垫片的密封应力
- 格式:docx
- 大小:233.85 KB
- 文档页数:17
垫片垫片是用纸、橡皮片或铜片制成,放在两平面之间以加强密封的材料,为防止流体泄漏设置在静密封面之间的密封元件。
选择垫片的材料主要取决于下列三种因素: 温度压力介质一. 金属垫片材料1. 碳钢: 推荐最大工作温度不超过538℃,特别当介质具有氧化性时。
优质薄碳钢板也不适合应用于制造无机酸、中性或酸性盐溶液的设备,如果碳钢受到在的应力,用于热水工况条件下的设备事故率非常高。
碳钢垫片通常用于高浓度的酸和许多碱溶液。
布氏硬度约120。
2. 304不锈钢 18-8(铬18-20%、镍8-10%),推荐最大工作温度不超过760℃。
在温度 -196~538℃区间内,易发生应力腐蚀和晶界腐蚀。
布氏硬度160。
3. 304L 不锈钢含碳量不超过0。
03%。
推荐最大工作温度不超过760℃。
耐腐蚀性能类似304不锈钢。
低的含碳量减少了碳从晶格的析出,耐晶界腐蚀性能高于304不锈钢。
布氏硬度约140。
4. 316不锈钢 18-12(铬18%、镍12%),在304不锈钢中增加约2%钼,当温度提高其强度和耐腐蚀性能提高。
当温度提高时比其它普通不锈钢具有更高抗蠕变性能。
推荐最大工作温度不超过760℃。
布氏硬度约160。
5. 316L不锈钢推荐最大连续工作温度不超过760℃~815℃。
碳含量不超过相对于316不锈钢具有更优秀的耐应力和晶界腐蚀。
布氏硬度约140。
6. 20合金 45%铁、24%镍、20%铬和少量钼和铜。
推荐最大工作温度不超过760℃~815℃。
特别适用于制造耐硫酸腐蚀的设备,布氏硬度约160。
7.铝铝(含量不低于99%)。
铝具有优秀耐腐蚀性能和加工性能,适用于制造双夹垫片。
布氏硬度约35。
推荐最大连续工作温度不超过426℃。
8.紫铜紫铜的成分接近于纯铜,其含有微量的银以增加其连续工作温度。
推荐最大连续工作温度不超过260℃。
布氏硬度约80。
9.黄铜(铜66%、锌34%),在大多数工况条件下,具有良好耐腐蚀性能,但不适应醋酸、氨、盐和乙炔。
WORD 格式整理垫片根底知识一、根本概念1.垫片密封原理:垫片密封是靠外力压严密封垫片,使其本身发生弹性或塑性变形,以填满密封面上的微观凹凸不平来实现。
也就是利用密封面上的比压使介质通过密封面的阻力大于密封面两侧的介质压力差来实现密封。
2.垫片密封的泄漏有二种:渗透泄漏与界面泄漏渗透泄漏( 垫片中间泄露) :对非金属材料而言,从材料的微观构造看,本身存在微小缝隙和细微的毛细管。
具有一定压力的流体自然容易通过它们泄漏出来,此泄漏称为渗透泄漏,其泄漏量约占总泄漏量的 10~20%。
可以采用不同材料的复合或机械组合型式形成不渗透性的构造。
或者使用较大的压紧力使材料更加密实,减少以至消除泄漏。
界面泄漏 ( 两连接面泄露 ) :两连接外表〔即密封面〕从机械加工的微观纹理来看存在粗糙度和变形,它们与垫片之间总存在泄漏通道,由此产生的泄漏叫界面泄漏,其泄漏量约占总泄漏量的 80~90%。
界面泄漏与垫片材料的性质、接头的机械性质与状态、密封流淌的特性以及紧固件的夹紧程度有关。
总结 : 要少泄露 , 首先垫片要“夹紧〞,同时要求垫片有一定的“回弹力〞以回弹填满空隙,否那么也不行。
回弹力取决于垫片本身的材质和构造及使用条件〔温度、压力〕。
垫片夹紧后〔初始密封〕,在介质压力作用下〔垫片内侧直接和介质接触〕的密封叫工作密封。
从理论上说,预紧应力愈大,垫片中贮存的弹性应变能也愈大,因而可用于补偿别离或松弛的WORD 格式整理余地也就愈大,当然要以密封材料本身最大弹性变形能力为极限。
紧固件因受热引起应力松弛、垫片老化弹性下降,垫片长期受压等原因都可能导致“昨天不漏今天漏〞。
二、钢制管法兰用垫片标记根据现行国家标准?钢制管法兰、垫片、紧固件?〔HG/T 20592~20635-2021〕的要求,钢制管法兰用垫片〔PN系列〕标记规定如下:其中:a为标准编号1、HG/T 20606-2021钢制管法兰用非金属平垫片〔PN系列〕;2、HG/T 20607-2021钢制管法兰用聚四氟乙烯包覆垫片〔PN系列〕;3、HG/T 20609-2021钢制管法兰用金属包覆垫片〔PN系列〕;4、HG/T 20610-2021钢制管法兰用缠绕式垫片〔PN系列〕;5、HG/T 20611-2021钢制管法兰具有覆盖层的齿形组合垫〔PN系列〕;6、HG/T 20612-2021钢制管法兰非金属环形垫〔PN系列〕。
垫片的性能等级是指垫片的材质公称抗拉强度,性能等级为8.8级的垫片要求其材质公称抗拉强度达到800MPa。
例如,65Mn材质的垫片,其抗拉强度σb (MPa):≥980 (100),因此65Mn材质的垫片性能等级可以达到8.8级。
此外,垫片的厚度与其型式、材料、直径、密封面的加工状况和密封介质等相关。
对于大多数非金属板材垫片而言,薄的垫片抵抗应力松弛的能力也比较大。
当然在选择垫片时,还需要考虑其他因素,如法兰粗糙度和不平度等条件。
在实际应用中,根据具体需求选择合适的垫片等级和规格。
例如,你可以选择不锈钢、碳钢、45#钢、65Mn或合金钢作为垫片的材质,垫片的表面处理方式也可以根据实际需求选择,如磷化、发黑、白锌、蓝白锌、彩锌、军绿、达克罗、环保电镀、热镀锌、本色等。
螺栓法兰接头安全密封技术(四)——垫片密封应力——摘要:在法兰接头设计或选用中,垫片虽然成本相对较低,但在保证连接密封性能、控制泄漏要求方面起着重要的作用。
人们往往容易将泄漏的原因集中在垫片上,当然有垫片本身的原因,但更多的是法兰连接系统的设计或选用中存在的许多问题,最后通过垫片密封应力的降低表现了出来。
在法兰接头安装过程以及后续的各种使用过程中,垫片密封应力的大小和变化受到众多因素的影响。
当垫片的密封应力降低到低于设计要求的基准值时,其结果是导致法兰连接的密封失效、发生泄漏。
本文分析了引起垫片密封应力降低的影响因素及其原因,介绍了估算方法,提出要减小弥补这样的影响,维持法兰接头的密封状态,初始安装螺栓载荷应足够大。
同时螺栓也要有足够的强度,能承受相应的拉伸载荷及其可能的增加量。
前言螺栓连接法兰接头的强度和密封性能对于承压设备/装置以及管道系统的正常、安全运行非常重要。
法兰连接强度的保证,在承压设备行业(包括锅炉、压力容器、压力管道)长期以来都非常重视,当然这很重要,但对于其密封性能的保证或评估国内却较少有研究。
螺栓垫片法兰连接的泄漏途径,一个是通过垫片内部的渗透泄漏,另一个是通过垫片与法兰密封面之间的间隙的界面泄漏,界面泄漏是最难对付的。
通常,我们考虑通过选用不同材料和类型垫片用于不同的设计工况条件以及在垫片表面途密封剂量等方法,达到减少/控制泄漏的目的。
要控制法兰接头的泄漏,仅仅通过采用各种措施消除垫片与法兰密封面之间的间隙/泄漏通道是远远不够的,最重要的是无论在安装阶段、还是各种使用过程中,当螺栓/垫片有蠕变松弛产生、当有介质压力等外载荷/温度等作用下,垫片与法兰密封面上必须始终保持/维持有足够的压缩应力,本文称之为“垫片密封应力”。
所以,法兰接头的强度和密封需要通过螺栓提供足够的夹紧力和垫片密封应力,来承受介质压力或各种外载荷,保证垫片的密封应力在安装以及随后的各种工况条件下都维持在设计要求的基准值以上,才能获得有效的密封、控制泄漏。
密封垫损坏的原因分析1、密封定义a.定义:密封垫片是一种柔性的、可压缩的环形元件,用于填充两个接合部分之间的间隙,以防止介质泄漏或渗透。
b.功能:创建密封界面:密封垫片填补接合部分的微小间隙,确保介质无法通过。
承受压力和温度:密封垫片能够承受来自压力和温度变化的负荷,2、保持密封性能。
缓解振动和冲击:密封垫片能够减少机械振动和冲击的影响,提高系统的稳定性和可靠性。
3、密封垫片种类密封垫片多种多样,具体选择取决于应用的要求、工作条件和介质特性。
以下是一些常见的密封垫片和它们的应用领域:金属垫片:通常由金属材料制成,用于高压和高温的密封应用,具有高强度和耐压性能,常用于化工、石油、能源等行业。
石墨垫片:石墨垫片由石墨材料制成,具有优异的耐温性和耐腐蚀性能。
它适用于高温、高压和腐蚀性介质的密封需求,常用于石油化工、电力等行业。
聚四氟乙烯(PTFE)垫片:PTFE垫片是一种具有优异耐腐蚀性和低摩擦系数的材料。
它具有出色的耐高温性能,可以承受极低温度和高温度条件。
PTFE垫片常用于化工、制药、食品等领域的密封应用。
纤维素纸垫片:纤维素纸垫片如纸垫片、石棉纸垫片等,具有较好的密封性能和耐温性。
它们适用于一般介质和中低温条件下的密封,常用于机械设备、电力设备等行业。
橡胶垫片:橡胶垫片常用于一般介质和温度条件下的密封。
它们具有良好的弹性和密封性能,适用于管道、阀门、泵等设备的密封。
橡胶垫片广泛应用于自动化、化工、食品加工等行业。
以上只是部分的密封垫片及其应用领域,具体选择应根据实际情况进行评估,包括工作环境、介质特性、压力要求、温度范围以及预算等因素。
4、垫片破损的原因1)机械应力a. 压力变化和挤压力 :密封垫片在受到压力变化和挤压力时可能承受过大的力量,导致垫片变形、损坏或失效。
b. 摩擦和磨损:密封垫片在与相邻部件接触时,由于摩擦力和剪切力的作用,可能发生表面磨损、磨粒进入垫片表面,导致破损。
c. 振动和冲击设备的振动和冲击会产生动态应力,对密封垫片造成额外的负荷,导致疲劳和破损。
一、垫片的常用术语1.有效宽度:法兰螺栓预紧后,被压紧部分的宽度叫基本密封宽度。
以bo表示(不同垫片具体数值可查阅GB/T 17186-1997)。
真正能起密封作用的垫片的宽度,称为垫片有效密封宽度,以b表示,其值按以下规定计算:当bo≤6.4mm时,b=bo;当bo>6.4mm时,b=2.53 bo 1/2。
2.压缩率:指加载压缩后垫片厚度的变化百分比,它表征了垫片刚性。
3.回弹率:指压缩载荷卸除后垫片厚度的回复百分比。
它表征了垫片自补偿能力。
4.泄漏率:指在标准试验条件下,介质流体每秒钟通过垫片的泄漏量。
它表征了垫片对介质流体的密封能力。
5.最小预紧应力:压紧垫片使之产生变形从而填满法兰密封面间的微间隙所需要的最小应力,也称最小预紧比压,用符号y标示(各材质垫片具体数值可查阅GB/T 17186-1997)6.应力松弛:垫片在使用一段时间后,作用在垫片上的压紧力随垫片减薄而逐渐减小,这种应力减小的现象被称为应力松弛。
7.蠕变松弛:在螺栓法兰垫片连接中,垫片应力是由螺栓伸长转换成垫片应力的,因而垫片厚度的改变会引起螺栓伸长的变化,同时也改变了垫片应力,这种垫片螺栓的相互作用被称为蠕变松弛。
8.界面泄漏:垫片压紧力不足、法兰密封面粗糙、管道热变形、振动等造成垫片与法兰密封面之间贴合不严密,从而发生的泄漏。
9.渗透泄漏:非金属垫片使用中介质通过材料内部的空隙渗透出垫片的种类及特点垫片的验收标准四、垫片选型标准垫片类型结构、尺寸公差、性能、制造执行标准检验执行标准金属缠绕垫HG/T20610、HG/T20631、SH3407 JB/T7758.2、JB/T 6618、GB/T27793、GB/T12621、GB/T12622、GB/T12385金属波齿复合垫片GB19066-3 GB19066、GB/T12621、GB/T12622、GB/T12385金属齿形复合垫片HG/T20611 HG/T20611-2009、GB/T2520、GB/T3280、GB/T12622、GB/T 12621、GB/T 12385、GB/T 19675.2 金属包覆垫片HG/T20609、HG/T20630 GB/T 12622、GB/T 12385、GB/T 15601金属环垫SH3407 GB 699、GB 1220、JB 4726-4728、GB/T222、GB/T230.1、 GB/T 231.1非金属平垫SH3401 GB/T 12622、GB/T 12621、GB/T 12385聚四氟乙烯包覆垫片HG/T20607 SH3402、GB/T 12621、GB/T 12385附件二:表1常用接管法兰垫片选用表介质法兰公称压力MPa工作温度℃法兰型式垫片备注优先推荐允许使用材料油品、油气、溶剂*、石油化工原料及产品、一般化工介质1.6≤200 平焊(光)金属缠绕垫无石棉纤维橡胶垫、柔性石墨复合垫无石棉纤维橡胶板当介质为易燃、易爆、有毒或强渗透性时,采用凹凸面法兰201~250 对焊(光)金属缠绕垫柔性石墨复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)2.5≤200 平焊(光)金属缠绕垫无石棉纤维橡胶垫无石棉纤维橡胶板201~350 对焊(光)金属缠绕垫金属波齿复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)351~450 对焊(光)金属缠绕垫金属波齿复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)451~530 对焊(光)金属缠绕垫金属波齿复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)4.0≤40 对焊(凹凸) 金属缠绕垫金属波齿复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)41~350 对焊(凹凸) 金属缠绕垫金属波齿复合垫06Cr13(06Cr18Ni9等)钢带+石墨351~450 对焊(凹凸) 金属缠绕垫金属波齿复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)视情况可用0Cr17Ni12Mo2 451~530 对焊(凹凸) 金属缠绕垫金属波齿复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)6.410.0≤450对焊(凹凸) 金属缠绕垫金属齿形垫、金属波齿复合垫10、06Cr13、06Cr18Ni9 视情况可用0Cr17Ni12Mo2 对焊(梯形槽) 金属环垫10、06Cr13、06Cr18Ni9451~530对焊(凹凸) 金属缠绕垫金属齿形垫06Cr13、06Cr18Ni9、06Cr17Ni12Mo2对焊(梯形槽) 金属环垫06Cr13、06Cr18Ni99、06Cr17Ni12Mo2低温油气 4.0 -20~0 对焊(光)金属缠绕垫柔性石墨复合垫石墨+金属骨架(10、06Cr13、06Cr18Ni9等)压缩空气 1.0 ≤150 平焊(光)橡胶垫无石棉纤维橡胶板惰性气体1.0 ≤60 平焊(光)橡胶垫无石棉纤维橡胶板4.0 ≤60对焊(光、凹凸)缠绕垫柔性石墨复合垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)10.0 ≤60对焊(凹凸) 缠绕垫金属齿形垫10、06Cr13对焊(梯形槽) 金属环垫10、06Cr13液化石油气1.6 ≤50 对焊(光)金属缠绕垫石墨+金属骨架(06Cr18Ni9)2.5 ≤50 对焊(光)金属缠绕垫06Cr18Ni9钢带+石墨、石墨+金属骨架(06Cr18Ni9)续表145续表1介质法兰公称压力MPa 工作温度℃ 法兰型式垫 片 优先推荐 允许使用 材 料 蒸汽 0.3MPa 1.0 平焊(光) 平焊(光) 无石棉纤维橡胶垫 石墨复合垫 无石棉纤维橡胶板 1.0 MPa 1.6 对焊(光) 对焊(光) 金属缠绕垫 金属波齿复合垫06Cr18Ni9钢带+石墨带、石墨+金属骨架(06Cr18Ni9) 2.5 MPa 4.0 对焊(光) 对焊(凹凸) 对焊(光) 对焊(凹凸) 金属缠绕垫 金属波齿复合垫 06Cr18Ni99钢带+石墨带、石墨+金属骨架(06Cr18Ni9)3.5MPa6.4 对焊(凹凸) 对焊(凹凸) 金属缠绕垫 金属波齿复合垫06Cr18Ni9钢带+石墨带、石墨+金属骨架(06Cr18Ni9) 10.0 对焊(梯形槽) 对焊(梯形槽)金属环垫 06Cr13、06Cr18Ni9氢气、氢气与 油气混合物 4.0 ≤250 对焊(凹凸) 金属缠绕垫金属齿形垫、金属波齿复合垫 06Cr18Ni9钢带+石墨带、石墨+金属骨架(06Cr18Ni9) 251~450 对焊(凹凸) 金属缠绕垫金属齿形垫、金属波齿复合垫 06Cr18Ni9钢带+石墨带、石墨+金属骨架(06Cr18Ni9) 451~530 对焊(凹凸) 金属缠绕垫金属齿形垫、金属波齿复合垫 06Cr18Ni9钢带+石墨带、06Cr18Ni9、06Cr17Ni12Mo2 6.410.0 ≤250 对焊(凹凸) 金属缠绕垫金属齿形垫、金属波齿复合垫06Cr18Ni9钢带+石墨带,06Cr18Ni9、06Cr13、10对焊(梯形槽)金属环垫251~400 对焊(凹凸) 金属缠绕垫 金属齿形垫、金属波齿复合垫06Cr18Ni9钢带+石墨带06Cr18Ni9、06Cr13对焊(梯形槽) 金属环垫401~530 对焊(凹凸) 金属缠绕垫 金属齿形垫06Cr18Ni9钢带+石墨带,06Cr18Ni99、06Cr17Ni12Mo2 对焊(梯形槽)金属环垫介 质 法兰公称压力MPa 工作温度℃ 法兰型式 垫 片优先推荐 允许使用 材 料 对焊(梯形槽) 金属环垫79%~98%硫酸 0.6 ≤120 平焊(光) 橡胶垫 无石棉纤维橡胶板、耐酸碱橡胶板 稀硝酸≤55% ≤50 扩口活套 聚四氟乙烯包覆垫 聚四氟乙烯+无石棉纤维橡胶板浓硝酸≥93%≤86 铝管口翻边 聚四氟乙烯包覆垫 聚四氟乙烯+氯丁橡胶 硝酸60%~93% <60 耐酸钢平焊 聚四氟乙烯垫 聚四氟乙烯+无石棉纤维橡胶板 酸 渣 0.6 ≤120 平焊(光) 橡胶垫 无石棉纤维橡胶板10%~40%碱渣 1.0 ≤50 平焊(光) 橡胶垫 无石棉纤维橡胶板 氨 2.5 ≤150 平焊(凹凸) 金属缠绕垫 无石棉纤维橡胶板 对焊(凹凸) 金属缠绕垫 石墨+金属骨架(10、06Cr13) 水0.6MPa 0.6 ≤100 平焊(光) 橡胶垫 无石棉纤维橡胶板表2金属环垫和金属平垫选用67法兰密封面材质金属平垫/金属环垫材料牌号最高使用温度℃最大硬度HB相关技术要求10#、20# 软铁 450 901、金属垫材料硬度值宜比法兰材料硬度值低HB30-40。
泰强紧固件江苏泰强不锈钢制品有限公司/
紧固件知识:垫片密封的重要特性
垫片也是紧固件中的一个小零件,垫片的目的主要是保证设备不产生泄漏,正确选用密封垫片是保证设备无泄漏的关键。
因此关于垫片的密封性能一定要进一步了解,其垫片密封主要有八大重要特性。
1、气密性:对于密封系统的介质,垫片在一定的温度和压力工作范围内,并在一定时间内不会发生泄露。
2、可压缩性:垫片和法兰的接触面在连接螺栓紧固后,应能很好的进行吻合,以保证密封效果。
3、抗蠕变性:在压力负荷和使用温度的影响下,抗蠕变性应能较好,否则会导致垫片表面应力减小,从而造成泄露。
4、抗化学腐蚀:所选用的垫片应不会受到化学介质的腐蚀,而且不能污染介质。
5、回弹性:即使是稳定的系统,相连接的两个法兰由于温度和压力等因素的影响,肯定会存在微小的位移,垫片的弹性功能应能弥补这一缺陷,以保证系统的密封性。
6、抗黏接性:垫片在使用后应能方便的从法兰上拆下来,不会和法兰发生粘接。
7、无腐蚀性:垫片应对连接的法兰表面无腐蚀作用。
8、耐温度:所选用的垫片应保证在系统的最低温度和最高温度下都能正常使用。
管法兰用垫片密封性能试验方法1范围本文件规定了管法兰用垫片密封性能的A、B、C三种试验方法。
本文件的三种试验方法均适用于非金属平垫片(无或有嵌入物),包括由橡胶板、非石棉橡胶板、软木橡胶板、聚四氟乙烯板、膨胀或改性聚四氟乙烯板、柔性石墨板(无或有金属薄箔或冲刺薄板增强)等切割而成的垫片;半金属垫片,即非金属与金属材料复合的成型垫片,包括缠绕式垫片、金属包覆垫片、具有覆盖层(柔性石墨或聚四氟乙烯等)的齿形金属、波形金属或波齿形金属垫片;聚四氟乙烯包覆垫片;金属平垫片。
2规范性引用文件下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。
其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。
GB/T15823无损检测氦泄漏检测方法3术语和定义本文件没有需要界定的术语和定义。
4试验方法A4.1试验装置4.1.1试验在专用的垫片综合性能试验装置上进行。
试验装置由垫片加载系统、介质供给系统、测漏系统及试验法兰等组成,如图1所示。
4.1.2垫片加载系统应能提供规定的垫片预紧应力并能控制恒定的加载、卸载速度。
试验过程中垫片预紧应力的波动应在规定值的±2%范围之内。
当垫片预紧应力≤35MPa时,加载、卸载速度为0.2MPa/s;当垫片预紧应力>35MPa时,加载、卸载速度为0.5MPa/s。
4.1.3试验介质供给系统应能提供规定的试验介质压力。
试验过程中介质压力的波动应在规定值的±2%范围之内。
4.1.4泄漏率测量采用集漏空腔增压法,泄漏率计算基于理想气体定律。
在垫片外侧、上下法兰面间应经严格标定。
测漏系统分辨率应不低于10-5cm3/s。
设置一个密闭的环形测漏空腔,测漏空腔的容积Vc4.1.5试验法兰采用模拟法兰,密封面为突面。
试验法兰应具有足够的刚度,以确保能承受加载载荷,并不发生因压板变形而影响垫片表面应力的情况。
GB150垫片预压紧力和操作所需力计算公式的解释1、与垫片的密封条件有关系:垫片强制密封有两个条件:即预密封条件和操作密封条件。
密封条件的意义是:法兰的密封面不管经过多么精密的加工,从微观来讲,其表面总是凹凸不平的,存在沟槽。
这些沟槽可成为密封面的泄漏通道。
因此必须利用较软的垫片在预紧螺栓力作用下,使垫片表面嵌入到法兰密封面的凹凸不平处,将沟槽填没,消除上述泄漏通道。
为此在垫片单位有效密封面积上应有足够的压紧力。
此单位面积上的压紧力,称为垫片的密封比压力(单位为 MPa),用 y 表示。
不同的垫片有不同的比压力。
垫片材料愈硬,y 愈高。
操作密封条件的意义是:经预紧达到密封条件的密封面,在内压作用下,由于压力的轴向作用,密封面会产生分离,使垫片与密封面间的压紧力减小,出现微缝隙,内压介质有可能通过缝隙产生泄漏。
为保证其密封,必须使垫片与密封面间保持足够大的流体阻力,只有当其阻力能大于由介质内外压差引起的推动力时,垫片方能密封而不产生泄漏。
由于垫片与密封面间的流体阻力与垫片压紧力成正比,为此在垫片与密封面间必须保持足够大的压紧力,以确保其缝隙足够的小而使流体阻力足够的大。
使垫片与法兰密封面间保持足够大的阻力使密封面不发生泄漏时,施加于垫片单位有效密封面积上的压紧力与其内压力的比值,称为垫片的垫片系数,以 m 表示。
不同的垫片有不同的 m 值,且 m 随垫片的硬度增大而增大。
垫片在螺栓预紧时承受最大的压紧力,有可能被压缩成塑性变形而失去回弹能力,当法兰密封面在介质压力作用下产生分离时,垫片不能产生回弹去“贴紧”密封面,使其间不能保持足够的接触力(即垫片压紧力)而引起泄漏。
因此,垫片在预紧时,既要压紧以使其单位有效密封面积上的压紧力不小于 y 值,又不能使其压紧力过大以防止被压成塑性变形。
垫片的最大压溃应力垫片是一种常用于机械设备中的密封材料,主要用于填补设备之间的间隙,防止液体或气体泄漏。
垫片的最大压溃应力是指在承受最大复合载荷时,垫片受到的最大压缩应力。
这个参数非常重要,因为它直接影响垫片在使用过程中的稳定性和密封性能。
垫片的最大压溃应力与垫片的材料有关。
通常,垫片材料可以分为金属、橡胶、塑料等多种类型。
每一种材料都有其独特的力学性能和化学性质,因此对垫片的最大压溃应力有不同的影响。
金属垫片是最常见的一类垫片材料。
由于金属具有高强度和刚性,因此金属垫片通常具有很高的最大压溃应力。
一般来说,常用的金属垫片材料包括不锈钢、黄铜、铝等。
这些材料通常被用于高压、高温和强腐蚀的环境中。
橡胶垫片是另一种常见的垫片材料。
由于橡胶具有良好的弹性和柔软性,因此橡胶垫片通常具有较低的最大压溃应力。
橡胶垫片可分为天然橡胶、丁基橡胶和丙烯橡胶等多个品种。
这些材料主要用于低压、低温的环境中。
塑料垫片是一种新型的垫片材料。
由于塑料具有良好的韧性、耐磨性和化学稳定性,因此塑料垫片具有很高的最大压溃应力。
常用的塑料垫片材料包括PTFE、聚四氟乙烯等。
这些材料通常被用于高温、强腐蚀的环境中。
当设计垫片时,必须考虑到设备的工作条件和应力情况。
一般来说,垫片应该选择具有合适最大压溃应力的材料,以确保其在使用过程中不会破裂或折叠。
另外,垫片的厚度和外径也应该考虑到,以满足工作条件下的最大复合载荷。
总之,垫片的最大压溃应力是影响垫片使用性能的关键参数之一。
选择合适的垫片材料和设计合理的垫片结构,可以保证垫片在各种恶劣的工作条件下都能良好地发挥其密封性能。
垫片的工作原理
垫片是一种广泛应用于机械设备中的密封元件。
它通常由柔软的材料制成,例如橡胶、塑料或金属。
垫片的工作原理是通过将两个连接的表面之间插入垫片,形成一个密封,以防止流体或气体的泄漏。
当两个连接的表面之间存在缝隙时,垫片被放置在缝隙中。
随着两个表面的紧密接触,垫片会被挤压和变形,填充缝隙,从而形成密封。
垫片的压缩变形产生扭转力,这些力使垫片与连接表面之间产生摩擦,从而增加密封效果。
垫片的密封性能取决于材料的选择和垫片的设计。
不同的材料具有不同的弹性和耐磨性,可以针对不同的应用场景选择合适的材料。
此外,垫片的形状和厚度也会影响其密封性能。
设计工程师需要仔细考虑材料的选用和垫片的尺寸,以确保垫片能够有效地阻止泄漏。
垫片具有许多优点,例如简单可靠、成本低廉和易于安装。
它们广泛应用于各种行业中,包括汽车工业、航空航天、化工和制药等。
无论是在高压环境下还是在低温条件下,垫片都可以提供稳定和可靠的密封效果。
综上所述,垫片通过在连接表面之间形成密封,防止流体或气体泄漏。
它们的工作原理是依靠垫片的压缩变形和摩擦力,以确保有效的密封性能。
垫片的材料选择和设计都是确保垫片具有良好密封性能的重要因素。
垫片的许应力垫片的许应力指的是垫片能够承受的应力极限,通常由垫片的材料、厚度、工作温度、压力等参数决定。
在选择垫片时,需要综合考虑垫片的许应力、工作条件等因素,以确保垫片的安全性和可靠性。
垫片的许应力计算公式为:P = K * (σ/S) * (d/t) * (p/p0)其中,P为垫片许用压力(单位为Pa),σ为垫片材料在20℃下的抗拉强度(单位为Pa),S为垫片材料的泊松比,d为垫片内径(单位为m),t为垫片厚度(单位为m),p为设计压力(单位为Pa),p0为垫片承受的真空度(单位为Pa),K为安全系数。
在实际应用中,为了确保垫片的安全性,通常取较小的许用压力值。
此外,对于一些特殊的垫片材料和工况,还需要考虑其他的因素,如垫片的热膨胀系数、耐腐蚀性等。
总之,选择合适的垫片并正确地使用它对于设备的正常运行和安全性至关重要。
因此,在实际应用中,需要充分考虑各种因素,以确保垫片的选择和使用是安全可靠的。
垫片的参数除了许应力外,还包括垫片的材质、规格、尺寸、使用温度、工作压力等。
垫片的材质有很多种,如丁腈橡胶、氟橡胶、硅橡胶、三元乙丙橡胶等,不同材质的垫片具有不同的耐温、耐腐蚀等性能,需要根据实际需求进行选择。
垫片的规格和尺寸需要根据设备的接口和安装要求进行选择,一般会根据厂家提供的尺寸进行选择。
使用温度和工作压力是选择垫片的重要参数,不同材质的垫片具有不同的使用温度和压力范围,需要综合考虑设备的实际运行条件进行选择。
此外,垫片的安装方式和紧固力也是需要考虑的因素,如果安装方式和紧固力不合适,可能会导致垫片移位或松动,影响设备的密封性能和安全性。
总之,选择合适的垫片并正确地安装使用它,对于设备的正常运行和安全性至关重要。
因此,在实际应用中,需要充分考虑各种因素,以确保垫片的选择和使用是安全可靠的。
垫片的密封应力Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】螺栓法兰接头安全密封技术(四)——垫片密封应力——摘要:在法兰接头设计或选用中,垫片虽然成本相对较低,但在保证连接密封性能、控制泄漏要求方面起着重要的作用。
人们往往容易将泄漏的原因集中在垫片上,当然有垫片本身的原因,但更多的是法兰连接系统的设计或选用中存在的许多问题,最后通过垫片密封应力的降低表现了出来。
在法兰接头安装过程以及后续的各种使用过程中,垫片密封应力的大小和变化受到众多因素的影响。
当垫片的密封应力降低到低于设计要求的基准值时,其结果是导致法兰连接的密封失效、发生泄漏。
本文分析了引起垫片密封应力降低的影响因素及其原因,介绍了估算方法,提出要减小弥补这样的影响,维持法兰接头的密封状态,初始安装螺栓载荷应足够大。
同时螺栓也要有足够的强度,能承受相应的拉伸载荷及其可能的增加量。
前言螺栓连接法兰接头的强度和密封性能对于承压设备/装置以及管道系统的正常、安全运行非常重要。
法兰连接强度的保证,在承压设备行业(包括锅炉、压力容器、压力管道)长期以来都非常重视,当然这很重要,但对于其密封性能的保证或评估国内却较少有研究。
螺栓垫片法兰连接的泄漏途径,一个是通过垫片内部的渗透泄漏,另一个是通过垫片与法兰密封面之间的间隙的界面泄漏,界面泄漏是最难对付的。
通常,我们考虑通过选用不同材料和类型垫片用于不同的设计工况条件以及在垫片表面途密封剂量等方法,达到减少/控制泄漏的目的。
要控制法兰接头的泄漏,仅仅通过采用各种措施消除垫片与法兰密封面之间的间隙/泄漏通道是远远不够的,最重要的是无论在安装阶段、还是各种使用过程中,当螺栓/垫片有蠕变松弛产生、当有介质压力等外载荷/温度等作用下,垫片与法兰密封面上必须始终保持/维持有足够的压缩应力,本文称之为“垫片密封应力”。
所以,法兰接头的强度和密封需要通过螺栓提供足够的夹紧力和垫片密封应力,来承受介质压力或各种外载荷,保证垫片的密封应力在安装以及随后的各种工况条件下都维持在设计要求的基准值以上,才能获得有效的密封、控制泄漏。
在法兰接头设计选用中,虽然垫片的成本相对较低,但垫片是个核心的问题,在保证连接密封性能、控制泄漏达到设计要求中起重要的作用。
由于螺栓连接法兰接头的强度和密封性能受到诸多因素的影响,其复杂的力学和变形关系,涉及到一个专题领域,要消除/控制法兰接头的泄漏是困难的。
为了保证安全使用、控制泄漏,垫片必须正确选用设计、保证质量、正确地安装,在任何工况条件下法兰密封面和垫片接触表面之间应具有足够的压紧应力。
所以,垫片的密封应力( = 总的螺栓载荷力/垫片的压缩面积)是法兰接头密封设计/选用的关键性能参数。
1、垫片的蠕变松弛非金属垫片中,包括半金属垫片用填充材料或覆盖层,经常使用合成橡胶、PTFE等各种弹性材料。
这类材料的特点之一,是具有不同程度的蠕变松弛特性,它与温度、时间、初始应力水平、密封材料厚度等多种因素有关。
对于法兰接头,经常遇到垫片的蠕变松弛问题。
当安装/预紧达到密封设计要求的垫片,随着时间的推移,由于垫片的蠕变松弛行为,垫片密封面的压缩应力会降低/减少,并影响法兰接头的刚度。
当应力值下降到某一临界值以下时,即出现连接的密封失效或泄漏。
尤其在高温下长期使用,对垫片密封应力降低的影响更加明显(表1,缠绕垫片的常温和高温蠕便松弛性能数据)○。
很多垫片都在一定温度下使用,但关于垫片的高温蠕变松弛性能的数据却不多。
应该说蠕变并不只是高温的现象,在低温下也会产生。
但由于温度低蠕变现象不明显,不容易察觉,但几乎所有的垫片多多少少有发生。
不同材料和结构类型的垫片,蠕变松弛程度不同,。
表2为几种垫片的常温蠕变松弛性能⑦。
表1 常温和高温蠕变松弛表2 垫片的蠕变松弛率垫片的蠕变松弛行为是影响螺栓法兰接头发生密封的主要原因之一。
用户经常碰到,使用PTFE材料为主的垫片需在法兰接头安装24小时后进行再拧紧的操作,以弥补由于垫片蠕变松弛引起的垫片压缩应力降低以及由此引起的螺栓紧固载荷的减少。
在非金属垫片中,橡胶类垫片安装后由于蠕变松弛引起垫片压缩应力的降低较大,石墨材料垫片相对较小,但垫片的蠕变松弛程度与配合的法兰密封面结构有关,即垫片的变形是否有约束。
图1为氟橡胶(Viton○)垫片产品的实测应力松弛曲线,图2为柔性石墨垫片的实测应力松弛曲线⑨。
图3为增强柔性石墨板和具有石墨覆盖层波纹板的长期蠕变松弛性能①(实验),由图可见,1天后垫片的应力降低约为23%~59%。
(a) 有约束,垫片初始应力10500psi (b) 无约束图1 氟橡胶(Viton○)垫片应力松弛曲线(硬度75)图2 柔性石墨垫片应力松弛(无约束)注:垫片A,增强柔性石墨板(316不锈钢钢板0.05mm,两侧石墨层厚0.79mm)垫片B,具有石墨覆盖层的波纹板(不锈钢波纹板0.76mm,两侧石墨层厚0.79mm,节距3.2mm)垫片C,具有石墨覆盖层的波纹板(不锈钢波纹板0.61mm,两侧石墨层厚0.79mm,节距3.55mm)图3 垫片的蠕变松弛性能EN1591法兰计算方法中,垫片蠕变松弛对于使用工况条件下垫片压缩应力的影响,用参数PQR 表示。
PQR为垫片密封面的剩余压缩应力(使用条件)与初始压缩应力(安装状态)的比值,按EN13555:2004的方法测定,是表示垫片短期松弛性能的度量参数(4小时,未考虑长期松弛影响)。
表3为EN1591-2:2008中给出的PQR。
表3 PQR上述数据都是在一定时间内垫片试验的结果。
试验结果与实际使用存在有多大差别,以及垫片的蠕变松弛其对于垫片密封应力影响程度的确定的工程实用方法还有待进一步研究。
此外,由于垫片的非线性应力-变形(粘弹塑性),经历一次加载和卸载,垫片的密封应力增加和减小,即使螺栓夹紧力回到原来的水平,垫片的密封应力降低。
在垫片设计或选用计算时,考虑垫片的蠕变松弛对于法兰接头密封性能的影响,通常可以设定比较高的螺栓载荷、选用抗松弛性能好的或者新的高性能材料垫片、再拧紧(热拧紧)等措施,以减小垫片蠕变松弛的影响。
2、法兰或螺栓的蠕变/松弛(1)温度由于法兰或螺栓的蠕变松弛,会影响实际作用于垫片密封面的螺栓载荷大小。
但与垫片相比,螺栓和法兰蠕变松弛的影响相对较小。
但具体影响有多大、程度如何,目前也没有可以使用的规范方法计算确定。
在EN1591(EN13445-3附录G)中法兰接头的计算,也没有考虑到螺栓和法兰蠕变松弛对于法兰接头密封性能的影响。
究其原因可能是很少有螺栓选用设计用于其蠕变温度范围的应用实例。
图4为温度对螺栓材料的应力松弛的影响。
除了常温使用工况条件以外,法兰和螺栓之间存在有一定的温差,不同的热膨胀量会引起法兰接头中力/变形平衡的变化,从而引起垫片密封应力的变化。
必要时应考虑取一定的安全裕量,或进行使用条件下蠕变松弛的评估,来确定使用条件下垫片的实际压缩载荷。
通常,对于法兰和螺栓选用膨胀系数相近的材料,并正确安装的法兰连接,一般认为可以在260℃以下正常使用。
实际使用经验也表明①,静态或动态温度对于法兰接头密封性能的影响,大致相当于10%屈服强度的螺栓载荷的减少。
图4 B7/B16/B8M螺栓蠕变松弛曲线(2)螺栓的短期应力松弛螺栓的短期应力松弛会导致实际作用于垫片密封面载荷的减小。
不同于温度引起的材料的蠕变松弛行为,螺栓法兰接头在初始安装后,每个螺栓的预紧载荷/法兰接头夹紧力或多或少会有减少。
不考虑安装过程程序、方法等原因,也排除安装螺栓载荷超过材料屈服极限引起蠕变,主要原因是由于局部塑性变形,如螺母承压面与法兰背面之间、螺栓和螺母配合螺纹之间(螺母的第一个螺纹,螺纹配合面不平等)。
所以,大部分螺栓的短期应力松弛发生在安装拧紧后几秒钟或几分钟,在随后相当长时间内保持在一个较低的水平。
见图5所示。
螺栓短期应力松弛的大小和程度很难计算预测,大多数情况需通过实验大致确定。
按照NASa(1998)⑦提出的数据,由于螺栓的短期应力松弛,螺栓预紧载荷的损失大约在2%-10%。
一般,可以通过多次拧紧来减少其对垫片密封应力降低的影响。
对于螺栓来说,除了材料的蠕变松弛,其他任何导致安装螺栓载荷降低的因素,都将影响到垫片密封应力的变化。
通常考虑选用合适的螺栓材料,消除/减小螺栓蠕变松弛的影响。
图5 法兰接头安装拧紧后螺栓的短期松弛图6 法兰接头的转角变形3、法兰转角实际上法兰非完全刚性,安装时在螺栓预紧载荷作用下产生偏转,如图6所示。
垫片内径处(图6中B点)部分或全部卸载,垫片密封应力沿径向不均匀分布,垫片外径处(图6中A点)应力高于内径处的应力。
当有介质内压以及管道系统外载荷(外力、外弯距、温差等)作用时,将引起法兰转角变形的进一步增加。
同时,螺栓拧紧力降低。
此外,也就是说,法兰接头安装拧紧螺栓后,螺栓发生一定的拉伸变形。
在使用工况条件下,法兰的进一步偏转的影响,使螺栓伸长变形减少,拧紧载荷降低,导致垫片密封应力减小,从而对法兰接头密封产生不利的倾向。
这也可以用来解释在实际工程应用中,安装时施加了很高的预紧力的法兰接头,使用中螺栓并没有破坏。
研究发现,法兰转角变形过大,容易引起法兰接头的密封失效,引起泄漏。
垫片接触面密封应力的这种变化,大尺寸法兰接头比较小尺寸法兰接头要大。
图7所示为采用缠绕垫的带颈对焊法兰接头的FEA计算结果③。
分析表明,大直径法兰接头由于转角变形大,垫片密封面的应力分布不均匀程度更大。
即,随着法兰直径的增加,法兰的转角变形对于法兰接头密封性能的影响增加。
大尺寸法兰的刚度比尺寸法兰的刚度小,更加容易产生转角变形比如,大直径奥氏体不锈钢法兰(刚度小),容易偏转变形过大引起泄漏。
在ASME BPV VIII-2附录2中,对法兰安装时的转角变形有一个限制(法兰刚度)。
在EN1591(EN13445-3附录G)中,有安装和使用条件下法兰转角的计算,但计算方法复杂,也没有提出限制要求。
图7:垫片密封应力的径向分布注:r 0:垫片内半径,σ0:垫片内径处密封应力。
4、介质内压、外载荷法兰接头安装预紧后,法兰、垫片、紧固件达到一个静态力/变形平衡状态。
垫片上压缩载荷F G = 螺栓预紧载荷F b ,图8(a )所示。
在法兰接头设计或选用时,经常是仅考虑介质内压P 的作用,其在法兰接头上产生一个轴向作用力W = 1/4ЛD 2P 。
如将由此产生的垫片压缩载荷的变化设为ΔF G ,每个螺栓的拉伸载荷的变化为Δf b ,则法兰接头达到新的力/变形平衡后垫片上的剩余压缩载荷为 = Fb -ΔF G (卸载)。
图8(b )如果把螺栓载荷的变化Δf b 与内压P 引起的轴向载荷W/N 的比值定义为载荷系数Φg (Φg = Δf b /(W/N )),可以看到,当Φg 为正值,螺栓载荷增加,当Φg 为负值时,螺栓载荷将降低。