 3)4=a 3×4=a 12.提出问题:根据上述探索所得的规律,完成下面的填空:(a m )n =a ( ).有(a m )n =a mn(m,n 为正整数).教师活动:提出问题,引导、启发.学生活动:自主探索、讨论、回答.教学方法:合作交流.通过问题的提出,再依据“做一做”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动构建,获得新知:幂的乘方,底数不变,指数相乘.三、练习巩固1.108=( )2=( )4.2.p2n+2=( )2.3.(-x3)5=________.4.x2·x4+[(-x)2]3=________.5.已知x m·x2m=3,则x9m=________.6.计算:(1)(103)5;(2)(b3)4.四、小结与作业小结1.幂的乘方(a m)n=a mn(m,n为正整数)使用范围是:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,也可以是字母,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.作业教材第24页习题12.1第2题.本节课在熟悉乘方的意义与同底数幂的法则的前提下推导幂的乘方法则,在教学过程中注意引导学生运用转化思想来解决新问题.在拓展新知时,注意联想与逆向思维能力的培养.。