计算方法_习题集(含答案)
- 格式:doc
- 大小:596.50 KB
- 文档页数:12
《初等数学研究》课程习题集一、单选题 1. 已知αβ、是方程22(2)(35)0x k x kk --+++=的两实数根,则221αβ++的最大值是( )..20.19.21.18A B C D2. 设()lg (101)2xxxb f x a x x a b -=+++4是偶函数,g ()=是奇函数,则的值为( )11..1.1..22A B C D --3. 设432()f x xa xb xc xd =++++,其中a b c d 、、、为常数,如果(1)1,f =[]1(2)2,(3)3,(4)(0)4f f f f ==+=则( ).5.3.7.11A B C D4. 若不等式2lo g 0m x x -<在区间(0,2)内恒成立,则实数m 的取值范围是( )A .1116m ≤< B.1016m <≤ C.104m <<D.116m ≥5. 已知()()(,),(7)7f x y f x y x y R f +=∈=且, 则(49)f 等于( )A.7B. 14C.49D. 16. 设33,(5)2003(5)1,(4)2003(4)1,x y xx y y -+-=--+-=为实数,满足则().x y +=A.1B. 9C. -1D. -97. 实数x y 、满足关系式[][]21yx x =+--和[]1y x =+,则x y +的值一定是( )1012.1516.910.A B C D .与之间与之间与之间一个整数8. 对每一个自然数n, 抛物线22()(21)1,n yn n x n x x A =+-++与轴交于n B 两点,||n n A B 以表示该两点的距离,则1122||||A B A B ++ 20022002||A B +等于( )2001200220032004.....2002200320042003A B C D9. 已知多项式2(),4(1)1,1(2)5,(3)f x a x c f f f =--≤≤--≤≤则满足()3825.4(3)15.1(3)20.(3)33f B f C f D f ≤≤-≤≤-≤≤-≤≤A .7(3)2610. 若2222,260,2x y x x yx yx -+=++实数满足则的最大值为( )A.15B. 14C. 17D. 1611.设2250,320,a x x b x x +=-+=是一元二次方程的较大的一根是的较小的一根那么a b +的值是( )A.-4B. -3C. 1D. 312. 2320x x -+=方程的最小一个根的负倒数是()A.1B. 12C. 2D. 413. 在,A B C G ∠022直角中,A =90为重心,且G A =2, 则G B +G C =( )A . 25 B. 10 C. 20 D. 1514. 圆锥的侧面展开图的圆心角等于0120,该圆锥的侧面积与表面积之比值为( )A.23B.45C.12D.3415. ∠∠0A B -A C 在A B C 中,C =90,A 的平分线A D 交B C 于D ,则C D等于( ).tan .sin .co s .co t .A AB AC AD A16. 在A B C 中,A B A C =,,,D B C B E A C E ⊥为中点且于交A D P 于,已知3B P =, 1P E =,则P A =( )A B C D ....17.已知梯形A中,//,,A B CA B C DA DBC BD A B C B D D C S S∠⊥=梯形平分且则,3A B C D .:1. 2.5:1.2:1. 1.5:118. 已知A D是直角三角形A B C斜边上的高,43A B A C ==,,:()A B CA C DS S=则,5A B C D .:3.25:9.4:3.16:919. 已知直角三角形的周长为2+斜边上的中线为1,则这个三角形的面积为( )14A B C D 1..1..220. 若一个正三角形和一个正六边形的面积相等,则他们的边长之比为( )11113A B C D ....二、填空题1 21. 集合2{1,2,31},{1,3},{3}A mm B AB =--=-=,实数m 的值是 _______22. 若函数2()1f x x a x =-+能取得负值,则实数a 的取值范围为23. 设x y z 、、为实数,1()2x y z =++,则23x y z=24. 函数sin ()yA x b =ω+ϕ+在同一周期内有最高点(,312π),最底点(7,512π-),则它的解析式为25. 若函数[]2(2)1,()2x f xf -+∞的定义域为,则的定义域为26. 在等差数列{}n a 中,已知前20项的和n S =170,则691116a a a a +++ =27. 已知:1ta n 11ta n +α=-α,则sin 2α的值=28. 设11(0),()f x f x x x ⎛⎫=-<= ⎪⎝⎭则29. 2,120nn S n =数列的前项和那么这个数列的前项中所有奇数项的和是30. 2006!的末尾的“0”的个数是 31. 已知:12()()3f x f x x x+-=+,则()___________f x =32. 不等式20a x a b x b ++>的解集是{23}M x =<<,则_____,______a b ==33. 以三角形的三条中线长为边作三角形,则它的面积与原三角形面积之比为34. P 是正方形ABCD 内一点,PA=2, PB=1, PD=3, 则A P B ∠的度数为 35. 1E F GA EB F A BC A E B F G S=,是的中线,与交于,若,则A B CS=36. 在A B C 中,5B C M I A B C =,与分别是的重心与内心,若//M I B C则A B A C +的值为37. 在A B C 中,90C ∠=,I IE A B E ⊥为内心,于,若2B C =,A C =3, 则A E E B ⋅=38. 设直角三角形的斜边为C, 其内切圆的半径为r, 则内切圆的面积与三角形面积之比是39. 若等腰梯形的两条对角线互相垂直, 高为8cm ,则上、下底之和为40. 凸n 边形的n 个内角与某一个外角的和为1350°,则n 等于三、计算题41. 121212{}1,2,,n n n n n n n a a a a a a a a a ++++===++已知数列中,且121,n n a a ++≠求20031.n n a =∑42. 求函数332s in 3s inc o s 3c o s s in 2c o s 2x x x xy x x+=+的最小值。
《高等数学2》课程习题集【说明】:本课程《高等数学2》(编号为01011)共有计算题1,计算题2等多种试题类型,其中,本习题集中有[]等试题类型未进入。
一、计算题11. 计算 行列式6142302151032121----=D 的值。
2. 计算行列式5241421318320521------=D 的值。
3.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D 的值。
4. 已知2333231232221131211=a a a a a a a a a , 计算:333231232221131211101010a a a a a a a a a 的值。
5.计算行列式 0111101111011110=D 的值。
6. 计算行列式199819981997199619951994199319921991 的值.7. 计算行列式50007061102948023---=D 的值. 8. 计算行列式3214214314324321=D 的值。
9. 已知10333222111=c b a c b a c b a ,求222111333c b a c b a c b a 的值. 10. 计算行列式x a a a xa a ax D n=的值。
11.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2100430000350023A ,求1-A 。
12.求⎪⎪⎪⎭⎫ ⎝⎛=311121111A 的逆.13.设n 阶方阵A 可逆,试证明A 的伴随矩阵A *可逆,并求1*)(-A 。
14. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-=1100210000120025A 的逆。
15. 求⎪⎪⎪⎭⎫⎝⎛-----=461351341A 的逆矩阵。
16. 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2300120000230014A 的逆。
17. 求⎪⎪⎪⎭⎫⎝⎛--=232311111A 的逆矩阵。
18.求矩阵⎪⎪⎪⎭⎫⎝⎛-=101012211A 的逆.19. 求矩阵112235324-⎛⎫⎪=- ⎪ ⎪-⎝⎭A 的逆。
线性代数(经济数学2)-习题集(含答案)第 2 页 共 34 页《线性代数(经济数学2)》课程习题集西南科技大学成人、网络教育学院 版权所有习题【说明】:本课程《线性代数(经济数学2)》(编号为01007)共有计算题1,计算题2,计算题3,计算题4,计算题5等多种试题类型,其中,本习题集中有[计算题5]等试题类型未进入。
一、计算题11.设三阶行列式为231021101--=D 求余子式M 11,M 12,M 13及代数余子式A 11,A 12,A 13.2.用范德蒙行列式计算4阶行列式12534327641549916573411114--=D3.求解下列线性方程组:第 3 页 共 34 页⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---1111322112132222111321211n n n n n n n n n x a x a x a x x a x a x a x x a x a x a x其中 ),,2,1,,(n j i j i a aj i=≠≠4.问λ, μ取何值时, 齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?5.问λ取何值时, 齐次线性方程组123123123(1)2402(3)0(1)0x x x x x x x x x λλλ--+=⎧⎪+-+=⎨⎪++-=⎩有非零解?二、计算题26.计算6142302151032121----=D 的值。
7.计算行列式5241421318320521------=D 的值。
8.计算0111101111011110=D 的值。
第 4 页 共 34 页9.计算行列式199119921993199419951996199719981999的值。
10.计算41241202105200117的值。
11.求满足下列等式的矩阵X 。
2114332X 311113---⎛⎫⎛⎫-= ⎪ ⎪----⎝⎭⎝⎭12.A 为任一方阵,证明TA A +,TAA 均为对称阵。
线性代数习题集[带答案解析]仅供学习与交流,如有侵权请联系网站删除 谢谢1第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 2仅供学习与交流,如有侵权请联系网站删除 谢谢27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题仅供学习与交流,如有侵权请联系网站删除 谢谢31. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.仅供学习与交流,如有侵权请联系网站删除 谢谢410.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .仅供学习与交流,如有侵权请联系网站删除 谢谢516.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;仅供学习与交流,如有侵权请联系网站删除 谢谢65. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.仅供学习与交流,如有侵权请联系网站删除 谢谢7四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .仅供学习与交流,如有侵权请联系网站删除 谢谢8参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4. ∏-=-11)(n k k a x5. )111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)仅供学习与交流,如有侵权请联系网站删除 谢谢9第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
数学物理方法习题集第一章 复数与复变函数习题1,计算:(1),1)(1i ---。
(2),iii i 524321-+-+。
(3),5(1)(2)(3)i i i ---。
(4),4(1)i -。
(5),bi a +。
2,求下列复数的实部u 与虚部v ,模r 与幅角θ:(1),ii i i 524321----。
(2),1(2n+, 4,3,2=n 。
(3),i +1。
(4),3)i -。
(5),231i -。
3,设211i z +=,i z -=32,试用三角形表示21z z 及21z z 。
4,若21=+Z z θcos ,证明21=+m m zz θm cos 。
5,求下列复数z 的主幅角z arg :(1),iz 312+-=。
(2),6)z i =-。
6,用指数形式证明:(1),(1)2i i -+=+。
(2),i ii2125+=+。
(3),7(1)8(1)i i -+=-+。
(4),1011(12(1)--=-。
7,试解方程44(0)z a a +=>。
8,证明:(1),1212Re()Re()Re()z z z z +=+ ;一般1212Re()Re()Re()z z z z ≠。
(2),1212Im()Im()Im()z z z z +=+ ;一般1212Im()Im()Im()z z z z ≠。
(3),2121z z z z = ;一般2121z z z z +≠+。
9,证明:(1),2121z z z z +=±。
(2),2121z z z z ⋅=。
(3),1122(z zz z = (02≠z )。
(4),121212122Re()2Re()z z z z z z z z +==。
(5),()z z ≤Re ,()z z ≤Im 。
(6),2121212z z z z z z ≤+。
(7),222121212()()z z z z z z -≤+≤+。
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。