数学建模61人口模型
- 格式:ppt
- 大小:327.00 KB
- 文档页数:9
人口预测的数学模型与预测方法分析人口预测是对未来一定时期内人口数量和结构的变动进行估计和预测的过程。
人口预测在社会经济发展规划、城市规划、教育医疗资源配置等方面具有重要的参考价值。
为了准确预测人口的变动趋势,需要建立合理的数学模型和选择适当的预测方法。
人口预测的数学模型主要包括线性回归模型、指数模型、Logistic模型等。
线性回归模型是一种用来描述两个变量之间线性关系的统计模型,可以用来预测人口随时间的变化。
指数模型假设人口数量按照指数规律增长或减少,适用于人口增长较快的情况。
Logistic模型则适用于人口增长速度放缓后的情况,它是一种描述增长速度逐渐趋近于饱和的模型。
在选择数学模型时,需要综合考虑以下几个因素:人口历史变动趋势、人口自然增长率、人口迁移和流动情况、政策调控等因素。
同时,还需根据实际情况对模型的参数进行合理的设定和修正,以提高预测的准确性。
在预测方法上,常用的有趋势线法、复合增长率法、比较推理法、时间序列分析法和系统动力学方法等。
趋势线法是基于历史数据的发展趋势来进行预测,适用于人口变动趋势比较稳定的情况。
复合增长率法是将历史数据中的增长率按一定规则进行加权平均,再用来推算未来人口的增长率。
比较推理法通过对不同因素的比较和推理,来估计未来人口的变化。
时间序列分析法是根据时间序列数据的历史模式来预测未来的变化趋势。
系统动力学方法则是通过对不同因素的动态关系建立模型,用来探索人口变动的内在机制和规律。
在具体应用时,可以结合不同的数学模型和预测方法,进行多角度的分析和预测。
同时,还需要不断对模型进行修正和优化,以适应不断变化的人口变动趋势和社会经济背景。
此外,还应该注意对预测结果的不确定性进行评估和把握,提供多种可能性的预测结果,为决策者提供科学的参考依据。
中国人口增长预测模型的建立与分析摘要针对我国人口发展过程中出现的老龄化进程加快,出生人口性别比持续升高,乡村人口城镇化的新特点,我们基于LESLIE 矩阵,着重考虑城镇与乡村间的人口迁移及女性人口比例变化对我国人口增长的影响,经过两次改进建立了便于计算机求解的差分方程模型,对我国2005年以后45年的人口增长进行了预测。
随后利用时间段参数设置法,对差分方程模型又进行了一次改进。
然后运用等维灰色系统预测法对该差分方程模型的中短期预测进行了检验,同时根据2001年人口基本数据运用此模型对2001年~2005年进行了预测,并用实际数据对预测结果进行了检验。
我们将预测区间分为2006~2020年、2021~2035年、2036~2050年三个区间,以量化短期、中期与长期。
通过调整模型中相关参数及输入条件,定量地分析了男女性别比例、老龄化和乡村人口城镇化对我国人口增长的影响。
预测结果表明,从短期来看,我国的出生性别比变化不明显,将在短期内维持基本不变,老龄化进程在15年内在上升了8个百分点,人口扶养比持续升高,这将加重我国的人口压力,乡村人口城镇化水平进展缓慢;从中期来看,总人口性别比将保持在1与1.1之间,老龄化进程将呈线性增加趋势,乡村人口城镇化水平将持续发展;从长期来看,老龄化进程将在2035到2045年经历老龄人口高峰平台,老龄人口比重在0.3以上,育龄妇女人数持续下降,总人口数将在2023年达到峰值14.05亿。
关键词:LESLIE矩阵,人口预测,性别比例,城镇化,老龄化,灰色系统预测一、问题的重述人口问题是中国社会发展的重要问题,对中国人口的中长期预测有助于政府制定相应的政策保持中国的长治久安。
现需要解决的问题如下:1.主要根据2001~2005年的人口统计数据,对中国人口增长的中短期和长期趋势作出预测,特别要关注老龄化,出生人口性别比及乡村人口城镇化等因素。
2.指出所建模型的优点和不足之处。
数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
中国人口预测模型摘要本文对人口预测的数学模型进行了研究。
首先,建立一次线性回归模型, 灰色序列预测模型和逻辑斯蒂模型。
考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:单位:(万人)其中加权系数为:,其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为分组长度方式预测短期和长期人口增长,然后对人口模型进行了改进,构建了反映生育率和死亡率变化率负指数函数,并给出了反映城乡人口迁移的人口转移向量最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。
在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。
而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。
而人口增长预测是对未来进行预测的各环节中的一个重要方面。
准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。
2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。
例如,中国人口预期寿命约为70 岁左右,因此,长期人口预测最好预测到70年以后,中期40—50 年,短期可以是5 年、10年或20 年。
根据2007 年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。
数学建模-人口增长模型人口增长模型是一种基于数理统计学方法的计算机模型,用于描绘全球各地的人口增长情况。
人口增长模型能够预测人口数量、年龄分布、死亡率、出生率、移民等方面的变化趋势,为社会规划带来指导性的建议,具有很高的实用价值。
本文将从多个方面来探究人口增长模型。
一、人口增长的三个阶段第一阶段:原始社会阶段,这个时期的人口增长缓慢。
由于食物水平低下和医疗条件落后,死亡率非常高,而出生率仍然很高。
第二阶段:传统社会阶段,人口增长迅速。
由于改进了农业技术、医疗技术以及水、电、煤等基础设施建设的改善,死亡率降低,但出生率仍然很高。
第三阶段:现代社会阶段,人口增长开始放缓。
由于生育规律的改变,人们生育晚、生育次数减少,导致出生率下降。
另一方面,医疗技术和生活水平的提高,使得人们的寿命增加,死亡率下降。
人口增长模型是一种以数学为基础、能够预测人口增长变化趋势的计算机模型。
它解决了传统的统计分析方法难以预测未来人口增长趋势的问题,方便了研究人口增长对于社会经济发展的影响。
目前,常用的人口模型有四种:1.经验模型:该模型主要是针对已有数据进行平衡分析,所以只能反映人口变动的历史趋势,难以预测未来人口变化。
2. 非参数回归模型:它又称为核回归模型,它是一种无参数模型,可以从数据本身中学习出应该如何比较好地去拟合数据,因此预测效果相较于经验模型提高了不少。
3. 参数回归模型:这种模型较为复杂,它基于特定的模型,通过拟合已有的数据,建立一个完整的模型,目的是预测新的数据变化趋势。
4. 知识驱动模型:该模型结合了经验模型和参数回归模型的基本特点,它将专家的知识与历史数据相结合,通过精细化的调整,建立能够反映人口增长趋势的模型。
该模型可广泛应用于国家人口预测、社会福利计划等领域。
人口增长有其基本的规律,这些规律可以帮助我们更好地了解和解决人口问题。
1.现代社会阶段的人口增长趋势是死亡率下降,而出生率下降,且死亡率的下降速度比出生率的下降速度快。
中国人口增长预测数学建模引言中国作为世界人口最多的国家之一,人口增长一直是一个备受关注的话题。
为了能够合理规划和管理资源,预测中国人口的增长趋势对决策者来说至关重要。
本文将运用数学建模的方法,通过分析历史数据,来预测中国人口的增长。
数据收集与处理为了进行人口增长预测,首先需要收集和处理相关的数据。
我们可以通过查阅统计年鉴、人口普查数据等公开的数据来获取所需信息。
然后,需要对数据进行清洗和整理,以便进行后续的分析和建模工作。
人口增长模型选择人口增长涉及到多个因素的复杂影响,如出生率、死亡率、迁移率等。
为了能够对中国人口的增长进行模型化,我们需要选择适合的数学模型。
常用的人口增长模型有Malthusian模型、Logistic模型等。
在选择模型时,需要考虑模型的适用性和可解释性。
Malthusian模型Malthusian模型是由英国经济学家Malthus提出的,他认为人口增长是按指数规律进行的。
该模型是基于以下假设:1.出生率和死亡率是恒定的;2.人口的增长率与人口规模成正比。
Malthusian模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP $$其中,P为人口规模,P为时间,P为每个个体的平均增长率。
根据该模型,人口规模以指数形式增长。
Logistic模型Logistic模型是在Malthusian模型的基础上发展起来的,它考虑到了环境资源的有限性对人口增长的限制。
Logistic模型的数学表达式为:$$ \\frac{{dP}}{{dt}} = rP(1 - \\frac{{P}}{{K}}) $$其中,P为人口规模,P为时间,P为每个个体的平均增长率,P为环境资源的极限容量。
该模型认为人口规模在达到环境资源的极限容量时,增长率将逐渐减小。
变量的估计和参数的拟合在建立模型之后,需要对模型进行参数估计和拟合。
可以利用历史数据来对模型中的参数进行估计,并通过优化算法来拟合模型与实际数据的拟合度。
中国人口增长预测摘要:本文通过对题目中所给数据和参考资料以及网站上获得的数据进行分析,利用多种模型对数据规律进行归纳提炼.首先我们建立了,Malthus微分方程,通过求借建立了我国人口增长的指数模型,通过常识和分析我们知道,由于受到资源和多种外在和内在因素的影响,人口的这种增长模式是不可能实现的,它只是在理想情况下的一种模式.为了弥补这个模型的缺点,我们又分别建立了[1]L eslie人口模型,微分差分混和模型,神经网络模型,灰色模型,等多种模型方式. 建立Leslie模型来预测未来中国大陆人口增长模型。
根据死亡率,生育率是否变化,我们建立了两个模型,第一个是死亡率变化的模型,在这个模型中,由于两个因素的变化,使得在预测时只能简单的预测下一年的数据,虽然精度很大,但是预测的时间太短。
于是,在分析了死亡率和生育率在所给五年的各年龄段的情况,我们提出了忽略两个因素变化所带来的影响,以使模型更大众化。
最后通过检验,发现,在做中短期预测时,结果很令人满意,误差很小。
但对于长期的预测准确度有所下降。
通过对第一个模型—Leslie人口模型的求解,我们分析得到了短期,中期,长期,较长期(在这我们定义1—3年为短期,5—10年为中期,10年以上是长期)的预测人口数量在各个年龄段的分布。
再对预测数据进行分析,并结合中国的实际国情,很容易知道Leslie人口模型增长只能用来预测中短期的人口发展规律(对与中国的实际国情而言)。
于是为了预测探究长期的人口发展模型,我们必须找到更好的模型,结合别人的资料,然后我们又建立了一个有关人口数量的微分方程,这个微分方程包括了各方面影响人口增长和变化的因素,如,育龄女性的百分比,潜在育龄女性的百分比,人口老龄百分比等等。
这些因素的介入使得分析人口变化规律更接近实际的情况。
随后又建立了另外的模型,多种模型相互结合,是本文的一大特色.一、问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
数学建模在人口统计学中的应用人口统计学是研究人口数量、结构和变动等方面的学科,它对于社会发展、经济增长以及政策制定都具有重要意义。
而数学建模则是利用数学模型对现实问题进行描述、分析和预测的一种方法。
本文将介绍数学建模在人口统计学中的应用,并探讨其对人口问题的解决和决策制定的重要性。
一、人口增长模型人口增长是人口统计学中的一个核心研究内容,数学建模可以帮助我们理解和预测人口增长的趋势。
常见的人口增长模型有指数增长模型、Logistic增长模型等。
指数增长模型假设人口增长速率与当前人口数量成正比,可以用如下的微分方程来描述:$$\frac{dN}{dt} = rN$$其中,N表示人口数量,r表示人口增长率。
利用这个模型,我们可以预测未来人口数量的变化趋势,从而为人口规划与管理提供依据。
二、人口结构模型人口结构指的是不同年龄、性别和种族等群体在人口总数中所占的比例和分布情况。
人口结构模型可以帮助我们分析和预测不同人口群体的变化趋势,从而为社会政策制定提供科学依据。
其中,常见的人口结构模型有Alvarez-Mathieson模型和Lee-Carter模型等。
Alvarez-Mathieson模型基于生态位模型,通过设定生育率、死亡率和迁移率等参数,来预测不同年龄和性别群体的人口数量。
这种模型可以帮助我们评估不同年龄段人口对经济、教育、医疗等方面的需求,为社会资源的分配提供依据。
Lee-Carter模型则是基于周期性的波动来描述人口结构变化的。
通过将人口死亡率和出生率等数据作为输入,可以预测未来不同年龄群体的人口数量。
这种模型在养老金制度、医疗保健等方面的政策制定中有着重要的应用价值。
三、人口流动模型人口流动是指人口从一个区域或国家向另一个区域或国家的迁移和流动。
人口流动模型可以帮助我们分析和预测人口迁移的趋势,为政策制定提供参考。
常见的人口流动模型有迁移概率模型和重力模型等。
迁移概率模型主要使用迁移率数据来预测人口流动的规模和方向。
一、微分方程模型1.人口模型一、指数增长模型 (Malthus )1.模型假设人口自然增长率 r 为常数,即单位时间内人口的增长量与当时的人口呈正比。
()x t :t 时刻的人口数 r :人口增长率2.模型建立 0(0)dx rx dtx x ⎧=⎪⎨⎪=⎩3.模型求解 0()r t x t x e =4.模型分析0r >⇒()x t →+∞ 人口将按指数规律无限增长! 0r =⇒0()x t x ≡ 人口将始终保持不变! 0r <⇒()0x t → 人口将按指数规律减少直至绝灭。
M a l t h u s 模型预测的优点是短期预报比较准确,但是不适合中长期预报,原因是预报时假设人口增长率 r 为常数。
没有考虑环境对人口增长的制约作用。
二、阻滞增长模型 (Logistic)1.模型假设假设人口增长率 r (x )是人口 x (t ) 的减函数 :()1m x r x r x ⎛⎫=- ⎪⎝⎭其中: x m 为自然资源条件所能容纳的最大人口数量r 为固有增长率2.模型建立01(0)m d x x rx dt x x x ⎧⎛⎫=-⎪ ⎪⎨⎝⎭⎪=⎩ 3.模型求解:0()11mrt m x x t x e x -=⎛⎫+- ⎪⎝⎭4.模型分析(定性分析)0m x x >⇒()m x t x ↓→ 人口将递减并趋向于x m ,0m x x =⇒()m x t x ≡ 人口将始终保持x m 不变 ,00m x x <<⇒()mx t x ↑→ 人口将递增并趋向于x m , 无论在哪种情况下,人口最终将趋向于最大人口容量!阻滞增长模型预测对中期预报比较准确,理论上很好,但是实用性也不强,原因在于预报时假设固有人口增长率 r 以及最大人口容量 x m 为定值。
实际上这两个参数(特别是 x m )很难确定,而且会随着社会发展情况变化而变化。
数学建模———关于人口增长的模型摘要:本文讨论了人口的增长问题,并预测出了2010、2020年的美国人口。
首先,我们给出了两种预测方法:第一,在假定人口增长率不变的情况下,建立指数增长模型;第二,假定人口增长率呈线性下降的情况下,建立阻滞增长模型。
对两种模型的求解,我们引入了微分方程。
其次,为了选择一种较好的预测方法,我们分别对两种模型进行了检验和讨论。
先列图表对预测值与真实值进行比较,然后定性的对模型进行讨论,最后一个阶段选择绝对误差、均方差和相关系数对两个模型的优劣进行定量的评价,选出最好的预测方法。
一、 问题的提出:人口问题是当前世界上人们最关心的问题之一,认识人口数量的变化规律,做出较为准确的预报,是有效控制人口增长前提,现根据下表给出的近两百模型一(指数增长模型)1、模型的提出背景:我们对所给的数据进行了认真仔细的分析之后,对其进行处理:将年份进行编号(i X ),人口数量计为(i Y ),以i X 为横坐标,以i Y 为纵坐标,建立直角坐标系。
然后将表格中所给的数据绘在直角坐标系中附表A ,我们发现这些点大体呈指数增长趋势固提出此模型。
附图A2、基本假设:人口的增长率是常数增长率——单位时间内人口增长率与当时人口之比。
故假设等价于:单位时间人口增长量与当时人口成正比。
设人口增长率为常数r 。
时刻t 的人口为X(t),并设X(t)可微,X(0)=X O由假设,对任意△t>0 ,有)()()(t rx tt x t t x =∆-∆+即:单位时间人口增长量=r ×当时人口数当△t 趋向于0时,上式两边取极限,即:o t →∆lim)()()(t rx tt x t t x =∆-∆+ 引入微分方程:)1( )0()(0⎪⎩⎪⎨⎧==x x t rx dtdx3、模型求解: 从(1)得rdt xdx= 两边求不定积分:c rt x +=ln∵t=0时0x x =,∴C x =0lnrt e x rt x x 00ln ln ln =+=∴rte x t x 0)(= (2) 当r>0时.表明人口按指数变化规律增长.备注; r 的确定方法:要用(4.2)式来预测人口,必须对其中的参数r 进行估计: 十年的增长率307.0ln 9.33.5==r,359.1307.0=e,则(2)式现为: t t x )359.1(9.3)(⨯=4、结论:由上函数可预测得:2010的人口为x(22):x(22)=3325.772020的人口为x(23):x(23)=4519.735、检验:根据所建立的指数模型预测1790以后近两百年的美国人口数量,在此6、模型讨论:由表可见,当人口数较少时,模型的预测结果与实际情况相差不大(不超过5%)。
人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。
最后提出了有关人口控制与管理的措施。
模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。
得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。
运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。
模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。
首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。
其次,对人口老龄化问题、人口抚养比进行分析。
得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。
再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。
中国人口增长模型摘要人口问题涉及人口质量和人口结构等因素,是一个复杂的系统工程,稳定的人口发展直接关系到我国社会、经济的可持续发展。
如何从数量上准确的预测人口数量以及各种人口指标,对我国制定与社会经济发展协调的健康人口发展计划有着决定性的意义。
近年来我国的人口发展出现了许多新的特点,这些都影响着我国人口的增长。
鉴此,本文依据灰色预测方法和年龄移算理论,基于人口普查统计数据,从人口系统发展机理上展开讨论。
首先根据灰色预测理论,建立了一级的灰色预测模型,再将近几年我国的人口数量带入模型,便得到未来较短时间内我国的人口数量。
所得结果为我国总人口将于2006年、2007,2008,2009,2010年分别达到13.1495,13.2212,13.2909,13.3587,13.4246亿人。
然后分析人口发展方程中按年龄死亡率及生育模式等参数函数的内在变化规律,及其对总人口的影响,建立了莱斯利主模型,并在此基础上针对各参数函数的不同特点,建立了生育模型和死亡模型等子模型。
在将所得子模型和主模型结合,依据当前人口结构现状对我国的人口做了长期的预测。
所得结果是我国总人口将于2010年、2020年、2030年分别达到13.51058,14.38295,14.78661亿人与国家发展战略报告数据一致。
最后对所建模型的优缺点进行了客观的评价。
关键词:灰色预测模型,改进的莱斯利模型,老龄化指数,平均寿命,平均年龄。
一、问题的提出1.1问题:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。
2007年初发布的《国家人口发展战略研究报告》还做出了进一步的分析。
关于中国人口问题已有多方面的研究,并积累了大量数据资料。
人口模型数学建模随着人口快速增长和城市化进程的加速,人口问题越来越受到大众的关注,国家也在不断地为解决人口问题做出努力。
而在这个过程中,数学建模作为一种有效的工具正逐渐地被应用于人口模拟的研究中,而人口模型也成为了当前人口研究中最常见的方法之一。
本文将从什么是人口模型以及它的意义入手,再从人口增长模型、人口结构模型和人口流动模型三个方面介绍人口模型数学建模的相关内容,并探讨该领域的未来发展方向。
一、什么是人口模型以及它的意义人口模型是一种模拟人口数量和结构变化的方法,通过对人口数量、人口结构、人口增长和流动等关键因素进行分析和预测,来探究人口变化对社会、经济和环境等方面的影响。
而人口模型对解决实际问题具有十分重要的意义。
首先,它可以为政府制定人口政策、规划新城市、解决社会问题提供科学依据。
以我国为例,随着我国人口老龄化和人口流动的不断加剧,建立人口模型对于科学合理地规划人口方向和政策具有十分重要的意义。
其次,人口模型也可以为社会科学领域的研究提供参考,如人口迁移模型可以应用于研究人口迁移与城市结构的关系,对我国城市规划和发展的促进有重要意义。
二、人口增长模型人口增长模型是指通过对人口出生率、死亡率和人口迁移情况等因素进行计算,预测未来人口数量的变化和趋势。
在国家战略制定和人口规划中,人口增长模型是一个很重要的组成部分。
目前,应用最为广泛的人口增长模型包括基本增长模型、Malthus人口增长模型、Logistic人口增长模型和竞争性Lotka-Volterra模型等。
其中,基本增长模型是简单的指数函数,反映了人口随时间的指数增长趋势。
而Logistic人口增长模型则认为人口增长具有一定的饱和性,人均出生率一定的情况下,人口数量将趋于稳定。
三、人口结构模型人口结构模型是指通过对人口各年龄段、性别、职业、教育程度和收入等方面的分布进行计算,来了解人口的组成和各组成部分的数量变化趋势。
其中,最为经典的人口结构模型就是李约瑟模型。
论文结构合理,模型建立详细,思想明确,论述清楚程序和拟合是文章的亮点,模型建立完了没有做误差分析,如果补完整是一篇很不错的文章。
摘要•随着科学技术的发展,国内资金积累量在不断增加,但是中国人口近几年还是呈增加的趋势,这样就会影响人均收入。
由于国民收入是资金积累的一部分,国民收入变化可以反映资金积累的变化。
因此研究资金积累、国民收入与人口增长的关系可以转化成研究资金积累与人口增长的关系。
若国民平均收入与按人口平均资金积累成正比,说明仅当资金积累的相对增长率大于人口的相对增长率时,国民平均收入才是增长的。
所以认识资金积累与人口增长的关系,对国民平均收入的增长有重大意义。
本文通过微分方程建立三个模型,即人口Malthus模型、资金积累指数模型、资金积累增长率与人口增长率的二次曲线模型。
通过资金积累与人口增长的关系来分析国民平均收入。
关键词:资金积累人口增长国民平均收入资金积累增长率人口增长率一、问题的重述资金积累、国民收入、与人口增长的关系:(1)若国民平均收入x与按人口平均资金积累y成正比,说明仅当总资金积累的相对增长率k大于人口的相对增长率r时,国民平均收入才是增长的. (2)作出k(x)和r(x)的示意图,分析人口激增会引起什么后果.二、问题分析人均国民收入主要与国家资金总积累量和总人口数有关,若总人口数的增长率大于资金积累增长率,则增长的资金不能使每一位国民增加收入,只能使少量国民收入增加,因此,总体来说,国家人均收入实际上是减少的。
三、模型假设假设总资金增长和人口增长均为指数增长,资金积累增长率和人口增长率为二次曲线模型。
四、符号说明a为国民收入在总资金积累中所占比例;y(t)为总资金积累量;N(t)为总人口数;Nm为人口的峰值;x(t) 为人均国民收入;r 为人口增长率;k 为资金积累增长率。
五、模型的建立与求解(1)人口增长模型曲线如图1所示:图1通过图形,用MATLAB 编程可建立指数增长模型6110)()(⨯+=⨯tet N αα 其中0127.01=α 0058.02=α(2)总资金积累模型曲线如图2所示:图2由曲线可知资金增长是呈指数整长的并通过MATLAB编程得到指数模型:y(t)=(0.001+e x003.0) 106。
数学建模人口模型人口预测关于计划生育政策调整对人口数量、结构及其影响的研究【摘要】本文着重于讨论两个问题:1、从目前中国人口现状出发,对于中国未来人口数量进行预测。
2、针对深圳市讨论单独二胎政策对未来人口数量、结构及其对教育、劳动力供给与就业、养老等方面的影响。
对于问题1从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了 Logistic、灰色预测、等方法进行建模预测。
首先,本文建立了 Logistic 阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对 2014 至 2040 年的人口数目进行了预测,得出在 2040 年时,中国人口有 14.32 亿。
在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。
然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了 GM(1,1)灰色预测模型,对 2014 至 2040 年的人口数目进行了预测,同时还用 2002 至 2013 年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出 2040 年时,中国人口有 14.22 亿。
与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。
对于问题2针对深圳市人口结构中非户籍人口比重大,流动人口多这一特点,我们采用了灰色GM(1,1)模型,通过matlab 对深圳市自2001至2010年的数据进行拟合,发现其人口变化近似呈线性增长,线性相关系数高达0.99,我们就此认定其为线性相关并给出线性方程。
同理,针对其非户籍人口,我们进行matlab 拟合发现,其为非线性相关,并得出相关函数。
并做出了拟合函数0.0419775(1)17255.816531.2t X t e ⨯+=⨯-。