数列极限教案
- 格式:doc
- 大小:316.55 KB
- 文档页数:8
高等数学说课稿《数列极限》(精选5篇)第一篇:高等数学说课稿《数列极限》《数列极限》说课稿袁勋这次我说课的内容是由盛祥耀主编的《高等数学》(上册)第一章第二节极限概念中的数列极限。
这部分内容在课本第18页至20页。
下面我把对本节课的教学目的、过程、方法、工具等方面的简单认识作一个说明。
一、关于教学目的的确定:众所周知,对极限这个概念的理解是高等数学的学习基础,但由于学生对数列极限概念及其定义的数学语言表述的理解比较困难,这种理解上的困难将影响学生对后继知识的学习,因此,我从知识、能力、情感等方面确定了本次课的教学目标。
1.在知识上,使学生理解极限的概念,能初步利用极限定义确定某些简单的数列极限;2.在能力上,培养学生观察、分析、概括的能力和在探索问题中的,由静态到动态、由有限到无限的辨证观点。
体验‚从具体到抽象,从特殊到一般再到特殊‛的认识过程;3.在情感上,通过介绍我国古代数学家刘徽的成就,激发学生的民族自尊心和爱国主义思想情感,并使他们对数列极限知识有一个形象化的了解。
二、关于教学过程的设计:为了达到以上教学目的,根据两节。
在具体教学中,根据‚循序渐进原则‛,我把这次课分为三个阶段:‚概念探索阶段‛;‚概念建立阶段‛;‚概念巩固阶段‛。
下面我将对每一阶段教学中计划解决的主要问题和教学步骤作出说明。
(一)‚概念探索阶段‛ 1.这一阶段要解决的主要问题在这一阶段的教学中,由于注意到学生在开始接触数列极限这个概念时,总是以静止的观点来理解这个描述变化过程的动态概念,总觉得与以前知识相比,接受起来有困难,似乎这个概念是突然产生的,甚至于不明概念所云,故我在这一阶段计划主要解决这样几个问题:①使学生了解以研究函数值的变化趋势的观点研究无穷数列,从而发现数列极限的过程;②使学生形成对数列极限的初步认识;③使学生了解学习数列极限概念的必要性。
2.本阶段教学安排我采取温故知新、推陈出新的教学过程,分三个步骤进行教学。
数列极限教案教案标题:数列极限的引入与探究教学目标:1. 理解数列以及数列极限的概念;2. 了解数列极限的性质和特征;3. 能够利用数学思维和分析方法确定数列的极限;4. 运用数列极限的性质解决实际问题。
教学准备:1. 数学课本和课后习题;2. 计算器;3. 幻灯片或黑板;4. 学生练习册。
教学过程:1. 导入(5分钟)- 引入数列的概念,简单解释数列是一组按照特定规律排列的数的集合。
- 讨论学生可能听说过的数列,比如等差数列、等比数列等。
2. 引入与讲解(15分钟)- 引入数列极限的概念,解释数列极限表示数列随着项数增加逐渐趋近于某一确定值。
- 通过示例,说明数列极限的计算方法,如通过求前几项的和、平均数等思路确定数列极限。
3. 探究与实践(20分钟)- 提供一个数列,让学生通过计算数列的前几项,并分析得出数列极限的思路和方法。
教师引导学生进行讨论,并指导他们运用找规律、分析数列的增减性等方法确定极限值。
- 给学生一些练习题,让他们自己计算数列极限。
教师鼓励学生之间积极合作,共同解决问题。
4. 总结与归纳(10分钟)- 总结数列极限的定义和性质,强调数列极限与数列前几项的关系。
- 归纳数列极限的计算方法和常见性质。
- 梳理学生在实践中遇到的问题和解决方法。
5. 提升与拓展(15分钟)- 引导学生运用数列极限的概念和性质解决实际问题,如数列极限在物理学、经济学等领域的应用。
- 指导学生在练习册上完成更复杂的数列极限计算题目,提高他们的应用能力。
6. 课堂练习与反馈(15分钟)- 布置一些课后习题,巩固学生对数列极限的理解和计算能力。
- 鼓励学生积极讨论和交流,互相评价和纠正。
- 对学生的练习成果给予及时的反馈和指导。
教学延伸:在数列极限的教学中,可以结合微积分的相关内容,如导数、积分等,对数列极限的计算和应用进行进一步拓展。
同时,可以邀请学生进行小组合作探究,通过引导学生提出自己的问题和解决思路,增加学生对数学的探索性和创造性。
1. 知识与技能:掌握数列极限的定义、性质及运算;能够运用数列极限解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,引导学生自主探索数列极限的概念;通过实例讲解,帮助学生理解数列极限的运算方法。
3. 情感态度与价值观:培养学生严谨求实的科学态度,提高学生的逻辑思维能力;激发学生对数学学习的兴趣,培养学生对数学美的感悟。
二、教学重点与难点1. 教学重点:数列极限的定义、性质及运算。
2. 教学难点:数列极限的定义的理解和应用,以及数列极限运算的技巧。
三、教学过程1. 导入新课(1)回顾数列的概念,引导学生思考数列的极限是什么。
(2)通过实例展示数列极限在实际问题中的应用,激发学生的学习兴趣。
2. 新课讲授(1)数列极限的定义:讲解数列极限的定义,结合实例进行说明。
(2)数列极限的性质:介绍数列极限的性质,通过实例讲解,让学生理解这些性质。
(3)数列极限的运算:讲解数列极限的运算方法,包括和、差、积、商的运算。
3. 课堂练习(1)布置一些关于数列极限的定义、性质及运算的练习题,让学生巩固所学知识。
(2)引导学生运用数列极限解决实际问题,提高学生的应用能力。
4. 课堂小结(1)回顾本节课所学内容,强调数列极限的定义、性质及运算。
(2)引导学生思考数列极限在实际问题中的应用,激发学生的学习兴趣。
5. 作业布置(1)布置一些关于数列极限的定义、性质及运算的作业题,让学生巩固所学知识。
(2)布置一些与实际生活相关的数列极限应用题,提高学生的实际应用能力。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度,了解学生对数列极限的理解程度。
2. 作业完成情况:检查学生作业的完成情况,了解学生对数列极限的掌握程度。
3. 课后反馈:通过课后与学生的交流,了解学生对数列极限的困惑和需求,及时调整教学策略。
五、教学反思1. 教学过程中,注重引导学生自主探索数列极限的概念,培养学生的逻辑思维能力。
2. 结合实例讲解数列极限的运算方法,提高学生的实际应用能力。
高中数学数列极限教案
教学内容:数列极限
教学目标:学生能够理解数列极限的概念,掌握求解数列极限的方法,并能够应用数列极限解决实际问题。
教学重点和难点:数列极限的定义和求解方法。
教学步骤:
一、引入问题(10分钟)
1. 介绍数列的概念,引出数列极限的概念。
2. 提出一个简单的数列极限问题,并引导学生讨论。
二、概念解释(15分钟)
1. 讲解数列极限的定义和性质。
2. 举例说明数列极限的计算方法。
三、练习与讨论(20分钟)
1. 解决几个简单的数列极限计算问题。
2. 练习讨论中出现的疑惑和困惑。
四、拓展应用(15分钟)
1. 提出一些数列极限在实际问题中的应用。
2. 引导学生思考如何将数列极限应用到实际问题的解决中。
五、总结与课堂小结(10分钟)
1. 总结数列极限的概念、性质和求解方法。
2. 完成本节课的课堂小结。
教学方法:讲授结合练习,引导学生主动探究。
课后作业:完成课后练习题,巩固数列极限的计算方法。
教学反思:本节课主要以数列极限的概念和求解方法为主线,通过引入问题、概念解释、练习与讨论、拓展应用等环节,引导学生深入理解数列极限的概念和性质,提高学生的数
学解决问题的能力。
同时,注重引导学生思考和应用,帮助学生将数学知识与实际问题相结合,培养学生的数学思维能力和创新能力。
一、教学目标1. 理解数列极限和函数极限的基本概念。
2. 掌握数列极限和函数极限的基本性质。
3. 熟悉并运用极限的四则运算和复合函数的极限运算法则。
4. 能够运用极限知识解决实际问题。
二、教学内容1. 数列极限的定义与收敛性。
2. 函数极限的定义与存在性判别法。
3. 极限的性质和运算法则。
4. 常见极限的计算。
三、教学重点与难点重点:1. 数列极限和函数极限的定义。
2. 极限的性质和运算法则。
难点:1. 极限存在性的判别。
2. 复合函数极限的计算。
四、教学过程第一课时:数列极限1. 导入:通过实例引入数列的概念,引导学生思考数列的极限问题。
2. 讲解:- 数列极限的定义:给定数列{xn},如果存在常数A,对于任意给定的正数ε,存在正整数N,使得当n>N时,|xn - A| < ε,则称数列{xn}的极限为A。
- 收敛数列的性质:唯一性、有界性、局部保号性、子列收敛性。
3. 练习:让学生举例说明收敛数列的性质,并计算一些数列的极限。
4. 总结:强调数列极限的定义和收敛数列的性质,为后续学习函数极限打下基础。
第二课时:函数极限1. 导入:通过数列极限的概念引入函数极限的概念。
2. 讲解:- 函数极限的定义:给定函数f(x),如果当x趋向于x0时,f(x)的极限为A,则称f(x)在x=x0处的极限为A。
- 函数极限存在判别法:海涅定理、充要条件、柯西准则。
3. 练习:让学生举例说明函数极限存在判别法,并计算一些函数的极限。
4. 总结:强调函数极限的定义和存在判别法,为后续学习极限的性质和运算法则打下基础。
第三课时:极限的性质和运算法则1. 导入:通过函数极限的概念引入极限的性质和运算法则。
2. 讲解:- 极限的性质:唯一性、有界性、局部保号性、子列收敛性。
- 极限的运算法则:四则运算、复合函数的极限运算法则。
3. 练习:让学生运用极限的性质和运算法则计算一些极限。
4. 总结:强调极限的性质和运算法则,为后续学习常见极限的计算打下基础。
数列的极限教案教案标题:数列的极限教案教案目标:1. 理解数列的概念和基本性质。
2. 掌握数列极限的定义和计算方法。
3. 能够应用数列极限解决实际问题。
教学资源:1. 教科书或课件:包含数列的定义、基本性质和极限的计算方法。
2. 习题集:包含不同难度层次的数列极限计算题目。
3. 实际问题:包含数列极限应用的实际问题,如金融、物理等领域。
教学步骤:引入:1. 通过提问或展示实例,引发学生对数列的兴趣,例如:什么是数列?数列的应用有哪些?2. 引导学生思考数列的特点和规律,以激发他们对数列极限的好奇心。
探究:3. 解释数列极限的定义:当数列的项逐渐趋近于某个常数L时,我们说数列的极限是L。
4. 讲解数列极限的计算方法:a. 若数列是等差数列或等比数列,可直接根据公式计算极限。
b. 若数列不是等差数列或等比数列,可通过递推关系或数学归纳法推导极限。
实践:5. 给予学生一些简单的数列极限计算练习题,以巩固他们对极限计算方法的理解和应用能力。
6. 引导学生分析实际问题,并将其转化为数列极限问题,例如:一个投资人每年投资1000元,年利率为5%,求他的总投资额极限是多少?7. 提供一些实际问题的解决方法,帮助学生将数列极限与实际问题相结合。
拓展:8. 提供一些挑战性的数列极限计算题目,以培养学生的逻辑思维和解决问题的能力。
9. 鼓励学生自主探究其他数列极限的计算方法,并进行讨论和分享。
总结:10. 总结数列极限的概念和计算方法,强调数列极限在实际问题中的应用意义。
11. 鼓励学生通过课后练习巩固所学知识,并提供必要的辅导和指导。
评估:12. 设计一些评估题目,测试学生对数列极限概念的理解和计算方法的掌握程度。
13. 通过学生的表现和答案,评估教学效果,并根据需要进行针对性的复习和强化训练。
备注:教案的具体内容和教学步骤可根据不同教育阶段的要求进行调整和适应。
在教学过程中,教师应根据学生的实际情况和学习能力,灵活运用不同的教学方法和教学资源,以提高教学效果。
高中数学人教版《数列的极限》教案2023版一、教学目标通过本节课的学习,学生应能够:1.了解数列的概念并能正确表达;2.掌握数列的极限的概念;3.掌握求解数列极限的方法;4.能在实际问题中应用数列极限的知识。
二、教学重点1.数列的概念和性质;2.数列极限的定义;3.数列极限的求解方法。
三、教学内容1.数列的概念和性质数列是由一系列有序数按照某种规律排列而成的序列。
数列通常用{an}表示,其中an表示第n个数。
2.数列极限的定义设数列{an}是一个实数数列,如果存在实数A,对于任意给定的正数ε,都存在正整数N,使得当n>N时,|an - A|<ε成立,就称数列{an}的极限是A,记作lim{an} = A。
3.数列极限的求解方法(1)常数数列的极限:对于一个常数数列{c},其极限为该常数本身,即lim{c} = c。
(2)等差数列的极限:对于一个等差数列{an} = a1 + (n-1)d,其中a1为首项,d为公差,若d≠0,则该等差数列不存在极限。
(3)等比数列的极限:对于一个等比数列{an} = a1 * q^(n-1),其中a1为首项,q为公比,若|q|<1,则该等比数列的极限为0,即lim{an} = 0。
四、教学步骤1.引入数列的概念通过举例说明,引导学生理解什么是数列以及数列的基本性质。
2.引入数列极限的概念通过实际例子,引导学生感受数列极限的概念,并进行数学表达。
3.讲解数列极限的定义详细讲解数列极限的定义及其符号表示,帮助学生理解和记忆。
4.介绍求解数列极限的方法逐一介绍常数数列、等差数列和等比数列的极限求解方法,并通过例题进行讲解。
5.综合运用数列极限知识解决实际问题引导学生将数列极限的知识应用到实际问题的解决中,培养学生的问题解决能力。
五、教学示例例题1:设数列{an} = 2n + 1,求lim{an}。
解:由数列的定义可知,lim{an} = lim(2n + 1) = lim 2n + lim 1 = +∞ + 1 = +∞。
数列的极限_教学设计标题:数列的极限教学目标:1.理解数列的概念和性质。
2.掌握计算数列极限的方法和技巧。
3.能够用数列的极限解决实际问题。
教学准备:1. PowerPoint课件。
2.数列的题目集。
3.学生小组讨论活动准备。
教学过程:Step 1: 引入(15分钟)1.引导学生回顾数列的定义,解释数列的概念和性质。
2.引导学生思考一个问题:“数列的极限是什么,它有什么意义?”鼓励学生展示自己的观点。
Step 2: 数列极限的定义和计算方法(30分钟)1.展示数列的极限的定义和计算方法,用图示和公式两种方式解释。
2.给学生提供一些简单的数列,帮助他们通过计算极限来理解定义的意义。
3.演示一些复杂的数列,引导学生运用计算方法计算极限。
Step 3: 数列极限的性质和应用(30分钟)1.介绍数列极限的性质,如唯一性和保序性。
2.展示数列极限的应用,如在实际问题中求解极限。
3.提供一些实际问题,引导学生运用数列极限来解决这些问题。
Step 4: 小组讨论活动(20分钟)1.将学生分成小组,每个小组讨论一个数列相关的问题。
2.每个小组选一名代表分享讨论结果,并得到其他小组的反馈和讨论。
3.鼓励学生从不同角度思考问题,培养团队合作和表达能力。
Step 5: 总结与评价(15分钟)1.总结数列的极限的概念、性质和计算方法。
2.让学生回答一些问题,检测他们对于数列极限的理解和应用能力。
3.鼓励学生提出自己的疑惑和思考,给予评价和指导。
教学拓展:1.引导学生练习更多的数列极限计算题目,巩固他们的计算能力。
数列极限教学设计数列极限是高中数学中的重要内容,是数学分析的基础。
学生在学习数列极限时,可能会遇到一些困难,特别是对于概念理解和数学符号的掌握。
因此,我设计了以下教学方案,帮助学生更好地理解和掌握数列极限。
一、教学目标:1. 了解数列及其极限的概念;2. 掌握常见数列极限的计算方法;3. 培养学生的逻辑思维和数学推理能力。
二、教学内容:1. 数列的定义和性质;2. 数列极限的概念和判定方法;3. 数列极限的计算方法。
三、教学过程:1. 导入(5分钟)使用一道简单的问题作为引入,如:小明每天跑步训练,第一天跑1km,第二天跑2km,第三天跑3km,以此类推,问小明跑得越久,跑的距离是否会无限增加?2. 概念讲解(15分钟)介绍数列的概念和性质,引导学生理解数列的定义,并讨论数列的有界性和单调性。
3. 数列极限的概念和判定方法(20分钟)解释数列极限的定义,引导学生理解数列无穷接近某一值的概念。
然后,介绍数列极限的判定方法,包括数列的单调有界准则和夹逼定理。
通过一些例题,帮助学生掌握这些判定方法。
4. 数列极限的计算方法(30分钟)分别讲解常见数列的极限计算方法,如等差数列、等比数列和特殊数列。
重点强调数列极限的计算需要运用代数运算和极限运算的性质,教师可辅以具体的计算步骤和示例。
5. 实例练习(20分钟)让学生进行一些实例题的练习,既巩固了知识点,又锻炼了学生的计算能力和分析能力。
可以设计一些难度递增的题目,帮助学生逐步提升解题能力。
6. 讨论和总结(10分钟)与学生一起讨论实例题的解答过程和方法,检查学生的理解程度。
教师可以引导学生总结数列极限的计算方法和判定方法,梳理重点和难点。
四、教学手段和辅助材料:1. 板书:将数列的定义、性质、极限的概念、判定方法和计算方法等内容进行适当的板书。
2. PPT:准备相关的PPT,用于展示数列的定义、概念、判定方法和计算方法等内容。
帮助学生更加直观地理解和掌握相关知识。
7.7数列的极限(第2课时)【教案】 教学目标:1.理解数列极限的概念,会求一些简单数列的极限. 2.观察运动和变化的过程,提高概括、抽象思维能力. 教学重点:数列极限的概念以及简单数列的极限的求解. 教学难点:数列极限的定义的理解.教学过程:一、情景引入:复习回顾:什么是数列极限的定义?一般地,在n 无限增大的变化过程时,如果无穷数列{}n a 中的项na 无限趋近于某一个常数a ,那么a 叫做数列{}n a 的极限.二、概念形成:提问1:在定义中,如何理解“无限趋近于某一个常数a ”? 提问2:用什么来体现这种无限趋近的过程呢? 思考并讨论给出结论:用n a 和a 之间的距离的缩小过程,即 a a n - 趋近0现在以数列n na nn )1(-=为例说明这种过程观察:距离量化:nn a n n 10)1(0=--=-,随着n 的增大,n 1的值越来越小,不论给定怎样小的一个正数(记为ε),只要n 充分的大,都有n1比给定的正数小. 三、概念应用: 已知数列⎭⎬⎫⎩⎨⎧+-11n n ① 把这个数列的前5项在数轴上表示出来. ②写出n 1-n a 的解析式. ③⎭⎬⎫⎩⎨⎧+-11n n 中的第几项以后的所有项都满足10011<-n a ④指出数列⎭⎬⎫⎩⎨⎧+-11n n 的极限.四、课堂反馈例 判断下列命题的真假:(1)数列 ,2)1(1,,1,0,1,0n-+的极限是0和1. (2)数列 ,21)1(,,21,21,21,11132-+⋅---n n 的极限是0.(3)数列 ,1sin ,,31sin ,21sin ,1sin n 的极限不存在.(4)数列10000231,,31,31,1 的极限是0.分析:判断一个数列否存在极限,极限是多少,主要依据极限的定义,即数列的变化趋势.解:(1)一个数列的极限如果存在,它的极限是唯一的,不能是两个或更多个,是假命题.(2)随着n 无限增大,数列⎭⎬⎫⎩⎨⎧⋅--+1121)1(n n 的项无限趋近于0,因此它的极限是0,是真命题.(3)随着n 无限增大,数列⎭⎬⎫⎩⎨⎧n 1的项无限趋近于0,因此数列⎭⎬⎫⎩⎨⎧n 1sin 无限趋近于0,是假命题.(4)有穷数列无极限,是假命题. 说明:(3)中容易认为极限不存在.(4)容易错误认为是真命题,尽管数列⎭⎬⎫⎩⎨⎧-131n 随着n 的增大而逐渐趋近于0,但由于数列只有10001项,是有穷数列,不存在极限.五、课堂小结1.如何理解极限定义中的“无限趋近”2.如何由定义来判断数列有无极限六、作业布置:课本P39页 练习7.2(2)第1、2、3、4题【情景资源】情景1:冬天,洁白的雪花飘落时十分漂亮。
数列极限的计算与应用备课教案一、教学目标通过本节课的学习,使学生掌握数列极限的计算方法,了解数列极限在实际问题中的应用,并能够灵活运用所学知识解决相关问题。
二、教学重点1. 掌握数列极限的计算方法;2. 理解数列极限在实际问题中的应用。
三、教学内容与步骤1. 引入:可以通过一个生活案例来引入数列极限的概念。
比如,小明每天写一篇日记,第一天写了1页,第二天写了2页,以后每天都比前一天多写1页。
现在问,小明会写多久能写满一本100页的日记呢?通过这个问题,引导学生思考数列极限的概念。
2. 讲解数列的极限计算方法:(1)数列极限的定义:如果对于任意给定的正数ε(epsilon),都存在正整数N,使得当n>N时,|an-a|<ε,则称数列{an}的极限为a。
(2)数列收敛与发散:- 如果数列有极限,称为收敛数列;- 如果数列没有极限,称为发散数列。
(3)数列极限计算方法:- 常数数列的极限等于该常数;- 数列{an} = 1/n的极限为0;- 数列{an} = n的极限为+∞;- 数列{an} = (-1)^n的极限不存在。
3. 练习与讨论:结合具体的数列,进行练习与讨论,让学生熟悉应用数列极限计算方法的过程。
比如,给出数列{an} = n/(n+1),让学生计算其极限并进行讨论。
4. 数列极限的应用:介绍数列极限在实际问题中的应用。
比如,某公司每年销售金额增长10%,第一年销售额为100万元,问第n年的销售额会达到多少万元?通过这个问题,引导学生运用数列极限的概念解决实际问题。
5. 拓展与应用:让学生通过查阅资料或思考,找到更多与数列极限相关的实际问题,并尝试解决。
四、教学方法1. 归纳法:通过归纳总结数列极限的计算方法,加深学生对于概念的理解。
2. 控状结合法:引入生活案例、练习题与实际问题结合,使学生主动参与思考与讨论,提高学习的实际效果。
五、教学评价1. 准确性评价:学生应能正确运用数列极限的计算方法,解决相关的练习题和实际问题。
章节、内容授课时间及班级授课周次教具教材地位教材分析教学重点教学难点教学关键知识目标能力目标教学目标分析情感目标学生知识现状分析教学方法教法分析分析学法分析教学过程设计《高等数学》——数列极限教学设计§1.2 极限(数列极限)2017 年 6 月 2 日 1、2 节电子技师 3 班第 14 周授课时间 1 课时 45 分钟三角板、圆规众所周知,数列极限这个概念的理解是学习导数所必备的知识,另外,极限也是从初等数学的思维方式到高等数学的思维方式的质的转变。
数列极限的概念。
如何从变化趋势的角度,来正确理解数列极限的概念。
教学中启发学生在分析问题时抓住问题的本质(即定义)。
从数列的变化趋势来理解极限的概念;能初步利用极限定义确定某些简单的数列极限;体会极限思想。
1、通过设置问题情境、数列变化趋势的分析,使学生理解数列极限的定义,学会数学语言的表述,培养学生观察、分析、概括的能力。
2、通过分层练习,使学生的基础知识得到进一步的巩固,进而学会数列极限的分析方法,体会在探索问题中由静态到动态、由有限到无限的辨证观点,感受“从具体到抽象,从特殊到一般再到特殊”的认识过程。
1、通过介绍我国古代思想家庄周和数学家刘徽,激发学生的民族自尊心和爱国主义思想情感。
2、通过介绍生活中的极限运动和极限精神,激发学生的学习积极性,优化学生的思维品质。
授课对象为二年级学生,有部分高中毕业生、大多数是初中毕业生、学生基础层次差距较大;多数学生欠缺学习方法,不善于自己分析探究,习惯于教师的讲授;另外数学语言表达存在一定问题。
但已具备一定的初等数学基础知识。
根据本节课的内容和学生的实际水平,整节课以教师为主导、学生为主体、启发思维为主线;并采用班内“隐性”分层教学,接合讲授法、演示法、讨论法、探究法等方法。
1、自主学习:学生自己通过预习,了解所学知识2、探究合作学习:通过教师的引导,学生合作探究,互相交流,解决教学中出现的问题。
一、教学目标1. 知识与技能目标:(1)理解数列极限的概念,掌握数列极限的定义。
(2)学会运用数列极限的定义解决实际问题。
(3)掌握数列极限的性质,能够判断数列的收敛性和发散性。
2. 过程与方法目标:(1)通过观察、分析、归纳等方法,发现数列极限的性质。
(2)通过实例分析,培养学生的逻辑推理能力。
(3)通过小组讨论、合作学习,提高学生的团队协作能力。
3. 情感态度与价值观目标:(1)激发学生对数学的兴趣,培养学生对数学知识的热爱。
(2)培养学生严谨、求实的科学态度。
(3)培养学生的创新意识和终身学习能力。
二、教学重点与难点1. 教学重点:(1)数列极限的定义。
(2)数列极限的性质。
2. 教学难点:(1)理解数列极限的定义。
(2)运用数列极限的定义解决实际问题。
三、教学过程1. 导入新课通过回顾数列的概念,引导学生思考数列的变化趋势,引出数列极限的定义。
2. 教学内容(1)数列极限的定义通过实例分析,讲解数列极限的定义,让学生理解数列极限的概念。
(2)数列极限的性质通过观察、分析、归纳等方法,发现数列极限的性质,如单调有界准则、夹逼准则等。
(3)数列极限的判断讲解如何判断数列的收敛性和发散性,包括单调有界准则、夹逼准则等。
3. 练习与巩固布置一些练习题,让学生运用所学知识解决实际问题,巩固所学内容。
4. 小组讨论与合作组织学生进行小组讨论,让学生在合作中学习,共同解决问题。
5. 总结与反思引导学生总结本节课所学内容,反思自己的学习过程。
四、教学评价1. 课堂表现评价观察学生在课堂上的参与程度、回答问题的准确性等。
2. 作业完成情况评价检查学生作业的完成情况,了解学生对知识的掌握程度。
3. 课堂练习评价通过课堂练习,评价学生对数列极限的定义、性质等知识的掌握情况。
五、教学反思1. 教学过程中,注意引导学生理解数列极限的定义,避免死记硬背。
2. 在讲解数列极限的性质时,注重实例分析,帮助学生更好地理解。
课时:1课时教学目标:1. 知识与技能:使学生掌握数列极限的定义、性质和运算法则,能够运用数列极限求解相关问题。
2. 过程与方法:通过微课教学,培养学生自主学习、分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生严谨、求实的科学态度。
教学内容:1. 数列极限的定义2. 数列极限的性质3. 数列极限的运算法则4. 数列极限的应用教学过程:一、导入1. 利用生活中的实例,引导学生思考数列极限的概念。
2. 提出问题:如何判断一个数列的极限存在?如何求解数列的极限?二、新课讲授1. 数列极限的定义- 通过动画演示,展示数列极限的定义过程。
- 强调数列极限存在的条件:数列中所有项无限趋近于同一个数。
- 举例说明数列极限的概念。
2. 数列极限的性质- 介绍数列极限的性质,如:有界性、单调性、收敛性等。
- 通过实例讲解数列极限的性质,让学生理解并掌握。
3. 数列极限的运算法则- 介绍数列极限的运算法则,如:四则运算法则、夹逼准则等。
- 通过实例讲解数列极限的运算法则,让学生掌握并运用。
4. 数列极限的应用- 举例说明数列极限在数学问题中的应用,如:求解极限、证明数列收敛等。
- 引导学生思考数列极限在实际问题中的应用价值。
三、课堂练习1. 给学生布置数列极限的相关练习题,要求学生在规定时间内完成。
2. 教师巡视指导,解答学生在练习过程中遇到的问题。
四、课堂小结1. 回顾本节课所学内容,强调数列极限的定义、性质和运算法则。
2. 引导学生总结数列极限在实际问题中的应用。
五、课后作业1. 布置数列极限的相关练习题,巩固所学知识。
2. 要求学生在课后复习数列极限的定义、性质和运算法则,为下一节课做好准备。
教学反思:1. 本节课通过微课教学,使学生更好地理解数列极限的概念和性质。
2. 在教学过程中,注重启发式教学,引导学生主动思考、解决问题。
3. 课后作业的设计有助于巩固所学知识,提高学生的数学能力。
课程名称:高等数学授课对象:大学本科生课时安排:2课时教学目标:1. 知识与技能:使学生掌握数列极限的定义、性质和运算法则,并能运用这些知识解决实际问题。
2. 过程与方法:通过小组讨论、案例分析等方式,培养学生分析问题和解决问题的能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生严谨、求实的科学态度。
教学重点:1. 数列极限的定义和性质。
2. 数列极限的运算法则。
教学难点:1. 数列极限定义的理解和应用。
2. 数列极限运算法则的应用。
教学准备:1. 教学课件2. 数列极限相关习题3. 小组讨论问题教学过程:第一课时一、导入1. 回顾数列的定义,引导学生思考数列极限的概念。
2. 提出问题:如何判断一个数列的极限是否存在?如何求一个数列的极限?二、新课讲解1. 介绍数列极限的定义:当n趋向于无穷大时,数列{an}的项an趋向于一个确定的数A,记作lim(an) = A。
2. 讲解数列极限的性质:数列极限的保号性、保序性、唯一性等。
3. 介绍数列极限的运算法则:和、差、积、商的极限运算法则。
三、案例分析1. 给出几个数列,引导学生判断其极限是否存在,并求出其极限。
2. 通过案例分析,帮助学生理解数列极限的定义和性质。
四、课堂小结1. 总结本节课所学内容,强调数列极限的定义、性质和运算法则。
2. 提出课后思考题,引导学生进一步巩固所学知识。
第二课时一、复习1. 复习上节课所学内容,检查学生对数列极限定义、性质和运算法则的掌握情况。
2. 针对学生的疑问进行解答。
二、小组讨论1. 将学生分成若干小组,每组讨论以下问题:(1)如何判断一个数列的极限是否存在?(2)如何求一个数列的极限?2. 各小组汇报讨论结果,教师进行点评。
三、课堂练习1. 布置课后作业,要求学生独立完成。
2. 针对作业中的问题,进行讲解和答疑。
四、课堂小结1. 总结本节课所学内容,强调数列极限的定义、性质和运算法则的应用。
2. 提出课后思考题,引导学生进一步巩固所学知识。
一、教学目标1. 知识目标:(1)理解极限的概念,掌握数列极限和函数极限的定义。
(2)熟悉极限的基本性质和运算法则。
(3)学会利用定义法、夹逼定理、洛必达法则等方法求解极限。
2. 能力目标:(1)培养学生分析问题和解决问题的能力。
(2)提高学生的逻辑思维和抽象思维能力。
(3)培养学生的创新意识和团队协作精神。
3. 情感目标:(1)激发学生对数学的兴趣,培养学生严谨的学术态度。
(2)培养学生的爱国主义精神和社会责任感。
二、教学内容1. 极限的概念2. 数列极限3. 函数极限4. 极限的性质和运算法则5. 求极限的方法三、教学过程1. 导入新课(1)回顾实数的概念,引入无穷小的概念。
(2)提问:什么是极限?为什么要学习极限?2. 讲解极限的概念(1)数列极限的定义:给出数列极限的定义,并通过实例讲解。
(2)函数极限的定义:给出函数极限的定义,并通过实例讲解。
3. 讲解极限的性质和运算法则(1)极限的性质:包括极限的保号性、连续性、可导性等。
(2)极限的运算法则:包括极限的四则运算、乘除运算、复合函数的极限等。
4. 讲解求极限的方法(1)定义法:给出数列极限和函数极限的定义,通过定义法求解极限。
(2)夹逼定理:讲解夹逼定理的原理,并举例说明。
(3)洛必达法则:讲解洛必达法则的原理,并举例说明。
5. 练习与巩固(1)布置课后习题,让学生独立完成。
(2)课堂练习,检查学生的学习效果。
6. 总结与反思(1)回顾本节课所学内容,强调重点和难点。
(2)引导学生思考极限在实际问题中的应用。
四、教学评价1. 课后作业完成情况2. 课堂练习正确率3. 学生对极限概念的理解程度4. 学生运用极限解决问题的能力五、教学资源1. 教材2. 课件3. 课后习题4. 网络资源六、教学反思1. 课堂教学是否达到了教学目标。
2. 学生对极限概念的理解程度是否达到预期。
3. 教学方法是否有效,是否需要调整。
4. 学生在学习过程中遇到的问题和困惑,如何解决。
数学数列的极限教案数学数列的极限教案范文作为一名专为他人授业解惑的人民教师,时常要开展教案准备工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
那么问题来了,教案应该怎么写?下面是小编整理的数学数列的极限教案范文,仅供参考,希望能够帮助到大家。
一、教材分析两个重要极限是在学生系统学习了数列极限、函数极限以及函数极限运算法则的基础上进行研究的,它在求函数极限中起着重要作用,也是今后研究各种基本初等函数求导公式的工具,所以两个重要极限应重点研究。
二、学情分析一方面,学生已经学习了有界函数和无穷小乘积的极限,他们可以通过类比的方法研究这第一个重要极限,具备了接受新知识的基础;另一方面,学生基础比较薄弱,对以前所学的三角函数关系、二倍角公式等运用还不够熟练,所以现在在角的转化上面还存在一定困难。
三、教学目标根据以上两点分析并结合本节教材的特点,现把本节课的目标、重点、难点定为:教学目标:(1)知识与技能:使学生掌握重要极限公式的特点及其变形式,并能运用其求某些函数极限;(2)过程与方法:提高学生的自学意识,培养学生类比、观察、归纳、举一反三等方面的能力;(3)情感态度与价值观:通过对重要极限公式的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯,同时激发学生的学习兴趣。
教学重点与难点:重点:重要极限公式及其变形式难点:的灵活应用四、教法与学法的选择本节课我是以学案为载体,采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
学法上以课前自学为主要方式,在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,让学生自己出题,把思路方法和需要解决的`问题弄清。
五、教学环节的设计(1)课前尝试利用学案导学,让学生明确课前要做的作业,课堂采用的方法,需要达到的要求,在尝试练习中,让学生通过练习,类比,引入新课。
数列的极限_教学设计第一篇:数列的极限_教学设计数列的极限教学设计西南位育中学肖添忆一、教材分析《数列的极限》为沪教版第七章第七节第一课时内容,是一节概念课。
极限概念是数学中最重要和最基本的概念之一,因为极限理论是微积分学中的基础理论,它的产生建立了有限与无限、常量数学与变量数学之间的桥梁,从而弥补和完善了微积分在理论上的欠缺。
本节后续内容如:数列极限的运算法则、无穷等比数列各项和的求解也要用到数列极限的运算与性质来推导,所以极限概念的掌握至关重要。
课本在内容展开时,以观察n→∞时无穷等比数列an=列an=qn,(|q|<1)与an=1的发展趋势为出发点,结合数n21的发展趋势,从特殊到一般地给出数列极限的描述性定义。
在n由定义给出两个常用极限。
但引入部分的表述如“无限趋近于0,但它永远不会成为0”、“不管n取值有多大,点(n,an)始终在横轴的上方”可能会造成学生对“无限趋近”的理解偏差。
二、学情分析通过第七章前半部分的学习,学生已经掌握了数列的有关概念,以及研究一些特殊数列的方法。
但对于学生来说,数列极限是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡的阶段。
由于已有的学习经验与不当的推理类比,学生在理解“极限”、“无限趋近”时可能产生偏差,比如认为极限代表着一种无法逾越的程度,或是近似值。
这与数学中“极限”的含义相差甚远。
在学习数列极限之前,又曾多次利用“无限趋近”描述反比例函数、指数函数、对数函数的图像特征,这又与数列中“无限趋近”的含义有所差异,学生往往会因为常数列能达到某一个常数而否定常数列存在极限的事实。
三、教学目标与重难点教学目标:1、通过数列极限发展史的介绍,感受数学知识的形成与发展,更好地把握极限概念的来龙去脉;2、经历极限定义在漫长时期内发展的过程,体会数学家们从概念发现到完善所作出的努力,从数列的变化趋势,正确理解数列极限的概念和描述性定义;3、会根据数列极限的意义,由数列的通项公式来考察数列的极限;掌握三个常用极限。
课题数列的极限一、教育目标(一)知识教学点:(1)理解数列极限的定义,即“ε—N 定义”;能说出ε、N 的涵义;懂得n 与N 的区别;会把数列中的某些项画在数轴上,并能从图上看出这个数列的变化趋势。
(二)能力培养点:培养学生由具体到抽象、从有限到无限的思维能力,训练类比思维方法,会依据“ε—N 定义”及求数列的极限及证明.(三)学科渗透点:通过数列极限概念的教学,使学生懂得无限问题可以转化为有限问题来解决,通过对变量有限过程的研究,来认识变量无限变化过程的辩证思想观点. 二、教学分析1.重点:数列极限“ε—N 定义”.解决方法:画图、列表,进行直观的“定性描述”;运用类比方法,引进ε、N ,用不等式来进行定量描述.2.难点:ε与N 的涵义,n 与N 的区别.解决方法:分析、思考、问答的形式解决. 3.疑点:ε的任意性与确定性.解决方法:分析、举例说明. 三、活动设计1.活动方式:画图、列表、分析、思考、问答、练习. 2.教具:投影仪(或小挂图.) 四、教学过程1.数列变化趋势的定性描述:考察两个实例:即两个无穷数列;0.9,0.99,0.999, (1)n101,…,(1) 1,21, 41, …, n 21, …, (2) 容易看出:当项数n 无限增大时,数列(1)中的项无限趋近于1,数列(2)中的项无限趋近于0..数列(1)中各项与1的差的绝对值如下表:出示投影仪(或小挂图)2.数列(1)变化趋势的定量描述:投影1.引进ε、N ,即怎样定量描述“数列(1)中的项无限趋近与1,请看:对数列{1-n101}(1),无论预先给定的ε多么小,总能在数列(1)中找到这样的一项,使得这一项后面的所有项与1的差的绝对值都小于ε.如给定ε=0.001,数列(1)中存在一项,从投影表中可以看出,即为第三项,对这一项后面的所有项,不等式:︱(1-4101)-1︱=4101< 0.001, ︱(1-5101)-1︱=5101< 0.001… 皆成立,换句话说,对于任意给定的ε=0.001,存在自然数N=3,当n >N 时,不等式︱(1-n 101)-1︱=n101< 0.001 恒成立。
再给定ε=0.000001,情形怎样呢?学生回答:此时,存在自然数N =6,当n >N 时,不等式︱(1-n 101)-1︱=n101< 0.000001恒成立。
类比分析,从具体到抽象,得出:“无论预先给多么小的正数ε,总存在着这样的自然数N ,当n >N 时,不等式︱(1-n 101)-1︱=n101<ε恒成立.”事实上,无论预先给定多么小的正数ε,确实存在着这样的自然数N .这时,可以说数列(1)的极限是1. 3.数列极限的定义:设有数列{a n },如果存在常数A,使得预先给定的无论怎样小的正数ε,总存在正整数N ,只要n >N,所对应的a n 就都满足不等式:︱a n -A ︱< ε,此时,就把常数A 叫着数列{a n }的极限. 记作∞→n lim a n =A, 读作“当n 趋向于无穷大时,a n 的极限等于A ”上述定义可简述为:任给ε>0,如果总存在自然数N ,当n >N 时,不等式︱a n -A ︱< ε恒成立,就说数列{a n }的极限是A ,注:∞→n lim a n =A 有时也可以记作当n →∞时,a n →A .从数列的极限定义可以看出,数列{a n } 以A 为极限,当n 无限增大时,数列{a n }中的项无限趋近于A ,即a n 与A 的差的绝对值无限趋近于零。
4.举例例1. 已知数列:21,32,43,…,1+n n,… (1) 计算∣a n -1∣.(2) 第几项后面所有项与1的差的绝对值都小于1001?什么时候都小于任意给定的正数ε?(3)确定这个数列的极限. 解:(1)∣a n -1∣=︱1+n n -1 ︳=︱11+-n ︱=11+n (2)要使11+n < 100,就要使n+1>100,即n >99,就是说,第99项后面的所有项与1的差的绝对值都小于1001。
要使∣a n -1∣<ε,即要11+n <ε,即n >ε1 - 1,取N=[ε1 - 1],那么第N 项后面的所有项与1的差的绝对值都小于ε.(3) 因为ε>0,存在N ,当n >N 时,∣a n -1∣<ε恒成立所以∞→n lim a n =1,即这个数列的极限为1.例2.求证常数数列,-a ,-a ,-a ,…的极限.解:任意给定ε>0,总存在自然数N(不妨取N =1),当n >N 时,不等式:|-a -(-a)|=0<ε恒成立所以∞→n lim (-a )=-a例3.已知a n =2)1()1(+-n n,证明数列a n 的极限是零.证 任意给定ε>0(设0<ε<1)因为∣a n -0∣=︱2)1()1(+-n n-0︱=2)1(1+n <11+n要使∣a n -1∣<ε,只要11+n <ε即n >ε1 - 1.因此可取N=[ε1 - 1],则当n >N 时就有,︱2)1()1(+-n n-0︱<ε 即∞→n lim 2)1()1(+-n n=0 例3.求证:数列{121++n n }的极限时21证 ︱121++n n -21︱=︱)12(2)12(22++-+n n n ︱=241+n 欲使︱121++n n -21︱<ε,只需解不等式241+n <ε,即4n+2>ε1,解得 n >2141-ε,取N=[2141-ε],当n >N 时就有:︱121++n n -21︱<ε恒成立。
数列的极限是21,即∞→n lim 121++n n =215.关于“ε—N 定义”的两点说明(1)ε与N 的关系:从例1、例3可以看出:对于预先任意给定ε>0,为找到这样的自然数,使当 n >N 时,︱a n -A ︱<ε恒成立,把ε看作已知数,从解不等式︱a n -A ︱<ε入手,然后再确定N ,如要确定数列{1-n101}的第几项后面的所有项与1的差的绝对值小于任意给定的正数ε,解不等式︱(1-n 101)-1︱=n101<ε可得n >㏑ε1(可令ε<1)取N=[㏑ε1],当n >N 是时,︱(1-n 101)-1︱<ε恒成立.即:如果已知数列{a n }的极限是A ,对任意给定的ε>0,总可以求出N ,从这个意义上说,可以把N 看作ε的函数,所以有时把N 记作N(ε). (2)a n 与A 的关系:数列{a n }的极限是A ,a n 可能比A 小而无限趋近于A ,如数列{1-n101};a n 也可能比A 大而无限趋近于A ,如数列{(-1)nn 21};a n 也可能等于A ;如常数数列{-7}. 6.消除疑点ε的绝对任意性和相对的确定性:(1)就极限的全过程来说,ε必须具有绝对的任意性.只有这样,当n >N 时,︱a n -A ︱< ε恒成立,才能表明{a n }无限趋近于A ,(2) 就极限全过程的某一阶段来说,ε又是具体给定的,即相对确定性,如取ε=0.1,ε=0.01,ε=0.001,…这样有不等式︱a n -A ︱< 0.1,︱a n -A ︱< 0.01,︱a n -A ︱< 0.001;等等都成立。
表明数列{a n }趋近A 的无限过程。
Ε的绝对任意性是通过无限多个相对确定性表示出来的. 7.数列极限的存在性并不是每个数列都有极限.反例:①如数例{n}不存在极限,因为当项数n 无限增大时,数列中的项n 也无限增大,反例:(2)如数例{(-1)n},当项数n 无限增大时,即n →∞,数列中的项(-1)n时而为(-1),时而为1,所以这个数列不存在极限。
9.总结对照板书的设计内容,强调讲述: (1)数列极限的“ε—N 定义”.(2)ε与N 的关系:当{a n }极限存在时,对任意给定ε>0,总可以通过解不等式︱a n -A︱<ε,来确定N ,从这点而言,可以把ε的函数 (3)ε的绝对任意性和相对确定性的辩证关系的理解 (4)会依据“ε—N ”定义,求证简单数列的极限. 五、布置作业1.已知数列4-101,4-201 ,4-301 ,…,4-n101,…(1)计算∣a n -4∣.(2)第几项后面所有项与4的差绝对值都小于0.01?都小于任意指定的正数ε?(3)确定这个数列的极限.解(1)∣a n -4∣=I 4-n 101-4 I=n101(2)解不等式∣a n -4∣<0.01,即In101I < 0.01,n >10,所以,第10向后面的所有项与4的差的绝对值都小于0.01;解不等式∣a n -4∣<ε,即n 101<ε可得n >ε101.取N 为ε101的整数部分,N=[ε101],所以,第N 项后面的所有项与4的差的绝对值都小于任意指定的正数ε. (3)由(2)可知,这个数列的极限为4.2. 证明:等比数列1,q , q 2,…, q 1-n ,…当∣q ∣< 1时的极限是0.证 任意给定ε>0设( 0<ε<1 )因为∣a n -0∣= ∣q 1-n -0∣=∣q ∣1-n ,要使∣a n -0∣<ε,只要∣q ∣1-n <ε取自然对数得(n-1)㏑∣q ∣< ㏑ε,因∣q ∣< 1则㏑∣q ∣< 0,故n >1+(㏑ε)/㏑∣q ∣.取N=[ 1+(㏑ε)/㏑∣q ∣ ],当n >N 时,就有∣q 1-n -0∣<ε,即∞→n lim q1-n =03.求证:数列{2312++n n }的极限是32证 任意给定ε>0,因为∣a n -32∣=∣2312++n n -32∣=∣)23(3)23(236++-+n n n ∣=∣691+-n ∣=691+n ,要使∣a n -32∣<ε,只需解不等式691+n <ε,即9n+6 >ε1,解得n >ε91-32 取N=[ε91-32] 所以,对任意给定ε>0,总存在自然数N=[ε91-32],当n > N 时,不等式∣2312++n n -32∣<ε恒成立.所以,数列数列{2312++n n }的极限是32,即∞→n lim 2312++n n =324.先求数列{0.11…1}的极限,再用“ε—N 定义”证明.解:n a =101+2101+…+n 101=)1011(91n -,由上式可知数列的极限为91,即∞→n lim n a =∞→n lim )1011(91n -=91 下面用ε-N 定义证明之任给定ε>0,︱n a -91︱=︱)1011(91n --91︱=n 1091⨯,要使︱n a -91︱<ε,只需n1091⨯<ε解不等式n10>ε91,即n=㏑ε91取N=[ε91],当n >N 时,︱na -91︱<ε恒成立所以∞→n lim n a =∞→n lim)1011(91n -=91.六、板书设计数列的极限张香丽。