第六章明渠恒定流
- 格式:ppt
- 大小:1.83 MB
- 文档页数:85
1一、缓流、急流、临界流二、Fr 得数三、断面单位能量四、临界水深五、临界底坡第六章明渠恒定非均匀流2•明渠非均匀流的水力特点:渠道底坡i ,水面坡度J z 和水力坡度J 不相等,即:p J J i≠≠•明渠非均匀流主要讨论的问题:计算各过水断面的水深h 的沿程变化,即分析和计算渠道的水面曲线,以便确定明渠边墙高度及回水淹没范围。
明渠非均匀流:当在渠道中修建了任意形式的水工建筑物,或任一均匀流的产生条件被改变,就会造成明渠中流速、水深的沿程变化,从而产生明渠非均匀流流动。
•产生明渠非均匀流流动的渠道形式有(1)i ≤0的渠道;(2)非棱柱形渠道;(3)边界突然变化的棱柱形渠道。
非均匀流(壅水曲线)h 0原均匀流水面3一、缓流、急流、临界流——明渠水流的三种流态(2)缓流:当明渠中水流受到干扰微波后,如干扰微波既能顺水流方向朝下游传播,又能逆水流方向朝上游传播,造成在障碍物前长距离的水流壅起,这时渠中水流就称为缓流。
此时水流流速小于干扰微波的流速,即i>0wv wv wv v (1)微波的产生(v =0)4(4)临界流:当明渠中水流受到干扰微波后,如干扰微波向上游传播的速度为零,这正是急流与缓流这两种流动状态的分界,称为临界流。
此时有(3)急流:当明渠中水流受到干扰后,如干扰微波只能顺水流方向朝下游传播,不能逆水流方向朝上游传播,水流只在障碍物处壅起,这种明渠水流称为急流。
此时水流流速大于干扰微波的流速,即。
w v v >wv v =w A v g ghB==由微小扰动波的传播理论可推导:急流临界流5明渠水流的流态缓流:水流流速小,水势平稳,遇到干扰,干扰的影响既能向下游传播,又能向上游传播急流:水流流速大,水势湍急,遇到干扰,干扰的影响只能向下游传播,而不能向上游传播6二、佛汝德数22322][][Fr glv gl v l ===ρρ重力惯性力222wvv v g Fr v h gh ===说明:(1)当Fr >1 时,v > v w ,水流为急流,惯性力起主导作用,水流中动能占主要部分。
第六章 明渠恒定均匀流6-1 有一梯形断面渠道,已知底宽b=8m,正常水深h o=2m,边坡系数m=1.5,粗糙系数n=0.0225,底坡i=0.0002,试求断面的平均流速及其流量。
6-2 一梯形土渠,按均匀流设计。
已知水深h为1.2m,底宽b为2.4m,边坡系数m为1.5,粗糙系数n为0.025,底坡i为0.0016.求流速υ和流量Q。
6-3 某水库泄洪隧道,断面为圆形,直径d为8m,底坡i为0.002,粗糙系数n为0.014,水流为无压均匀流,当洞内水深h为6.2m时,求泄洪流量Q。
6-4 红旗渠某段长而顺直,渠道用浆砌条石筑成(n为0.028),断面为矩形,渠道按水力最佳断面设计,底宽b为8m,底坡i为1/8000,试求通过流量。
6-5 已知流量Q=3m3/s,i0=0.002,m=1.5,n=0.025,试按水力最佳断面设计梯形渠道断面尺寸。
6-6 一梯形渠道,按均匀流设计。
已知Q为23 m3/s,h为1.5m,b为10m,m为1.5及i为0.0005,求n及υ。
6-7 一引水渡槽,断面为矩形,槽宽b为1.5m,槽长l为116.5m,进口处槽底高程为52.06m,槽身壁面为净水泥抹面,水流在渠中做均匀流动。
当通过设计流量Q为7.65 m3/s时,槽中水深h应为1.7m,求渡槽底坡i及出口处槽底高程。
6-8 有一浆砌石砌护的矩形断面渠道,已知底宽b=3.2m,渠道中均匀流水深h0=1.6m,粗糙系数n=0.025,通过的流量Q=6 m3/s,,试求渠道的底坡i。
6-9 有一棱柱体渠道,断面为梯形,底宽b=7.0m,边坡m=1.5m,为收集该渠道粗糙系数n值,实测渠道流量Q=9.45 m3/s,均匀流水深h0=1.2m,流段长l=200m内的水面降落△z=0.16m,试确定该渠道的粗糙系数n。
6-10 有一土渠,断面为梯形,底宽b=5m,边坡系数m=1.0,粗糙系数n=0.020,底坡i=0.0004,今已知渠道中的流量Q=10 m3/s,试分别用试算法和迭代法求渠道中的正常水深h。
水力学教案第六章明槽恒定流动【教学基本要求】1、了解明槽水流的分类与特征,了解棱柱体渠道的概念,掌握明槽底坡的概念与梯形断面明渠的几何特征与水力要素。
2、了解明槽均匀流的特点与形成条件,熟练掌握明槽均匀流公式,并能应用它来进行明渠均匀流水力计算。
3、理解水力最佳断面与允许流速的概念,掌握水力最佳断面的条件与允许流速的确定方法,学会正确选择明渠的糙率n值。
4、掌握明槽均匀流水力设计的类型与计算方法,能进行过流能力与正常水深的计算,能设计渠道的断面尺寸。
5、掌握明渠水流三种流态(急流、缓流、临界流)的运动特征与判别明渠水流流态的方法,理解佛汝德数Fr的物理意义。
6、理解断面比能、临界水深、临界底坡的概念与特性,掌握矩形断面明渠临界水深h k的计算公式与其它形状断面临界水深的计算方法。
7、了解水跃与水跌现象,掌握共轭水深的计算,特别就是矩形断明渠面共轭水深计算。
8、能进行水跃能量损失与水跃长度的计算。
9、掌握棱柱体渠道水面曲线的分类、分区与变化规律,能正确进行水面线定性分析,了解水面线衔接的控制条件。
10、能进行水面线定量计算。
11、了解缓流弯道水流的运动特征。
【内容提要与教学重点】这一章就是工程水力学部分内容最丰富也就是实际应用最广泛的一章。
本章有4个重点:明渠均匀流水力计算;明渠水流三种流态的判别;明渠恒定非均匀渐变流水面曲线分析与计算,这部分也就是本章的难点;水跃的特性与共轭水深计算。
学习中应围绕这4个重点,掌握相关的基本概念与计算公式。
明渠水流的复杂性在于有一个不受边界约束的自由表面,自由表面能随上下游的水流条件与渠道断面周界形状的变化而上下变动,相应的水流运动要素也发生变化,形成了不同的水面形态。
6、1 明槽与明槽水流的几何特征与分类(1)明槽水流的分类明槽恒定均匀流明槽恒定非均匀流(包括渐变流与急变流)明槽非恒定流明槽非恒定流一定就是非均匀流。
明槽非均匀流根据其流线不平行与弯曲的程度,又可以分为渐变流与急变流。
水力学教案第六章明槽恒定流动【教学基本要求】1、了解明槽水流的分类和特征,了解棱柱体渠道的概念,掌握明槽底坡的概念和梯形断面明渠的几何特征和水力要素。
2、了解明槽均匀流的特点和形成条件,熟练掌握明槽均匀流公式,并能应用它来进行明渠均匀流水力计算。
3、理解水力最佳断面和允许流速的概念,掌握水力最佳断面的条件和允许流速的确定方法,学会正确选择明渠的糙率n值。
4、掌握明槽均匀流水力设计的类型和计算方法,能进行过流能力和正常水深的计算,能设计渠道的断面尺寸。
5、掌握明渠水流三种流态(急流、缓流、临界流)的运动特征和判别明渠水流流态的方法,理解佛汝德数Fr的物理意义。
6、理解断面比能、临界水深、临界底坡的概念和特性,掌握矩形断面明渠临界水深h k 的计算公式和其它形状断面临界水深的计算方法。
7、了解水跃和水跌现象,掌握共轭水深的计算,特别是矩形断明渠面共轭水深计算。
8、能进行水跃能量损失和水跃长度的计算。
9、掌握棱柱体渠道水面曲线的分类、分区和变化规律,能正确进行水面线定性分析,了解水面线衔接的控制条件。
10、能进行水面线定量计算。
11、了解缓流弯道水流的运动特征。
【内容提要和教学重点】这一章是工程水力学部分内容最丰富也是实际应用最广泛的一章。
本章有4个重点:明渠均匀流水力计算;明渠水流三种流态的判别;明渠恒定非均匀渐变流水面曲线分析和计算,这部分也是本章的难点;水跃的特性和共轭水深计算。
学习中应围绕这4个重点,掌握相关的基本概念和计算公式。
明渠水流的复杂性在于有一个不受边界约束的自由表面,自由表面能随上下游的水流条件和渠道断面周界形状的变化而上下变动,相应的水流运动要素也发生变化,形成了不同的水面形态。
6.1 明槽和明槽水流的几何特征和分类(1) 明槽水流的分类明槽恒定均匀流明槽恒定非均匀流(包括渐变流和急变流)明槽非恒定流明槽非恒定流一定是非均匀流。
明槽非均匀流根据其流线不平行和弯曲的程度,又可以分为渐变流和急变流。
第六章明渠恒定均匀流人工渠道、天然河道以及未充满水流的管道等统称为明渠。
明渠流(Open Channel Flow)是一种具有自由表面的流动,自由表面上各点受当地大气压的作用,其相对压强为零,所以又称为无压流动。
与有压管流不同,重力是明渠流的主要动力,而压力是有压管流的主要动力。
明渠水流根据其水力要素是否随时间变化分为恒定流和非恒定流动。
明渠恒定流动又根据流线是否为平行直线分为均匀流和非均匀流。
明渠流动与有压管流的一个很大区别是:明渠流的自由表面会随着不同的水流条件和渠身条件而变动,形成各种流动状态和水面形态,在实际问题中,很难形成明渠均匀流。
但是,在实际应用中,如在铁路、公路、给排水和水利工程的沟渠中,其排水或输水能力的计算,常按明渠均匀流处理。
此外,明渠均匀流理论对于进一步研究明渠非均匀流也具有重要意义。
§6-1 概述1.明渠的分类由于过水断面形状、尺寸与底坡的变化对明渠水流运动有重要影响,因此在水力学中把明渠分为以下类型。
(1)棱柱形渠道和非棱柱形渠道凡是断面形状及尺寸沿程不变的长直渠道,称为棱柱形渠道,否则为非棱柱形渠道。
前者的过水断面面积A仅随水深h变化,即A=f(h);后者的过水断面面积不仅随水深变化,而且还随着各断面的沿程位置而变化,即A=f(h,s),s为过水断面距其起始断面的距离。
(2)顺坡(正坡)、平坡和逆坡(负坡)渠道明渠渠底线(即渠底与纵剖面的交线)上单位长度的渠底高程差,称为明渠的底坡(Bottom slope),用i表示,如图6-1a,1-1和2-2两断面间,渠底线长度为Δs,该两断面间渠底高程差为(a1-a2)=Δa,渠底线与水平线的夹角为θ,则底坡i为。
图6-1θsin 21=∆∆=∆-=sas a a i (6-1-1) 在水力学中,规定渠底高程顺水流下降的底坡为正,因此,以导数形式表示时应为dsdai -= (6-1-2) 当渠底坡较小时,例如i <0.1或θ<6°时,因两断面间渠底线长度Δs ,与两断面间的水平距离Δl ,近似相等,Δs ≈Δl ,则由图6-1a 可知θtan =∆∆≈∆∆=la s a ii=sin θ≈tg θ (6-1-3) 所以,在上述情况下,两断面间的距离Δs 可用水平距离Δl 代替,并且,过水断面可以看作铅垂平面,水深h 也可沿铅垂线方向量取。
明渠恒定流计算公式明渠恒定流是水力学中的一个重要概念,涉及到一系列的计算公式。
这些公式在水利工程、给排水工程等领域有着广泛的应用。
咱先来说说明渠恒定均匀流的计算公式。
这里面有个关键的东西叫谢才公式,它的表达式是:$V = C \sqrt{RJ}$ 。
这里的$V$表示流速,$C$是谢才系数,$R$是水力半径,$J$是水力坡度。
那啥是水力半径呢?简单说,就是过水断面面积除以湿周。
给您讲个我亲身经历的事儿哈。
有一次我去一个小山村,那里要修一条灌溉渠。
村民们找我帮忙看看怎么设计能让水流得又快又稳。
我就拿着工具去实地测量,那沟沟坎坎的,可不好走。
我仔细测量了渠道的横断面形状和尺寸,计算出水力半径。
然后根据地形坡度,估算出了水力坡度。
用谢才公式算出合适的流速,这样就能确定渠道的尺寸啦。
再来说说明渠恒定非均匀流的情况。
这时候就得用到伯努利方程的扩展形式了。
在非均匀流中,水流的能量会在不同位置发生变化。
比如说,在一个有坡度变化的明渠中,上游水流比较平缓,下游突然有个陡坡。
这时候,水流的速度、水深都会发生变化。
通过计算不同位置的能量,就能知道水流的状态。
还有个曼宁公式也得提一下,$V =\frac{1}{n}R^{\frac{2}{3}}J^{\frac{1}{2}}$ ,这里的$n$是糙率。
糙率这个东西可不好确定,得根据渠道的材料、平整度啥的来判断。
我还记得有一回,碰到一个渠道的设计问题。
设计人员用错了公式,结果算出来的渠道尺寸根本不符合实际需求。
水流要么太慢,灌溉不到远处的农田;要么太快,冲坏了渠道。
这可让大家头疼了好一阵。
后来经过仔细的分析和重新计算,才把问题解决了。
总之,明渠恒定流的计算公式虽然看起来有点复杂,但只要咱掌握了原理,结合实际情况,多动手算算,就能在实际工程中派上大用场。
可别小瞧这些公式,它们能让水流乖乖听话,为咱们的生产生活服务呢!。