2018年成人高考《高等数学(一)》真题及答案
- 格式:pdf
- 大小:252.59 KB
- 文档页数:18
绝密★启用前2018年成人高等学校招生全国统一考试数 学 (理工农医类)一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
(1)函数24x y -=的定义域是(A )(—∞,0) (B )[0,2] (C )[—2,2] (D )(—∞,—2]∪[2,+∞] (2)已知向量a =(2,4),b =(m ,—1),且a ⊥b ,则实数m= (A )2 (B )1 (C )—1 (D )—2 (3)设角α是第二象限角,则(A )cos α<0,且tan α>0 (B )cos α<0,且tan α<0 (C )cos α>0,且tan α<0 (D )cos α>0,且tan α>0(4)一个小组共有4名男同学和3名女同学,4名男同学的平均身高为1.72m ,3名女同学的平均身高为1.61m ,则全组同学的平均身高约为(精确到0.01m ) (A )1.65m (B )1.66m (C )1.67m (D )1.68m(5)已知集合A={1,2,3,4},B={x ∣—1<x <3},则A ∩B=(A ){0,1,2} (B ){1,2} (C ){1,2,3} (D ){—1,0,1,2} (6)若直线l 与平面M 平行,则在平面M 内与l 垂直的直线 (A )有无数条 (B )只有一条 (C )只有两条 (D )不存在 (7)i 为虚数单位,若i (m —i )=1—2i ,则实数m= (A )2 (B )1 (C )—1 (D )—2(8)已知函数y=f(x)是奇函数,且f (—5)=3,则f (5)= (A )5 (B )3 (C )—3 (D )—5(9)若5)1(m =a,则=-ma2 (A )251 (B )52(C )10 (D )25 (10)21log 4= (A )2 (B )21 (C )21- (D )-2(11)已知25与实数m 的等比中项是1,则m= (A )251 (B )52(C )10 (D )25 (12)已知正三棱锥P-ABC 的体积为3,底面边长为32,则该三棱锥的高为(A )3 (B )3 (C )23 (D )33(13)曲线y=2x 2+3在点(—1,5)处切线的斜率是(A )4 (B )2 (C )—2 (D )—4 (14)函数21+=x y (x ≠—2)的反函数的图像经过点(A )),(241(B )),(9441 (C )),(614 (D )),(412 (15)下列函数中,既是偶函数,又在区间(0,3)为减函数的是 (A )y=cosx (B )y=log 2x (C )y=x 2—4 (D )x)31(y =(16)一位篮球运动员投篮两次,若两投全中得2分,若两投一中得1分,若两投全不中得0分.已知该运动员两投全中的概率为0.375,两投一中的概率为0.5,则他投篮两次得分的期望值是 (A )1.625 (B )1.5 (C )1.325 (D )1.25(17)已知A ,B 是抛物线y 2=8x 上两点,且此抛物线的焦点在线段AB 上,若A ,B 两点的横坐标之和为10,则∣AB ∣= (A )18 (B )14 (C )12 (D )10二、填空题:本大题共4小题,每小题4分,共16分。
2018年成人高等学校专升本招生全国统一考试高等数学(一)。
答案必须答在答题卡上指定的位置,答在试卷上无效.......(共三套及参考答案)第Ⅰ卷(选择题,共40分)一、选择题:1~10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.A.0B.1C.2D.不存在2.().A.单调增加且为凹B.单调增加且为凸c.单调减少且为凹D.单调减少且为凸3.A.较高阶的无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.较低阶的无穷小量4.A.B.0C.D.15.A.3B.5C.1D.A.-sinxB.cos xC.D.A.B.x2C.2xD.28.A.B.C.D.9.设有直线当直线l1与l2平行时,λ等于().A.1B.0C.D.一110.下列命题中正确的有().A.B.C.D.第Ⅱ卷(非选择题,共110分)二、填空题:11~20小题,每小题4分,共40分.11.12.13.14.15.16.17.18.19.20.三、解答题.21~28小题,共70分.解答应写出推理、演算步骤.21.(本题满分8分)22.(本题满分8分)设y=x+arctanx,求y'.23.(本题满分8分)24.(本题满分8分)计算25.(本题满分8分)26.(本题满分10分)27.(本题满分10分)28.(本题满分10分)求由曲线y=x,y=lnx及y=0,y=1围成的平面图形的面积S及此平面图形绕y轴旋转一周所得旋转体体积.模拟试题参考答案一、选择题1.【答案】C.【解析】本题考查的知识点为左极限、右极限与极限的关系.2.【答案】B.【解析】本题考查的知识点为利用一阶导数符号判定函数的单调性和利用二阶导数符号判定曲线的凹凸性.3.【答案】C.【解析】本题考查的知识点为无穷小量阶的比较.4.【答案】D.【解析】本题考查的知识点为拉格朗日中值定理的条件与结论.可知应选D.5.【答案】A.【解析】本题考查的知识点为判定极值的必要条件.故应选A.6.【答案】C.【解析】本题考查的知识点为基本导数公式.可知应选C.7.【答案】D.【解析】本题考查的知识点为原函数的概念.可知应选D.8.【答案】D.【解析】本题考查的知识点为牛顿一莱布尼茨公式和定积分的换元法.因此选D.9.【答案】C.【解析】本题考查的知识点为直线间的关系.10.【答案】B.【解析】本题考查的知识点为级数的性质.可知应选B.通常可以将其作为判定级数发散的充分条件使用.二、填空题11.【参考答案】e.【解析】本题考查的知识点为极限的运算.12.【参考答案】1.【解析】本题考查的知识点为导数的计算.13.【参考答案】x—arctan x+C.【解析】本题考查的知识点为不定积分的运算.14.【参考答案】【解析】本题考查的知识点为定积分运算.15.【参考答案】【解析】本题考查的知识点为隐函数的微分.解法1将所给表达式两端关于x求导,可得从而解法2将所给表达式两端微分,16.【参考答案】【解析】本题考查的知识点为二阶常系数线性齐次微分方程的求解.17.【参考答案】1.【解析】本题考查的知识点为二元函数的极值.可知点(0,0)为z的极小值点,极小值为1.18.【参考答案】【解析】本题考查的知识点为二元函数的偏导数.19.【参考答案】【解析】本题考查的知识点为二重积分的计算.20.【参考答案】【解析】本题考查的知识点为幂级数的收敛半径.所给级数为缺项情形,三、解答题21.【解析】本题考查的知识点为极限运算.解法1解法2【解题指导】在极限运算中,先进行等价无穷小代换,这是首要问题.应引起注意.22.【解析】23.【解析】本题考查的知识点为定积分的换元积分法.【解题指导】比较典型的错误是利用换元计算时,一些考生忘记将积分限也随之变化. 24.【解析】本题考查的知识点为计算反常积分.计算反常积分应依反常积分收敛性定义,将其转化为定积分与极限两种运算.25.【解析】26.【解析】27.【解析】本题考查的知识点为二重积分运算和选择二次积分次序.28.【解析】所给曲线围成的图形如图8—1所示.2018年成人高等学校专升本招生全国统一考试高等数学(一)。
2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.=→xxx cos lim 0()A.eB.2C.1D.02.设x y cos 1+=,则dy=()A.()dxx sin 1+ B.()dxx sin 1- C.xdxsin D.xdxsin -3.若函数()x x f 5=,则()='x f ()A.15-x B.15-x x C.5ln 5x D.x54.=-⎰dx x21()A.C x +-2ln B.Cx +--2ln C.()Cx +--221D.()Cx +-2215.()='⎰dx x f 2()A.()Cx f +221 B.()Cx f +2 C.()Cx f +22 D.()Cx f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11A.0B.2C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz()A.yxy 232++ B.yxy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是()A.柱面B.球面C.旋转抛物面D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ()A.0B.1C.2D.410.微分方程1='y y 的通解为()A.Cx y +=2 B.Cx y +=221 C.Cxy =2 D.Cx y +=22二、填空题:11~20小题,每小题4分,共40分11.曲线43623++-=x x x y 的拐点为___________12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________14.若x e y 2=,则=dy ___________15.()=+⎰dx x 32___________16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________18.=∑∞=031n n___________19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim2231---→x x x x 23.设函数()()23ln 2++=x x x f ,求()0f ''24.求23sin lim x tdt xx ⎰→25.求⎰xdxx cos 26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdyy x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】010cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -=3.【答案】C【解析】()()5ln 55x x x f ='='4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰221222126.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=22111.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6)12.【答案】3-e 【解析】()()[]()33311031lim 31lim --⋅-→→=-+=-e x x xx x x 13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111x x x x f +=+-='14.【答案】dxe x 22【解析】()x x e e y 222='=',则dx e dy x 22=15.【答案】C x x ++32【解析】()C x x dx x ++=+⎰332216.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x 17.【答案】2【解析】22cos 222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x 18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1【解析】10=-=∞+-+∞-⎰x x e dx e 20.【答案】xy4【解析】22y x z =,22xy x z =∂∂,xyyx z 42=∂∂∂21.【答案】()3sin 3limlim 00==--→→xxx f x x ()()aa x x f x x =+=++→→3lim lim 00且()af =0因为()0=x x f 在处连续所以()()()0lim lim 00f x f x f x x ==+-→→3=a 22.【答案】()1123lim1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim 11113lim2121=+++=+--++=→→x x x x x x x xx x 23.【答案】()()()22392332+-=''++='x x f x x f 故()490-=''f 24.【答案】202003cos 31lim 3sin lim xt x tdt x x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x 25.【答案】⎰⎰-=xdxx x xdx x sin sin cos Cx x x ++=cos sin 26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x ,当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数当1<x <0时,()0<x f ',此时()x f 为单调减少函数故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。
绝密★启用前2018年成人高等学校招生全国统一考试数 学一、选择题:本大题共17小题,每小题5分,共85分。
在每小题给出的四个选项中,只有一项是符合题目要求的,将所选项前的字母填涂在答题卡相应题号的信息点上............。
(1)设集合M={x ∣-1≤x <2},N={x ∣x ≤1},则集合M ∩N=(A ){x ∣x >-1} (B ){x ∣x >1} (C ){x ∣-1≤x ≤1} (D ){x ∣1≤x ≤2}(2)函数y=51-x 的定义域为 (A )(-∞,5) (B )(-∞,+∞) (C )(5,+∞) (D )(-∞,5)∪(5,+∞)(3)函数y=2sin6x 的最小正周期为(A )3π (B )2π (C )π2 (D )π3 (4)下列函数为奇函数的是(A )y=log 2x (B )y=sinx (C )y=x 2 (D )y=3x(5)过点(2,1)且与直线y=x 垂直的直线方程为(A )y=x+2 (B )y=x-1 (C )y= -x+3 (D )y= -x+2(6)函数y=2x+1的反函数为(A )21+=x y (B )21-=x y (C )y=2x-1 (D )y=1-2x (7)若a,b,c 为实数,且a ≠0.设甲:b 2-4ac ≥0,乙:ax 2+bx+c=0有实数根,则(A )甲是乙的必要条件,但不是乙的充分条件(B )甲是乙的充分条件,但不是必要条件(C )甲既不是乙的充分条件,也不是乙的必要条件(D )甲是乙的充分必要条件(8)二次函数y=x 2+x-2的图像与x 轴的交点坐标为(A )(-2,0)和(1,0) (B )(-2,0)和(-1,0)(C )(2,0)和(1,0) (D )(2,0)和(-1,0)(9)设i z 31+=,i 是虚数单位,则=z1 (A )431i + (B )431i - (C )432i + (D )432i - (10)设a >b >1,则(A )a 4≤b 4 (B )log a 4>log b 4 (C )a -2<b -2 (D )4a <4b(11)已知平面向量a =(1,1),b =(1,-1),则两向量的夹角为(A )6π (B )4π (C )3π (D )2π (12))(x x 1-的展开式中的常数项为 (A )3 (B )2 (C )-2 (D )-3(13)每次射击时,甲击中目标的概率为0.8,乙击中目标的概率为0.6,甲、乙各自独立地射向目标,则恰有一人击中的概率为(A )0.44 (B )0.6 (C )0.8 (D )1(14)已知一个球的体积为π332,则它的表面积为 (A )4π (B )8π (C )16π (D )24π(15)在等腰三角形ABC 中,A 是顶角,且21=cosA -,则cosB= (A )23 (B )21 (C )21- (D )23- (16)四棱锥P-ABCD 的底面为矩形,且AB=4,BC=3,PD ⊥底面ABCD ,PD=5,则PB 与底面所成角为(A )30° (B )45° (C )60° (D )75°(17)将5本不同的历史书和2本不同的数学书排成一行,则2本数学书恰好在两端的概率为(A )101 (B )141 (C )201 (D )211 二、填空题:本大题共4小题,每小题4分,共16分。
2017年成考高起点数学(理)真题及答案第1卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3C.2D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.10D.2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。
2018年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
1.=→xxx cos lim0( ) A.e B.2 C.1 D.0 2.设x y cos 1+=,则dy=( )A.()dx x sin 1+B.()dx x sin 1-C.xdx sinD.xdx sin - 3.若函数()x x f 5=,则()='x f ( ) A.15-x B.15-x x C.5ln 5x D.x 5 4.=-⎰dx x21( ) A.C x +-2ln B.C x +--2ln C.()C x +--221D.()C x +-2215.()='⎰dx x f 2( ) A.()Cx f +221B.()C x f +2C.()C x f +22D.()C x f +216.若()x f 为连续的奇函数,则()=⎰-dx x f 11 A.0 B.2 C.()12-f D.()12f 7.若二元函数y x y x z 232++=,则=∂∂xz( ) A.y xy 232++ B.y xy 23++ C.32+xy D.3+xy 8.方程0222=-+z y x 表示的二次曲面是( ) A.柱面 B.球面 C.旋转抛物面 D.椭球面9.已知区域(){}11,11,≤≤-≤≤-=y x y x D ,则=⎰⎰Dxdxdy ( )A.0B.1C.2D.410.微分方程1='y y 的通解为( ) A.C x y +=2 B.Cx y +=221C.Cx y =2D.C x y +=22 二、填空题:11~20小题,每小题4分,共40分 11.曲线43623++-=x x x y 的拐点为___________ 12.()=-→xx x 1031lim ___________13.若函数()x x x f arctan -=,则()='x f ___________ 14.若x e y 2=,则=dy ___________ 15.()=+⎰dx x 32___________ 16.()=+⎰-dx x x 1125___________17.=⎰dx x π02sin ___________ 18.=∑∞=031n n___________ 19.=⎰+∞-dx e x 0___________20.若二元函数22y x z =,则=∂∂∂yx z2___________ 三、解答题:21~28题,共70分.解答应写出推理、演算步骤21.设函数()⎪⎩⎪⎨⎧≥+=0a,30<,sin 3x x x x xx f ,在0=x 处连续,求a22.求()1sin 123lim 2231---→x x x x23.设函数()()23ln 2++=x x x f ,求()0f '' 24.求23sin lim x tdt x x ⎰→25.求⎰xdx x cos26.求函数()5213123+-=x x x f 的极值27.求微方程x y xy ln 21=-'的通解28.设区域(){}0,9,22≥≤+=y y x y x D ,计算()d xdy y x D⎰⎰+222018年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】D【解析】01cos lim lim cos lim00===→→→x x x x x x 2.【答案】D【解析】()x x y sin cos 1-='+=',故xdx dy sin -= 3.【答案】C【解析】()()5ln 55x x x f ='=' 4.【答案】B 【解析】C x dx x+--=-⎰2ln 215.【答案】A 【解析】()()()()C x f x d x f dx x f +='='⎰⎰22122212 6.【答案】A【解析】因为()x f 为连续的奇函数,故()011=⎰-dx x f 7.【答案】C【解析】y x y x z 232++=,故32+=∂∂xy xz8.【答案】C【解析】0222=-+z y x 可化为z y x =+2222,故表示的是旋转抛物面9.【答案】A【解析】02111111===⎰⎰⎰⎰⎰---xdx dy xdx xdxdy D10.【答案】B【解析】原方程分离变量得dx ydy =,两边同时积分得C x y +=221,故方程的通解为C x y +=221 11.【答案】(2,-6)【解析】31232+-='x x y ,126-=''x y ,令0=''y ,则6,2-==y x ,故拐点为(2,-6) 12.【答案】3-e【解析】()()[]()33310131lim 31lim --⋅-→→=-+=-e x x xx xx13.【答案】221x x +【解析】()x x x f arctan -=,则()2221111xx x x f +=+-=' 14.【答案】dx e x 22【解析】()x x e e y 222='=',则dx e dy x 22= 15.【答案】C x x ++32 【解析】()C x x dx x ++=+⎰3322 16.【答案】32【解析】()32316111361125=⎪⎭⎫ ⎝⎛+=+--⎰x x dx x x17.【答案】2【解析】22cos222sin 22sin 000=-=⎪⎭⎫ ⎝⎛=⎰⎰πππxx d x dx x18.【答案】23【解析】2331123lim 3113111lim 31000=⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-⋅=→→∞=∑n x n x n n19.【答案】1 【解析】100=-=∞+-+∞-⎰x x e dx e20.【答案】xy 4【解析】22y x z =,22xy xz =∂∂,xy y x z 42=∂∂∂ 21.【答案】()3sin 3limlim 00==--→→xxx f x x()()a a x x f x x =+=++→→3lim lim 0且()a f =0因为()0=x x f 在处连续 所以()()()0lim lim 00f x f x f x x ==+-→→3=a22.【答案】()1123lim 1sin 123lim 22312231---=---→→x x x x x x x x ()()()()25113lim11113lim2121=+++=+--++=→→x x x x x x x x x x23.【答案】()()()22392332+-=''++='x x f x x f故()490-=''f24.【答案】2002003cos 31lim 3sin lim xt x tdtx x xx -=→→⎰()2329lim 313cos 131lim 22020==-=→→x xx x x x25.【答案】⎰⎰-=xdx x x xdx x sin sin cos C x x x ++=cos sin26.【答案】()x x x f -='2,令()0='x f ,得01=x ,12=x , 当1>0<x x 或时,()0>x f ',此时()x f 为单调增加函数 当1<x <0时,()0<x f ',此时()x f 为单调减少函数 故当0=x 时,()x f 取极大值,极大值()50=f 当1=x 时,,()x f 取极小值,极小值()6291=f 27.【答案】这是个一阶线性非齐次微分方程()xx P 1-=,()x x Q ln 2=故通解为⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C dx xe e y dx x dx x 11ln 2()[]Cx x C dx x x x +=⎪⎭⎫ ⎝⎛+⋅=⎰2ln ln 228.【答案】D 在极坐标系里可表示为30,0≤≤≤≤r πθ,故()πθπ48132022=⋅=+⎰⎰⎰⎰rdr r d dxdy y xD。
2018成人高考数学真题2018年成人高考数学考试一直备受考生们关注,考试难度如何?考察的内容有哪些?下面就让我们来看一下2018年成人高考数学的真题。
第一部分:选择题1.已知函数$f(x)=2x^2-5x-3$,则$f(-1)=$?A. -4B. 4C. 3D. -3答案:A. -42.若直线$y=kx+3$与抛物线$y=x^2-4x$相交于$(1,4)$,则$k=$?A. -1B. 0C. 1D. 2答案:C. 13.在平面直角坐标系中,点A$(2,3)$,点B$(-1,4)$,则$\angleAOB$的正切值为?(其中O为坐标原点)A. $\frac{7}{2}$B. $\frac{5}{3}$C. $\frac{7}{5}$D. $\frac{5}{7}$答案:B. $\frac{5}{3}$4.已知实数$a$,使得方程$x^2-2ax+0.25=0$有两个不相等的实根,则$a$的取值范围是?A. $a>0$B. $0<a<2$C. $a>1$D. $a>0.5$答案:B. $0<a<2$第二部分:填空题5.已知等差数列前$n$项和为$S_n=\frac{n(2a_1+(n-1)d)}{2}$,若$a_1=3$,$d=5$,$S_7=42$,则数列的第一个数$a_1=$ ?(填数字)答案:-46.设函数$y=f(x)=x^3-3x^2+x+2$,则$f'(x)=$ ?(填公式)答案:$f'(x)=3x^2-6x+1$第三部分:计算题7.已知集合$A=\{x | x=a^2,b^2,c^2,d^2\}$,$B=\{y |y=\sqrt{a},\sqrt{b},\sqrt{c},\sqrt{d}\}$,若$a=2$,$b=3$,$c=4$,$d=5$,求$A\cap B$。
答案:$\{2,3,4,5\}$8.解方程组:$$\begin{cases} 2x+3y=11\\ x+y=5 \end{cases}$$答案:$x=2$,$y=3$第四部分:证明题9.已知$\triangle ABC$,$\angle A+\angle B+\angle C=180^\circ$,证明$AB+BC>AC$。