一元二次方程及解法经典习题及解析
- 格式:doc
- 大小:305.50 KB
- 文档页数:5
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
一元二次方程解法判别式练习题A.2m =±B.2m =C.2m =-D.2m ≠±B.2112y ⎛⎫-= ⎪⎝⎭D.21324y ⎛⎫-= ⎪⎝⎭ 3.关于x 的一元二次方程2(1)320a x x -+-=有实数根,则a 的取值范围是( )A.18a >-B.18a ≥-C. 18a >-且1a ≠D. 18a ≥-且1a ≠4.方程5(3)3(3)x x x +=+的解为( )A.123,35x x ==B.35x = C.123,35x x =-=- D.123,35x x ==- 5.抛物线23(2)5y x =-+的顶点坐标是( ) A.(2,5)- B.(2,5)-- C.(2,5) D.(2,5)-6.将抛物线22(4)1y x =--先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A.221y x =+B.223y x =-C.22(8)1y x =-+D.22(8)3y x =-- 7.二次函数22(2)1y x =+-的图象是( )A. B. C. D. 8.一元二次方程231=25x x -+两实数根的和与积分别是( )9.在同一坐标系中,一次函数2y ax =+与二次函数2y x a =+的图象可能是( ) A. B. C.D. 10.抛物线22212,2,2y x y x y x ==-=的共同性质是( ) A.开口向上B.对称轴是y 轴C.都有最高点D. y 随x 的增大而增大11.若三角形的两边长分别是4和6,第三边的长是方程2560x x -+=的一个根,则这个三角形的周长是( )A.13B.16C.12或13D.11或1612.已知一元二次方程2(3)1x -=的两个解恰好分别是等腰三角形ABC 的底边长和腰长,则ABC △的周长为( )A.10B.10或8C.9D.813.下列一元二次方程中,有两个不相等实数根的是( )A.2690x x ++=B.2x x =C.232x x +=D. 2(1)10x -+=14.已知x 为实数,且满足222(3)2(3)30x x x x +++-=,那么23x x +的值为( )A.1B.3-或1C.3D.1-或315.一种药品原价每盒25元,经过两次降价后每盒16元设两次降价的百分率都为x ,则x 满足()A.16(12)25x +=B.25(12)16x -=C.216(1)25x +=D.225(1)16x -=16.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每名同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意可列出的方程是( )A.(1)210x x +=B.(1)210x x -=C.2(1)210x x -=参考答案1.答案:B方程,故2m =2.答案:B3.答案:D解析:根据一元二次方程的定义和根的判别式的意义得到1a ≠且234(1)(2)0a ∆=--⋅-≥,然后求出两个不等式解集的公共部分即可. 4.答案:D解析:移项得5(3)3(3)0x x x +-+=,将方程等号左边因式分解得(53)(3)0x x -+=,所以530x -=或30x +=,解得123,35x x ==-. 5.答案:C解析:因为23(2)5y x =-+为抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(2,5).故选C.6.答案:A解析:根据抛物线的平移规律“左加右减,上加下减”可得,平移后的抛物线的解析式为22(44)12y x =-+-+,即221y x =+.7.答案:C解析:20a =>,∴抛物线开口方向向上.二次函数的解析式为22(2)1y x =+-,∴顶点坐标为(2,1)--,对称轴为2x =-.故选C.8.答案:B解析:设这个一元二次方程的两个根分别为12,x x ,方程23125x x -=+化为一元二次方程的一般形式为23260x x --=,326a b c ==-=-,,,12122262333b c x x x x a a --∴+=-===-=,=.故选B9.答案:C解析:二次函数的图象开口向上,一次函数的图象与y 轴的交点为(0,2).当0a <时,二次函数的图象顶点在y 轴负半轴上,一次函数的图象经过第一、二、四象限;当0a >时,二次函数的图象顶点在y 轴正半轴上,一次函数的图象经过第一、二、三象限.10.答案:B解析:三条抛物线的开口方向分别为向上、向下、向上,故选项A 错误;三条抛物线的对称轴均为y 轴,故选项B 正确;三条抛物线分别有最低点、最高点、最低点,故选项C 错误;易知选项D 错误.11.答案:A解析:2560x x -+=,(3)(2)0x x ∴--=解得123,2x x ==.三角形的两边长分别是4和6,当3x =时,346+>,能组成三角形,当2x =时,246+=,不能组成三角形,∴这个三角形的第三边长是3,∴这个三角形的周长为46313++=,故选A.12.答案:A解析:解方程2(3)1x -=得124,2x x ==.所以当腰长为4,底边长为2时,其周长为44210++=;当腰长为2,底边长为4时,因为224+=,所以此时不能构成三角形.故选A. 13.答案:B解析:A 、2690x x ++=.264936360∆=-⨯=-=,方程有两个相等实数根;B 、2x x =20x x -=.2(1)41010.∆=--⨯⨯=>方程有两个不相等实数根;C 、232x x +=.2230x x -+=.2(2)41380.∆=--⨯⨯=-<方程无实根;D 、2(1)10x -+=.2(1)1x -=-,则方程无实根;故选:B .14.答案:A解析:设23y x x =+,则原方程可化为2230y y +-=,(3)(1)0y y +-=,解得123,1y y =-=231x x +=时,符合题意;233x x +=-时,2491230b ac ∆=-=-=-<,方程无实数根,不符题意,故选A.15.答案:D解析:一种药品原价每盒25元,两次降价的百分率都为x ,所以第一次降价后的价格用代数式表示为25(1)x -元,第二次降价后的价格用代数式表示为225(1)(1)25(1)x x x --=-元,根据题意可列方程为225(1)16x -=,故选D16.答案:B解析:该组共有x 名同学,则每名同学都要赠送()1x -本,因此可列方程为(1)210x x -=,故选B.。
一元二次方程求解方法及常见练习题一元二次方程求解方法
一元二次方程是形如 ax^2 + bx + c = 0 的方程,其中 a、b、c
是已知常数,且a ≠ 0。
求解一元二次方程需要使用以下两种方法:方法一:公式法
一元二次方程的解可以通过使用求根公式得到。
求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)
其中 ±表示两个解,√ 表示开平方根。
方法二:配方法
配方法通过对一元二次方程进行配方来求解。
具体步骤如下:
1. 将方程形式转换为 a(x + p)^2 + q = 0 的形式,其中 p 和 q 是需要求解的常数;
2. 根据配方法公式,其中 A = a,B = 2ap,C = ap^2 + q,求解方程 Ax^2 + Bx + C = 0;
3. 求解完方程后,根据 (x + p)^2 = 0 的性质,得到一元二次方程的解。
常见练题
以下是一些常见的一元二次方程练题:
1. 求解方程 x^2 - 5x + 6 = 0;
2. 求解方程 2x^2 + 3x - 2 = 0;
3. 求解方程 4x^2 - 12x + 9 = 0;
4. 求解方程 x^2 + 4 = 0;
5. 求解方程 5x^2 - 2x + 1 = 0。
以上练题可以使用公式法或配方法来求解,根据个人喜好和题目特点选择合适的方法进行求解。
希望以上内容对你解决一元二次方程求解的问题有所帮助!。
△b2△b2△b2解一元二次方程的换元法一、知识回顾1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。
一元二次方程的标准式:a是二次项系数,b是一次项系数,c是常数项2、一元二次方程根的判别式(二次项系数不为0):“”读作“德尔塔”,在一元二次方程中=△b2-4ac=-4ac>0<====>方程有两个不相等的实数根,即:x1,x2=-4ac=0<====>方程有两个相等的实数根,即:x1=x2=-4ac<0<====>方程没有实数根。
二、典型例题例1:(2004·金华)方程(x23)25(3x2)+2=0,如果设x23=y,那么原方程可变形为()A.y2-5y+2=0B.y2+5y-2=0C.y2-5y-2=0 D.y2+5y+2=0分析:此题主要利用换元法变形,注意变形时3-x2与x2-3互为相反数,符号要变化.解答:∵x2-3=y∴3-x2=-y用y表示x后代入(x2-3)2-5(3-x2)+2=0得:y2+5y+2=0.故选D.________________________________________________________________________ _________________例2:已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为()A.-5或1B.1C.5 D.5或-1分析:解题时把x2+y2当成一个整体来考虑,再运用因式分解法就比较简单解答:设x2+y2=t,t≥0,则原方程变形得(t+1)(t+3)=8,化简得:(t+5)(t-1)=0,解得:t1=-5,t2=1又t≥0∴t=1∴x2+y2的值为只能是1.故选B.________________________________________________________________________ _________________三、解题经验换元法在解特殊一元二次方程的时候用的特别多,也可以称为整体思想法,在数学中,整体思想是重要思想之一,因此我们要掌握。
练习四◆基础知识作业1.利用求根公式解一元二次方程时,首先要把方程化为____________,确定__________的值,当__________时,把a ,b ,c 的值代入公式,x 1,2=_________________求得方程的解. 2、把方程4 —x 2 = 3x 化为ax 2 + bx + c = 0(a ≠0)形式为 ,则该方程的二次项系数、一次项系数和常数项分别为 。
3.方程3x 2-8=7x 化为一般形式是________,a =__________,b =__________,c =_________,方程的根x 1=_____,x 2=______.4、已知y=x 2-2x-3,当x= 时,y 的值是-3。
5.把方程(+(2x-1)2=0化为一元二次方程的一般形式是( ) A.5x 2-4x-4=0 B.x 2-5=0 C.5x 2-2x+1=0 D.5x 2-4x+6=06.用公式法解方程3x 2+4=12x ,下列代入公式正确的是( )A.x 1、2=24312122⨯-±B.x 1、2=24312122⨯-±-C.x 1、2=24312122⨯+± D.x 1、2=32434)12()12(2⨯⨯⨯---±--7.方程21x x =+的根是( )A .x =B . 12x =C .x =D .12x -±= 8.方程x 2+(23+)x +6=0的解是( )A.x 1=1,x 2=6B.x 1=-1,x 2=-6C.x 1=2,x 2=3D.x 1=-2,x 2=-3 9.下列各数中,是方程x 2-(1+5)x +5=0的解的有( )①1+5 ②1-5 ③1 ④-5 A.0个 B.1个 C.2个D.3个10. 运用公式法解下列方程:(1)5x 2+2x -1=0 (2)x 2+6x +9=7◆能力方法作业11.方程2430x x ++=的根是 12.方程20(0)ax bx a +=≠的根是13.2x 2-2x -5=0的二根为x 1=_________,x 2=_________. 14.关于x 的一元二次方程x 2+bx+c=0有实数解的条件是__________.15.如果关于x 的方程4mx 2-mx+1=0有两个相等实数根,那么它的根是_______. 16.下列说法正确的是( )A .一元二次方程的一般形式是20ax bx c ++=B .一元二次方程20ax bx c ++=的根是2b x a-±=C .方程2x x =的解是x =1D .方程(3)(2)0x x x +-=的根有三个 17.方程42560x x -+=的根是( )A .6,1B .2,3C .D .1± 18.不解方程判断下列方程中无实数根的是( )A.-x 2=2x-1B.4x 2+4x+54=0; C. 20x -= D.(x+2)(x-3)==-519、已知m是方程x2-x-1=0的一个根,则代数m2-m的值等于 ( ) A 、1B 、-1C 、0D 、220.若代数式x 2+5x +6与-x +1的值相等,则x 的值为( ) A.x 1=-1,x 2=-5 B.x 1=-6,x 2=1 C.x 1=-2,x 2=-3D.x =-121.解下列关于x 的方程:(1)x 2+2x -2=0 (2).3x 2+4x -7=0(3)(x +3)(x -1)=5 (4)(x -2)2+42x =022.解关于x 的方程2222x ax b a -=-23.若方程(m -2)x m2-5m+8+(m+3)x+5=0是一元二次方程,求m 的值24.已知关于x 的一元二次方程x 2-2kx+12k 2-2=0. 求证:不论k 为何值,方程总有两不相等实数根.◆能力拓展与探究25.下列方程中有实数根的是( )(A)x 2+2x +3=0. (B)x 2+1=0. (C)x 2+3x +1=0. (D)111x x x =--. 26.已知m ,n 是关于x 的方程(k +1)x 2-x +1=0的两个实数根,且满足k +1=(m +1)(n +1),则实数k 的值是 .27. 已知关于x 的一元二次方程01)12()2(22=+++-x m x m 有两个不相等的实数根,则m 的取值范围是( )A. 43>mB. 43≥mC. 43>m 且2≠mD. 43≥m 且2≠m答案1.一般形式 二次项系数、一次项系数、常数项 b 2-4ac ≥0 aacb b 242-±-2、x 2 + 3x —4=0, 1、3、—4; 3.3x 2-7x -8=0 3 -7 -84、0、2 5.A 6.D 7.B 8.D 9.B 10. (1)解:a =5,b =2,c =-1∴Δ=b 2-4ac =4+4×5×1=24>0 ∴x 1·2=56110242±-=±- ∴x 1=561,5612--=+-x (2).解:整理,得:x 2+6x +2=0 ∴a =1,b =6,c =2∴Δ=b 2-4ac =36-4×1×2=28>0 ∴x 1·2=2286±-=-3±7 ∴x 1=-3+7,x 2=-3-7 11.x 1=-1,x 2=-3 12.x 1=0,x 2=-b 13.4422+ 4422- 14. 240b c -≥ 15.1816.D 17.C . 18.B 19、A 20.A21. (1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 22.X=a+1b1 23.m=324.(1)Δ=2k 2+8>0, ∴不论k 为何值,方程总有两不相等实数根. 25. C 26. -2 27. C练习五第1题. (2005 南京课改)写出两个一元二次方程,使每个方程都有一个根为0,并且二次项系数都为1: .答案:答案不惟一,例如:20x =,20x x -=等第2题. (2005 江西课改)方程220x x -=的解是 . 答案:1220x x ==,第3题. (2005 成都课改)方程290x -=的解是 .答案:3x =±第4题. (2005 广东课改)方程2x =的解是 .答案:120x x ==,第5题. (2005 深圳课改)方程22x x =的解是( )A.2x =B.1x =,20x =C.12x =,20x =D.0x =答案:C第6题. (2005 安徽课改)方程(3)3x x x +=+的解是( )A.1x = B.1203x x ==-, C.1213x x ==, D.1213x x ==-, 答案:D第7题. (2005 漳州大纲)方程22x x =的解是1x = 、2x = . 答案:1202x x ==,第8题. (2005江西大纲)若方程20x m -=有整数根,则m 的值可以是 (只填一个).答案:如0149m =,,,,第9题. (2005济南大纲)若关于x 的方程210x kx ++=的一根为2,则另一根为 ,k 的值为 .答案:1522-,第10题. (2005 上海大纲)已知一元二次方程有一个根为1,那么这个方程可以是______________(只需写出一个方程).答案:20x x -=第11题. (2005 海南课改)方程042=-x 的根是( )A. 1222x x ==-,B. 4=xC. 2=xD. 2-=x 答案:A第12题. (2005 江西淮安大纲)方程24x x =的解是 .答案:0或4第13题. (2005 兰州大纲)已知m 是方程210x x --=的一个根,则代数2m m -的值等于( )A.-1 B.0 C.1 D.2答案:C练习六第1题. (2007甘肃兰州课改,4分)下列方程中是一元二次方程的是( ) A.210x +=B.21y x +=C.210x +=D.211x x+= 答案:C第2题. (2007甘肃白银3市非课改,4分)已知x =-1是方程012=++mx x 的一个根,则m = .答案:2第3题. (2007海南课改,3分)已知关于x 的方程0322=++m mx x 的一个根是1=x ,那么=m .答案:253±-第4题. (2007黑龙江哈尔滨课改,3分)下列说法中,正确的说法有( ) ①对角线互相平分且相等的四边形是菱形;②一元二次方程2340x x --=的根是14x =,21x =-;③依次连接任意一个四边形各边中点所得的四边形是平行四边形; ④一元一次不等式2511x +<的正整数解有3个; ⑤在数据1,3,3,0,2中,众数是3,中位数是3. A .1个 B .2个 C .3个 D .4个答案:B第5题. (2007湖北武汉课改,3分)如果2是一元二次方程2x c =的一个根,那么常数c 是( )A.2 B.2-C.4D.4-答案:C第6题. (2007湖北襄樊非课改,3分)已知关于x 的方程322x a +=的解是1a -,则a 的值为( ) A .1 B .35C .15D .1-答案:A第7题. (2007湖南株洲课改,6分)已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.答案:由1x =是一元二次方程2400ax bx +-=的一个解,得:40a b +=3分又a b ≠,得:22()()20222()2a b a b a b a ba b a b -+-+===-- 6分第8题. (2007山西课改,2分)若关于x 的方程220x x k ++=的一个根是0,则另一个根是.答案:2-。
第二十一章 一元二次方程21.2 解一元二次方程1.一元二次方程2360x -=的解是A .6x =B .6x =-C .16x =,26x =-D .1x =,2x =2.一元二次方程2x 2-5x -2=0的根的情况是A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根3.方程2x +x =0的解是A .x =±1B .x =0C .1x =0,2x =–1D .x =14.方程2x –8x +17=0的根的情况是A .两实数根的和为–8B .两实数根的积为17C .有两个相等的实数根D .没有实数根5.用配方法解下列方程时,配方正确的是A .方程x 2–6x –5=0,可化为(x –3)2=4B .方程y 2–2y –2017=0,可化为(y –1)2=2017C .方程a 2+8a +9=0,可化为(a +4)2=25D .方程2x 2–6x –7=0,可化为2323()24x -=6.一元二次方程x (x –3)=0根是A .x =3B .x =–3C .x 1=–3,x 2=0D .x 1=3,x 2=07.一元二次方程x 2+3x +2=0的两个根为A .1,–2B .–1,–2C .–1,2D .1,28.一元二次方程x 2–9=0的根是A .x =3B .x =–3C .x 1=3,x 2=–3D .x 1=9,x 2=–99.方程x 2–2=0的根是__________. 10.方程2(1)4x -=的根是__________.11.一元二次方程2360x x -=的解是__________.12.关于x 的一元二次方程(a –1)x 2+x +a 2–1=0的一个根为0,则a 的值为__________. 13.解方程:x 2+3x –2=0.14.解方程:2520x x -+=.15.解方程:x 2–10x +18=0.16.解方程:2510x x --=.17.关于x 的一元二次方程(a –1)x 2+x +a 2–1=0的一个根是0,则a 的值为A .1B .–1C .1或–1D .1218.三角形的两边长分别为3米和6米,第三边的长是方程x 2–6x +8=0的一个根,则这个三角形的周长为A .11B .12C .11或13D .1319.一元二次方程x 2+2x –3=0的两个根中,较小一个根为A .3B .–3C .–2D .–120.关于x 的方程kx 2+3x –1=0有实数根,则k 的取值范围是A .k ≤94B .k ≥–94且k ≠0 C .k ≥–94D .k >–94且k ≠0 21.关于x 的方程kx 2–2x –1=0有两个不相等的实数根,则k 的最小整数值为__________. 22.已知x 1,x 2是方程x 2+6x +3=0的两实数根,则2112x x x x +的值为__________. 23.关于x 的一元二次方程x 2+(m –2)x +m +1=0有两个相等的实数根,则m 的值是__________. 24.若关于x 的一元二次方程(a –1)x 2–x +1=0有实数根,则a 的取值范围为__________. 25.关于x 的一元二次方程220x x c ++=有两个不相等的实数根,写出一个满足条件的实数c 的值:c =__________.26.已知一元二次方程x 2+7x –1=0的两个实数根为α,β,则(α–1)(β–1)的值为__________. 27.若方程x 2–kx +6=0的两根分别比方程x 2+kx +6=0的两根大5,则k 的值是__________. 28.若关于x 的方程x 2–5x +k =0的一个根是0,则另一个根是__________,k =__________. 29.已知数轴上A 、B 两点对应的数分别是一元二次方程(x +1)(x –2)=0的两个根,则A 、B 两点间的距离是__________. 30.解关于x 的方程:bx 2–1=1–x 2(b ≠–1). 31.用适当方法解下列方程:2430x x --=.32.解方程:3x 2+2x +1=0.33.已知a、b分别是一元二次方程220170+-=的不相等的两根,求a2+2a+b的值.x x34.(2018·泰安市)一元二次方程根的情况是A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于3 35.(2018·桂林市)已知关于x的一元二次方程有两个相等的实根,则k的值为A.B.C.2或3 D.或36.(2018·湘潭市)若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是A.m≥1 B.m≤1C.m>1 D.m<137.(2018·泰州市)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是A.x1≠x2B.x1+x2>0C.x1•x2>0 D.x1<0,x2<038.(2018·眉山市)若α,β是一元二次方程3x2+2x-9=0的两根,则的值是A.B.-C.-D.39.(2018·宜宾市)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为A .﹣2B .1C .2D .040.(2018·淮安市)一元二次方程x 2﹣x =0的根是__________.41.(2018·邵阳市)已知关于x 的方程x 2+3x ﹣m =0的一个解为﹣3,则它的另一个解是__________.42.(2018·聊城市)已知关于x 的方程(k ﹣1)x 2﹣2kx +k ﹣3=0有两个相等的实根,则k 的值是__________.43.(2018·内江市)已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a (x +1)2+b (x +1)+1=0的两根之和为__________.44.(威海市2018)关于x 的一元二次方程(m ﹣5)x 2+2x +2=0有实根,则m 的最大整数解是__________.45.(2018·江西省)一元二次方程的两根为,则的值为__________. 46.(2018·德州市)若是一元二次方程的两个实数根,则=__________.47.(2018·南京市)设、是一元二次方程的两个根,且,则__________,__________.48.(2018·随州市)己知关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根x 1,x 2.(1)求k 的取值范围; (2)若1211=1x x +-,求k 的值.49.(2018·黄石市)已知关于x的方程x2﹣2x+m=0有两个不相等的实数根x1、x2(1)求实数m的取值范围;(2)若x1﹣x2=2,求实数m的值.50.(2018·成都市)若关于的一元二次方程有两个不相等的实数根,求的取值范围.3.【答案】C【解析】通过提取公因式法对等式的左边进行因式分解.由原方程得到:x (x +1)=0,解得1x =0,2x =–1.故选C . 4.【答案】D【解析】Δ=()28-–4×1×17=–4<0,由此可得出方程没有实数根.故选D . 5.【答案】D【解析】A ,由原方程得到:方程x 2–6x +32=5+32,可化为(x –3)2=14,故本选项错误;B ,由原方程得到:方程y 2–2y +12=2017+12,可化为(y –1)2=2018,故本选项错误;C ,由原方程得到:方程a 2+8a +42=–9+42,可化为(a +4)2=7,故本选项错误;D ,由原方程得到:方程x 2–3x +(32)2=72+(32)2,可化为2323()24x -=,故本选项正确.故选D . 6.【答案】D【解析】x (x –3)=0,可得x =0或x –3=0,解得:x 1=0,x 2=3.故选D . 7.【答案】B【解析】利用因式分解法解方程,即(x +1)(x +2)=0,可得x +1=0或x +2=0,所以x 1=–1,x 2=–2.故选B . 8.【答案】C【解析】∵x 2–9=0,∴x 2=9,∴x =±3,故选C .9.【答案】【解析】移项得x 2=2,∴x =.故答案为: 10.【答案】x 1=–1,x 2=3【解析】∵2(1)4x -=,∴x –1=–2或x –1=2,x 1=–1,x 2=3.故答案是:x 1=–1,x 2=3. 11.【答案】0x =或2x =【解析】由236=0x x -,得3(2)0x x -=,∴0x =或2x =.14.【答案】1x 2x =【解析】∵a =1,b =–5,c =2,∴224(5)412170b ac -=--⨯⨯=>,∴代入求根公式得,x ===,∴x 1,2x =.15.【答案】x 1,x 2=5【解析】∵x 2–10x +18=0,∴x 2–10x =–18,∴x 2–10x +25=7,∴(x –5)2=7,∴x –,∴x 1,x 2=5.16.【答案】1x =,2x = 【解析】∵2510x x --=,∴222555()()1022x x -+--=,∴2525()124x -=+,∴25254()244x -=+,∴52x -=,∴52x =±,即x =1x =2x = 17.【答案】B【解析】根据方程的解的定义,把x =0代入方程,即可得到关于a 的方程a 2–1=0且a –1≠0,解得:a =–1.故选B . 18.【答案】D【解析】∵x 2–6x +8=0,即(x –2)(x –4)=0,∴x –2=0或x –4=0,解得:x =2或x =4,若x =2,则三角形的三边2+3<6,构不成三角形,舍去;当x =4时,这个三角形的周长为3+4+6=13,故选D .21.【答案】1【解析】∵关于x 的一元二次方程kx 2–2x –1=0有两个不相等的实数根,∴k ≠0且Δ>0,即(–2)2–4×k ×(–1)>0,解得k >–1且k ≠0.∴k 的取值范围为k >–1且k ≠0.故k 的最小整数值为1. 22.【答案】10【解析】首先由判别式大于0可知方程存在两个不相等的实数根,根据根与系数的关系得到x 1+x 2=–6,x 1x 2=3,再运用通分和完全平方公式变形得到2112x x x x +=2121212()2x x x x x x +-然后利用整体代入的方法计算得,2112x x x x +366301033-===.故答案为:10. 23.【答案】0或8【解析】根据关于x 的一元二次方程x 2+(m –2)x +m +1=0有两个相等的实数根,可得,Δ=(m –2)2–4(m +1)=0,即m 2–8m =0,解得m =0或m =8. 24.【答案】a ≤54且a ≠1. 【解析】由题意得:Δ=(–1)2–4(a –1)×1≥0,解得a ≤54,又a –1≠0,∴a ≤54且a ≠1. 25.【答案】0(答案不唯一);【解析】∵方程有两个不相等的实数根,∴Δ=b 2–4ac =22–4c >0,解得:c <1,故答案为任意一个小于1的数均可以,比如:0.(答案不唯一)28.【答案】5,0【解析】根据一元二次方程的解,设方程的另一个根为t,根据题意得0+t=5,0⋅t=k,所以t=5,k=0.故答案为5,0.29.【答案】3【解析】∵一元二次方程(x+1)(x–2)=0的两个根是–1和2,∴对应数轴上的两点A、B的距离为3.故答案是:3.30.【答案】b>–1时,x b<–1时,方程无解.【解析】方程整理得:(b+1)x2=2,即x2=21b+(b≠–1,即b+1≠0),若b+1>0,即b>–1时,两边开平方得:x,即x若b+1<0,即b<–1时,方程无解.31.【答案】x12+,x2=2【解析】∵1a=,4b=-,3c=-,∴Δ=b2–4ac=16+12=28,∴2x==±x12+,x2=2.32.【答案】原方程没有实数根.【解析】∵a=3,b=2,c=1,∴b2–4ac=4–4×3×1=–8<0.∴原方程没有实数根.33.【答案】2016【解析】∵a、b是原方程的两个实数根,∴220170a a+-=,a+b=–1,∴22017a a+=,∴222a ab a a a b++=+++=2017+(–1)=2016.34.【答案】D【解析】(x +1)(x ﹣3)=2x ﹣5,整理得:x 2﹣2x ﹣3=2x ﹣5,则x 2﹣4x +2=0,(x ﹣2)2=2,解得:x 1=2+>3,x 2=2﹣,故有两个正根,且有一根大于3. 故选D .【名师点睛】本题主要考查了一元二次方程的解法,正确解方程是解题的关键.35.【答案】A 【解析】∵方程有两个相等的实根, ∴∆=k 2-4×2×3=k 2-24=0,解得:k =. 故选A .【名师点睛】本题考查了根的判别式,熟练掌握“当∆=0时,方程有两个相等的实数根”是解题的关键.36.【答案】D 【解析】∵方程有两个不相同的实数根,∴()2240m ∆=-->,解得m <1.故选D .【名师点睛】本题考查了根的判别式,牢记“当∆>0时,方程有两个不相等的实数根”是解题的关键.37.【答案】A【解析】∵∆=(﹣a )2﹣4×1×(﹣2)=a 2+8>0,∴x 1≠x 2,选项A 中的结论正确;∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1+x 2=a ,∵a 的值不确定,∴选项B 中的结论不一定正确;∵x 1、x 2是关于x 的方程x 2﹣ax ﹣2=0的两根,∴x 1•x 2=﹣2,选项C 中的结论错误;∵x 1•x 2=﹣2,∴x1<0,x2>0,选项D中的结论错误.故选A.【名师点睛】本题考查了根的判别式以及根与系数的关系,牢记“当 >0时,方程有两个不相等的实数根”是解题的关键.38.【答案】C【解析】∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴===.故选C.【名师点睛】本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.39.【答案】D【解析】∵一元二次方程x2﹣2x=0的两根分别为x1和x2,∴根据根与系数的关系,得x1x2=0.故选D.40.【答案】x1=0,x2=1【解析】方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.41.【答案】0【解析】设方程的另一个解是n,根据题意得:﹣3+n=﹣3,解得:n=0,故答案为0.42.【答案】【解析】∵关于x的方程(k-1)x2-2kx+k-3=0有两个相等的实根,∴()()()21024130k k k k ∆-≠⎧⎪⎨=----=⎪⎩, 解得k =. 故答案为.44.【答案】m =4【解析】∵关于x 的一元二次方程(m ﹣5)x 2+2x +2=0有实根, ∴∆=4﹣8(m ﹣5)≥0,且m ﹣5≠0,解得m ≤5.5,且m ≠5,则m 的最大整数解是m =4.故答案为m =4.45.【答案】2 【解析】由题意得:+2=0,=2, ∴=-2,=4, ∴=-2+4=2, 故答案为2.46.【答案】−3【解析】由根与系数的关系可知:x 1+x 2=﹣1,x 1x 2=﹣2, ∴x 1+x 2+x 1x 2=﹣3故答案为﹣3.47.【答案】 ,【解析】∵、是一元二次方程的两个根, ∴, ∵, ∴m =1, ∴ 解得=−2,=3.故答案为:−2,3.48.【答案】(1)k >﹣;(2)k =3.【解析】(1)∵关于x 的一元二次方程x 2+(2k +3)x +k 2=0有两个不相等的实数根, ∴∆=(2k +3)2﹣4k 2>0,解得:k >﹣;(2)∵x 1、x 2是方程x 2+(2k +3)x +k 2=0的实数根, ∴x 1+x 2=﹣2k ﹣3,x 1x 2=k 2, ∴12212121123=1x x k x x x x k +--+==-, 解得:k 1=3,k 2=﹣1,经检验,k 1=3,k 2=﹣1都是原分式方程的根,又∵k >﹣,∴k =3.49.【答案】(1)m <1;(2)0.【解析】(1)由题意得:∆=(﹣2)2﹣4×1×m =4﹣4m >0, 解得:m <1,即实数m 的取值范围是m <1;50.【答案】【解析】∵关于x的一元二次方程x2-(2a+1)x+a2=0有两个不相等的实数根,∴∆=[−(2a+1)]2-4a2=4a+1>0,解得a>14 -.。
一、选择题1.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x米,则x 的值为()A.3 B.4 C.3或5 D.3或4.5D解析:D【分析】设AD长为x米,四边形ABCD是矩形,根据矩形的性质,即可求得AB的长;根据题意可得方程x(30−4x)=54,解此方程即可求得x的值.【详解】解:设与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=30−AD−MN−PQ−BC=30−4x(米),根据题意得:x(30−4x)=54,解得:x=3或x=4.5,AD的长为3或4.5米.故选:D.【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.2.用配方法解方程x2﹣6x﹣3=0,此方程可变形为()A.(x﹣3)2=3 B.(x﹣3)2=6C.(x+3)2=12 D.(x﹣3)2=12D解析:D【分析】先移项,再把方程两边同时加上一次项系数一半的平方,最后配方即可得新答案.【详解】由原方程移项得:x 2﹣6x =3,方程两边同时加上一次项系数一半的平方得:x 2﹣6x+9=12,配方得;(x ﹣3)2=12.故选:D .【点睛】此题主要考查配方法的运用,配方法的一般步骤为:移项、二次项系数化为1、两边同时加上一次项系数一半的平方、配方完成;熟练掌握配方法的步骤并熟记完全平方公式是解题关键.3.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.4.若x=0是关于x 的一元二次方程(a+2)x 2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2B 解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.5.若m 是方程220x x c --=的一个根,设2(1)p m =-,2q c =+,则p 与q 的大小关系为( )A .p <qB .p =qC .p >qD .与c 的取值有关A解析:A【分析】结合m 是方程220x x c --=的一个根,计算p-q 的值即可解决问题.【详解】解:∵m 是方程220x x c --=的一个根,∴220m m c --=∵2(1)p m =-,2q c =+,∴222(1)(2)212211p q m c m m c m m c -=--+=-+--=---=-,∴p <q故选:A .【点睛】此题主要考查了一元二次方程的解以及整式的运算,熟练掌握一元二次方程的解的应用是解答此题的关键.6.下列一元二次方程中,没有实数根的是( )A .(2)(2)0x x -+=B .220x -=C .2(1)0x -=D .2(1)20x ++=D 解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.7.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.故选:C .【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.8.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定C 解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0A 解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.一元二次方程x (x ﹣2)=x ﹣2的解是( )A .x 1=x 2=0B .x 1=x 2=1C .x 1=0,x 2=2D .x 1=1,x 2=2D解析:D【分析】方程x (x ﹣2)=x ﹣2移项后,运用因式分解法可以求得方程的解,本题得以解决.【详解】解:x (x ﹣2)=x ﹣2,移项,得x (x ﹣2)﹣(x ﹣2)=0,提公因式,得(x ﹣2)(x ﹣1)=0,∴x ﹣2=0或x ﹣1=0,解得x =2或x =1.故选:D .【点睛】本题考查解解一元二次方程﹣因式分解法,解题的关键是会利用提公因式法解方程. 二、填空题11.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.将方程2630x x +-=化为()2x h k +=的形式是______.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.13.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.14.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20%设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设每年绿化面积的增长率为x ,依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).故答案为:20%.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 15.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.16.若m 是方程210x x +-=的根,则2222018m m ++的值为__________2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.17.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.18.若a ,b 是方程22430x x +-=的两根,则22a ab b +-=________.4【分析】根据根与系数的关系得出a+b=-2ab=-再变形后代入即可求出答案【详解】解:∵是方程的两根∴故答案为:4【点睛】本题考查了根与系数的关系能够整体代入是解此题的关键解析:4【分析】根据根与系数的关系得出a+b=-2,ab=-32,再变形后代入,即可求出答案. 【详解】 解:∵a ,b 是方程22430x x +-=的两根, ∴42232a b ab ⎧+=-=-⎪⎪⎨⎪=-⎪⎩, ()()()222222224a ab b a a b b a b a b +-=+-=--=-+=-⨯-=.故答案为:4.【点睛】本题考查了根与系数的关系,能够整体代入是解此题的关键.19.若()22214x y +-=,则22x y +=________.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.三、解答题21.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?解析:(1)2或4;(2)2;(3)1082-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得: ()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.22.(1)()2120x --=;(2)21212t t += (3)()22x x x -=-(4)23520.x x --=解析:(1)1211==x x 2)1222t t =-=-3)1221x x ==,(4)12123x x ==-,. 【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.23.解方程:y(y-1)+2y-2=0.解析:121,2y y ==-【分析】利用分解因式法解答即可.【详解】解:原方程可变形为:()()1210y y y -+-=,即()()120y y -+=,∴y -1=0或y +2=0,解得:121,2y y ==-.【点睛】本题考查了一元二次方程的解法,属于基础题目,熟练掌握求解的方法是关键. 24.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:(2)小丽一次性购买这中服装付了1200元,请问她购买了多少件这种服装? 解析:(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键. 25.解方程:(1)2237x x +=;(2)x(2x+5)=2x+5.解析:(1)112x =,23x =;(2)11x =,252x =- 【分析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用因式分解法求解.【详解】解:(1)2x 2-7x+3=0,(2x-1)(x-3)=0,2x-1=0或x-3=0,所以x 1=12,x 2=3; (3)移项得,x (2x+5)-(2x+5)=0,因式分解得,(2x+5)(x-1)=0,∴x-1=0,2x+5=0,∴11x =,252x =-; 【点睛】本题考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.26.解方程:22350x x --= (请用两种方法解方程) 解析:152x =,21x =- 【分析】采用公式法和因式分解法求解即可.【详解】解:方法1:∵a =2,b =-3,c =-5,∴2449b ac ∆=-=,∴x =∴152x =,21x =-; 方法2:()()2510x x -+=∴ 152x =,21x =-. 【点睛】 本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键. 27.解下列方程:(1)2320x x +-=(2)()220x x x -+-=解析:(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =. 【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键. 28.解下列方程:(1)x (x -1)=1-x(2)(x-3) 2 = (2x-1) (x +3)解析:(1)12x 1x -1==,;(2)12x 12x 1=-=,.【分析】(1)根据因式分解法,可得答案;(2)根据因式分解法,可得答案.【详解】解:(1)x (x -1)=1-x方程整理,得,x (x ﹣1)+(x ﹣1)=0,因式分解,得,(x ﹣1)(x +1)=0于是,得,x ﹣1=0或x +1=0,解得x 1=1,x 2=﹣1;(2)(x-3) 2 = (2x-1) (x +3)方程整理,得,x 2+11x ﹣12=0因式分解,得,(x +12)(x ﹣1)=0于是,得,x +12=0或x ﹣1=0,解得x 1=﹣12,x 2=1.【点睛】本题考查了解一元二次方程,因式分解是解题关键.。
中考数学一元二次方程-经典压轴题及答案一、一元二次方程真题与模拟题分类汇编(难题易错题)21.解方程:(1-2x)(x2-6x+9)。
答案】x1=1/4,x2=-2/3.解析】题目分析:先对方程的右边因式分解,然后直接开平方或移项之后再因式分解法求解即可。
解题分析】因式分解,得到22(1-2x)=(x-3)。
开平方,得到1-2x=x-3,或1-2x=-(x-3)。
解得x1=1/4,x2=-2/3.2.已知关于x的一元二次方程mx-(m+2)x+2m-3=0.1)当m取什么值时,方程有两个不相等的实数根?2)当m=4时,求方程的解。
答案】(1)当m>-1且m≠0时,方程有两个不相等的实数根;(2)x1= (3+5)/4,x2= (3-5)/4.解析】分析】(1)方程有两个不相等的实数根,Δ>0,代入求m取值范围即可,注意二次项系数≠0;(2)将m=4代入原方程,求解即可。
详解】1) 当mx-(m+2)x+2m-3=0,即(m-2)x+2m-3=0.根据求根公式,得到Δ=(m+2)2-4m(m-2)=4m+4>0.因为m≠0,所以m>-1,解得m>-1.因为二次项系数≠0,所以m≠2,解得m≠2.所以当m>-1且m≠0时,方程有两个不相等的实数根。
2) 当m=4时,将m=4代入原方程,得到4x2-6x+1=0.根据求根公式,得到x1=(3+5)/4,x2=(3-5)/4.所以当m=4时,方程的解为x1=(3+5)/4,x2=(3-5)/4.点睛】本题考查一元二次方程根的情况以及求解,熟练掌握根的判别式以及一元二次方程求解是解决本题的关键。
3.某社区决定把一块长50m,宽30m的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形),空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边x为何值时,活动区的面积达到1344m2?答案】当x=13m时,活动区的面积达到1344m2.解析】分析】根据“活动区的面积=矩形空地面积-阴影区域面积”列出方程,可解答。
2122公式法一.选择题(共5小题)1.用公式法解一元二次方程x2・5x=6,解是()A・XI=3T X2=2 B・XI= - 6, X2= " 1 C. xi=6, X2= - 1 D. xi= - 3, X2= " 22.用公式法求一元二次方程的根时,首先要确定a、b、c的值.对于方程・4X2+3=5X,下列叙述正确的是()A・ a= - 4. b=5, c=3 B. a= - 4, b= - 5, c=3C. a=4, b=5, c=3 D・ a=4, b= - 5, c= - 33・(2011春•招远市期中)一元二次方程x2+c=0实数解的条件是()A. c<0B. c<0C. c>0D. c>04.(2012秋•建平县期中)若x=l是一元二次方程x2+x+c=0的一个解,则c2+c= ()A. 1B. 2C. 3D. 45.(2013*下城区二模)一元二次方程x (x・2) =2 - x的解是()A. - 1B. 2C.・ 1或2D. 0或2二填空题(共3小题)6.(2013秋•兴庆区校级期中)用公式法解一元二次方程・X2+3X=1时,应求出a,b, c 的值,则:a= _____________ ; b= _____________ ; c= ___________ .7.用公式法解一元二次方程x2 - 3x・1=0时,先找出对应的a、b、c,可求得△____________ ,此方程式的根为_______________ .&已知关于x的一元二次方程X2・2X・ m=0,用配方法解此方程,配方后的方程是.三.解答题(共12小题)9. (2010秋•泉州校级月考)某液晶显示屏的对角线长30cm,其长与宽之比为4:3,列出一元二次方程,求该液晶显示屏的面积.10・(2009秋•五莲县期中)已知一元二次方程x2+mx+3=0的一根是1,求该方程的另一根与m的值.11. x2"b・ 2x a+b+3=0是关于x的一元二次方程,求a与b的值.12・(2012>西城区模拟)用公式法解一元二次方程:x?- 4x+2=0.13.(2013秋•海淀区期中)用公式法解一元二次方程:X2+4X=1.14. (2011秋•江门期中)用公式法解一元二次方程:5x2 - 3x=x+l.15. (2014秋•藁城市校级月考)(1)用公式法解方程:x2 - 6x+l=0;(2)用配方法解一元二次方程:X2+1=3X^16. (2013秋•大理市校级月考)解一元二次方程:(1)4x2・1=12x(用配方法解);(2)2x2 - 2=3x (用公式法解).17. (2013*自贡)用配方法解关于x的一元二次方程ax2+bx+c=0.18. (20W泗县校级模拟)用配方法推导一元二次方程ax2+bx+c=0 (訂0)的求根公式.19・(2011秋•南开区校级月考)(1)用公式法解方程:2X2+X=52(2)解关于x的一元二次方程:洛亠警•a - 2b20・(2011>西城区二模)已知:关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根.(1)求k的取值范圉;(2)出k取最大整数值时,用公式法求该方程的解.21.公式法答案一. 选择题(共5小题)C 解一元二次方程-公式法. 计算题. 运用公式法,首先确定a, b, c 的值,然后判断方程是否有解,如有解代 :入公式即可求解.二 x 2 - 5x ・ 6=0.•・ X1=6T X2= • 1・故选c. 解一元二次方程时要注意解题方法的选择,配方法和求根公式法适用于任 :何一元二次方程,不过麻烦.还要注意题口有无解题要求,要按要求解题. B 解一元二次方程-公式法. 计算题. 用公式法求一元二次方程时,首先要把方程化为一般形式. 解:•・• - 4X 2+3=5X :・•・-4x 2 - 5x+3=0,或 4X 2+5X - 3=0 .・.a=・ 4, b= - 5, c=3 或 a=4» b=5, c= - 3. 故选B. 点 此题考查了公式法解一元二次方程的应用条件,首先要把方程化为一般形 评:式. 3・A考根的判别式. 占.八、、• 1.考点专题分析解答:解:x 2 - 5x=6 .•・ b 2 - 4ac= ( - 5) .5±V49 -4xlx ( - 6) =49 点评C2.考点专题分析解答专计算题.山一元•二次方程有实数根,得到根的判别式大于等于0,列出关于c 的不 等式,求出不等式的解集即可得到c 的范围.解:•••一元二次方程x 2+c=0有实数解, △ =b 2 - 4ac= - 4c>0, 解得:c<0.故选A此题考查了一元二次方程根的判别式,根的判别式的值大于6方程有两 个不相等的实数根;根的判别式等于0,方程有两个相等的实数根;根的 判别式小于6方程没有实数根. 4・B考一元二次方程的解.占•八、、•分 根据方程的解的定义,把X"代入已知方程可以求得C 的值,然后把C 的 析:值代入所求的代数式进行求值.解解:依题意,得答:l 2+l+c=0,解得,c= - 2,则 c 2+c= ( - 2 ) 2 - 2=2 ・故选:B.点 本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的 评:未知数的值是一元二次方程的解.乂因为只含有一个未知数的方程的解也 叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根. 5・C考 解一元二次方程■因式分解法.占•八、、专 计算题.题:分 A析: 先移项得到x (x - 2) +x ・2=0,再把方程左边方程得到(x ・2) (x+1) =0,元方程转化为x - 2=0或x+l=0. 然后解一次方程即可. 解 解:T x (x - 2) +x - 2=0,答: /. (x - 2) (x+1) =0,・•. x ・ 2=0 或 x+l=0,・•・ X1=2| X2= • 1・ 故选C.点本题考查了解一元二次方程■因式分解法:先把方程右边变形为0,然后 评:把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程, 分杭解答点评再解一次方程可得到一元二次方程的解.二. 填空题(共3小题)6. a= ~ 1 ; b= 3 ; c= - 1 .解一元二次方程-公式法. ■ 先移项,找出各项系数即可. 解:-X 2+3X =1,:-X 2+3X - 1=0,a= - 1, b=3t c= - 1»故答案为:・1, 3,・1.本题考查了解一元二次方程,一元二次方程的一般形式的应用,注意:项 :的系数带着前面的符号. △ =13 , X 亠至 X2-3 5 .----- ------ 2 ---------- 2 — 解一元二次方程■公式法.:找出方程中二次项系数a, —次项系数b 及常数项c,计算出根的判别式的 值为13大于0,将a, b 及c 的值代入求根公式即可求出原方程的解.解 解:T a=l» b= - 3» c= ■ 1,答:・•・△ =b 2 - 4ac= ( - 3) 2- 4xlx ( - 1) =13,..A -------- ,2 原方程的解为XI 仝卫,X2上些.2 2故答案为:13, XI 三匹, 22 点此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程 评:时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项, 计算出根的判别式,当根的判别式大于等于0时,将“ b 及c 的值代入求 根公式即可求出原方程的解.8. ( X - 1)2=m+l 考 解一元二次方程■配方法. 占.八、、• 把常数项・m 移项后,应该在左右两边同时加上一次项系数-2的一半的 平方.解:把方程x 2 - 2x - m=0的常数项移到等号的右边,得到x 2 - 2x=m, 方程两边同时加上一次项系数一半的平方,得到x 2 - 2x +l=m +l, 配方得(x - 1) 2=m+l. 考点分析解答点评7.考点分析故答案为(x - 1)2=m+l.点本题考查了配方法解一元二次方程.配方法的一般步骤:评:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1, 一次项的系数是2的倍数.三. 解答题(共12小题)9.丫一元二次方程的应用.考点:毎儿何图形问题.题:分由长与宽之比为4: 3,可设长为4x,则宽为3x,根据勾股定理可得:(4x)析:2+ (3x)2=302;得出x后,即可求出显示屏的面积.解解:由题意可设长为4x,则宽为3x,答:根据三角形性质,得:(4x)2+ (3x) 2与02解得:x=6, x= - 6 (舍去)所以长为24cm,宽为18cm该液晶显示屏的面积为24xl8=432cm2.即该液晶显示屏的面积为432cm2<点本题主要考查一元二次方程的应用,根据三角形性质,列出方程即可.面评:积二长X宽.一元二次方程的解;根与系数的关系.计算题.一元二次方程的根就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;亦可利用根与系数的关系去做.(解法一)解:当X"时,代入原方程得:l 2+m+3=0,解得m= - 4;当m = - 4时,原方程可化为:Ix 2 - 4x+3=0,上式可化简为(x ・1) (x-3) =0,•••方程的另一个根为x=3.(解法二)解:假设方程的另一个根为X0,■/ X=1山根与系数关系可知:X O X1=3,•I xo=3;乂山根与系数关系可知:xo+l=・m,即 3+1= - m ;・•. m= - 4.点此题解法灵活,选择自己喜欢的一种解法即可. 评:考解一元二次方程■公式法.11.考 占•八、、• 分析: 解 答: 一元二次方程的定义・本题根据一元二次方程的定义求解.分5种情况分别求解即可.解:•・• x 2a+b - 2x a *b +3=0是关于x 的一元二次方程, 2a+b=2,解得< a+b=0 a=2二-2a+b=2,解得 "a= -1 2a+b=l .b=3a+t=2 ,解得< a= - 22a+b=0 L b=4%+b 二2,解得 ra=0■a+b=2 b=2 点评:a=0 lb 二 2,本题主要考查了一元二次方程的概念.解题的关键是分5种情况讨论x 的 指数.综上所述 a= - 2 b=4 » I a=l eb=02a+b=2,解得< a+b=l za=l ? a=2 , 小二『(b 二-2’计算题.找出方程中二次项系数a, —次项系数b 及常数项c,计算出根的判别式的 值为8大于0,将a, b 及c 的值代入求根公式即可求出原方程的解. 解:a=l, b=・ 4, C =2T ... (1 分)<△ =b 2 - 4ac= ( - 4)2 - 4xlx2=8,・・・(3 分) ...x=¥ 士厶J 匚2土换,…(4分)2 ・••原方程的解为 XI =2+V2^ X2=2 - A /2. ...(6 分)此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程 时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项, 计算出根的判别式,当根的判别式大于等于0时,将“ b 及c 的值代入求 根公式即可求出原方程的解. 移项后求出b2・4ac 的值,再代入公式求出即可. 解:原方程可化为X 2+4X - 1=0, a =l, b=4, c= - 1 b 2 - 4ac=42 - 4xlx ( - 1) =20>0, 丁 _4士阿 2 , xi= - 2+^5,X2= - 2 - VS- 本题考查了解一元二次方程的应用,主要考查学生的计算能力. 解一元二次方程-公式法. 计算题.将方程整理为一般形式,找出a, b 及c 的值,计算出根的判别式的值大于 0,代入求根公式即可求出解.解:方程化简为:5x 2 - 4x - 1=0,这里 a=5, b=・ 4, c= - 1,<・.・△ =b 2 - 4ac= ( - 4)2 - 4x5x ( - 1)二36>0,.一-(-4) ±顶_4±&.■ X --------------------- 92X5 10点专题分阪解答点评13考点分杭解峯点评>14考点专题分杭解第 解一元二次方程•公式法.・・ Xi =l 9 X2=- - • 5点 此题考查了解一元二次方程■公式法,利用此方法解方程时,首先将方程 评:整理为一般形式,找出a, b 及c 的值,当根的判别式的值大于等于0时, 代入求根公式即可求出解.(2)将常数项移到等式的右边,含有未知数的项移到等式的左边,然后在 等式的两边同时加上一次项系数一半的平方,构成完全平方公式形式;最 后直接开平方即可. 解 解:(1) •••方程x2・6x+l=0的二次项系数a“,一次项系数b=・6,常数 答:项c=l, 2a 2 XI =3+2V2, X2=3 - 2A /2: (2)由原方程,得 x 2 ・ 3x= - 1, 等式的两边同时加上一次项系数一半的平方,得 P 2 p 2 x2・3x+ (舟)=-1+ ' (X ■卫)2更, 2 4...X 仝血 X2二二^ 2 2 点 本题考查了解一元二次方程■■公式法、配方法.利用公式法解方程时, 评:需熟记求根公式.解一元二次方程■公式法;解一元二次方程■配方法. (1)根据配方法的步骤先把常数项移到等号的右边,一次项移到等号的右 边,再在两边同时加上一次项系数的一半,配成完全平方的形式,然后开 15考点分杞解一元二次方程•公式法;解一元二次方程■配方法・(1)利用求根公式X 土斗解方程; 16考点分版方即可;(2)首先找出公式中的a, b, c 的值,再代入求根公式x-二丿土也,°竺2a求解即可.解 解:(1) 4x2 ・ l=12x, 答:4x 2 - 12x=l,X 2- 3x=—,4 x 2- 3x+2i+24 4 4 (x ■丄)2二,2 2X ・邑士回,2 2X]更+姮^2^,2 2 2 (2) 2x2・ 2=3X , 2x 2 - 3x・ 2=0,a=2, b= - 3T C = - 2,_ _b±d/_ 验_3±“9+]6_3±52a 4 厂Xl=2f X2=-丄.2点此题考查了配方法和公式法解一元二次方程,关键是熟练掌握配方法的步 评:骤和公式法的步骤,公式法解题时要注意将方程化为一般形式,确定"b,C 的值,然后检验方程是否有解,若有解,代入公式即可求解.解一元二次方程■配方法. ■ 此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用, :把左边配成完全平方式,右边化为常数.解:•••关于X 的方程ax 2+bx+c=0是一元二次方程,:/. 8工0・•••由原方程,得x 2+^x= - £a a 等式的两边都加上(也)2,得17考点分析解答x2+_kx+ ($)2 ■壬+ (寻)a Za a Za配方,得(X+上)2a 4 a2当b?・4ac>0时,开方,得:x+也士並_ 2竺2a 2a解得旳 b2 - 4ac=0 时,解得:xi=x2=-—;2a当b2 - 4ac<0时,原方程无实数根.占・评:本题考查了配方法解一元二次方程.用配方法解一元二次方程的步骤:(1)形如xJpx+q二0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=O型,方程两边同时除以二次项系数,即化成x2+px+q=O, 然后配方.18.考解一元一•次方程■公式法;配方法的应用.占.八、、•专计算题・题:分・析:由a不为0,在方程左右两边同时除以a,并将常数项移到方程右边,方程左右两边都加上一次项系数一半的平方,左边化为完全平方式,右边通分并利用同分母分式的减法法则计算,当b2・4ad0时,开方即可推导出求根公式.解解:ax2+bx+c=0 (a^O),答:方程左右两边同时除以a得:X2+H+2=0,a a移项得:x2+^x=a a配方得:x2」x( b:_ /仝护_ jc,即(X』)2」2-管,a 4/ 4/ a 4屏2a 4/.一 _ b ± Vb 2" 4ac2a此题考查了一元二次方程的求根公式,以及配方法的应用,学生在开方时 注意b 2 - 4ac>0这个条件的运用. 解一元二次方程■因式分解法;解一元二次方程■公式法. (1) 先把方程化为一般形式:2x 2+x - 5=0,则 a=2, b=l, c= - 5, A =12 - 4x2x (・5) =41,再代入求根公式计算即可; (2) 先把方程化为一般形式:x2・4bx- (a+2b) (a - 2b) =0,再利用因 式分解法求解即可. 解:(1)方程化为一般形式为:2X 2+X ・5=0, a =2, b=l, c= - 5f ・・・△ =12 - 4x2x ( - 5) =41>0, .-1±V41 .■ A ---- 9 4 ... xi=^lWH > X2二土姮; 4 4 (2)方程化为一般形式:x 2 - 4bx - (a+2b) (a - 2b) =0, 左边分解因式,得[x ・(a+2b) ][x+ (a - 2b) ]=0, ・•・ xi=a+2b» X2= • a+2b ・ 本题考查的是解一元二次方程,根据题L1的要求和结构特点,选择适当的 方法解方程. 根的判别式;解一元二次方程■公式法. (1) 根据一元二次方程x 2+4x+2k=0有两个不相等的实数根,得出△ >0, 即可得出k 的取值范围; (2) 根据k 的取值范围,得岀符合条件的最大整数k",代入方程求出即 可. 解:([)•••关于x 的一元二次方程x 2+4x +2k=0有两个不相等的实数根, ・•・△ =16 - 4x2k>0. 解得k<2・2 •・• k<2,点评・19考点分杭 解答 点评20考点分杭 解答・•・符合条件的最大整数k<L此时方程为X2+4X+2=0-a=l, b=4, c=2.b2 - 4ac=42 - 4x1x2=8・代入求根公式7 士讥2 - 4”,2a得%斗哑-2土血Xp- 2+V2,x2-- 2- ^2-点此题主要考查了一元二次方程根的判别式以及一元二次方程的解法,此题评:比较典型同学们应熟练掌握.。
一元二次方程的解法配方法及例题一元二次方程,听起来是不是有点儿高深莫测?别担心,今天我们就来聊聊这个看似复杂的东西,轻松搞定它。
想象一下,你正在逛街,突然发现了一条超好看的裙子,但你又不知道该不该买,这种纠结的感觉就像一元二次方程的解法一样,咱们先把问题搞明白,再来决定要不要“剁手”。
一元二次方程的标准形式是这样的:ax² + bx + c = 0。
这里的a、b、c可都是数字,咱们就把它们看成是不同的角色,正在为解这个方程而斗智斗勇。
我们来认识一下这个方程的“英雄”,那就是求根公式。
这个公式可是解方程的利器,简直就是数学界的超能力。
公式长得像这样:x = (b ± √(b² 4ac)) / (2a)。
瞧,这个公式的构成就像做饭,得准备好材料。
b、a、c分别代表你需要的配料,而根号下的部分,咱们叫它“判别式”,这玩意儿可是决定方程究竟有几个解的重要因素。
判别式大于零,嘿,那就说明方程有两个不同的解,像是你有两条裙子可以选择;等于零,那只有一条,虽然选择少了,但好歹也算有,像是最后还是能买到心仪的那条;小于零,那就可惜了,连个影儿都看不见,仿佛你这次购物完全泡汤。
咱们就来点实战。
比如说,你遇到一个方程:2x² 4x 6 = 0。
咱们先找出a、b、c,a=2,b=4,c=6。
这时候,心里千万不要慌,咱们按部就班,先计算判别式b² 4ac。
带着计算器,开始算吧!4的平方是16,接着算4乘以2乘以6,结果是48。
加在一起,16 (48),哇,结果是64!判别式大于零,意味着这方程有两个解,咱们接着往下走。
然后,带着判别式的结果去算x。
代入公式,x = (4 ± √64) / (4)。
√64等于8,接着我们得到x = (4 + 8) / 4 和 x = (4 8) / 4。
第一个解,x = 3;第二个解,x = 1。
看到没有,方程的解就像咱们生活中的选择,虽然有时候会碰壁,但只要认真去算,总能找到出路。
一元二次方程的解法及练习题解析一元二次方程是数学中常见且重要的内容之一。
在解决实际问题和数学推理中,我们经常会遇到一元二次方程,因此了解和掌握其解法对于我们应对各类问题十分重要。
本文将介绍一元二次方程的解法,并通过一些练习题来进一步加深理解。
1. 标准形式和一元二次方程的定义一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b和c是已知常数,而x则是未知数。
一元二次方程的解即是能使该方程成立的x 的取值。
2. 一元二次方程的解法一元二次方程的解可以通过四个常用方法来得到,即因式分解法、配方法、求根公式法和完全平方式。
接下来将逐一介绍这几种解法。
2.1 因式分解法当一元二次方程可以直接因式分解时,我们可以采用因式分解法来求解。
具体步骤如下:a) 将方程左边置零,然后将方程进行因式分解;b) 令每个因式等于零,得到多个方程;c) 解出每个方程的解,即为原方程的解。
需要注意的是,方程能够被因式分解需要满足一定条件,通常是b和c的关系。
2.2 配方法当一元二次方程不能直接因式分解时,我们可以使用配方法来求解。
具体步骤如下:a) 将方程左边置零,然后将方程进行配方;b) 将配方后的方程转化为平方形式,再进行运算;c) 解出x的值,即为原方程的解。
2.3 求根公式法求根公式是解一元二次方程的一种常用方法,适用于所有一元二次方程。
一元二次方程的求根公式为:x = (-b ± √(b^2-4ac))/(2a)具体步骤如下:a) 计算并代入求根公式中的a、b、c的值;b) 分别计算带入加号和减号的两组x的解;c) 解出x的值,即为原方程的解。
2.4 完全平方式当一元二次方程满足某些条件时,我们可以使用完全平方式来求解。
这种方法主要用于完成平方的形式,从而求得x的值。
3. 一元二次方程练习题解析为了更好地理解一元二次方程的解法,我们来解决几个练习题。
题目1:求解方程x^2-3x+2=0解法:这个方程可以进行因式分解,得到(x-1)(x-2)=0,因此x=1或x=2。
20132014学年槟榔中学九年级上学期22.2.1配方法1、配方法的步骤,先等式两边同除___________,再将含有未知数的项移到等号左边,将__________移到等号右边,等式两边同加____________________________,使等式左边配成完全平方,即2()x m n +=的形式,再利用直接开平方法求解。
若n <0,则方程________。
2、将下列各式进行配方(1)2210___(___)x x x -+=- (2)228___(___)x x x ++=+(3)223___(___)2x x x -+=- (4)22___(___)x mx x -+=- (5)2261(___)(____)x x x ++=++ (6)2281(___)(____)x x x -+=-+(7)2211(___)(____)2x x x ++=++ 3、当_____x =时,代数式223x x -+有最______值,这个值是________4、若要使方程25722x x -=的左边配成完全平方式,则方程两边都应加上( ) A. 25()2- B. 2(5)- C. 72 D. 25()4- 5、用配方法解下列方程(1)2220x x --= (2)2680x x ++=(3)2310x x --= (4)(1)812x x x -=-(5)24410x x +-= (6)2330x x +-=(7)2346x x += (8)2212033y y +-=*(9)2220x x n +-= *(10)2222x ax b a -=-(a b ,为常数)※6、试说明:对任意的实数m ,关于x 的方程22(46)210m m x x -+--=一定是一元二次方程。
参考答案:1、二次项系数;常数项;一次项系数一半的平方;无实数解2、(1)25;5 (2)16;4 (3)916;34 (4)214m ;12m (5)3;8- (6)4;15- (7)14;1516 3、1;小;24、D5、(1)1211x x ==, (2)1224x x =-=-,(3)12x x == (4)12x x ==(5)12x x == (6)12x x == (7)无实数根 (8)12322y y ==-,(9)1211x x ==, (10)12x a b x a b =+=-, 6、证明:∵246m m -+=2(2)46m --+=2(2)2m -+∵2(2)0m -≥∴2(2)2m -+>0∴246m m -+≠0∴对任意的实数m ,关于x 的方程22(46)210m m x x -+--=一定是一元二次方程。
一元二次方程练习题及答案一元二次方程是初中数学中的重要内容,它在实际生活和数学解题中都有着广泛的应用。
下面为大家准备了一些一元二次方程的练习题,并附上详细的答案解析,希望能帮助大家更好地掌握这部分知识。
一、选择题1、方程$x^2 4 = 0$的解是()A $x = 2$B $x =-2$C $x_1 = 2$,$x_2 =-2$D $x_1=\sqrt{2}$,$x_2 =\sqrt{2}$答案:C解析:$x^2 4 = 0$,则$x^2 = 4$,所以$x = ± 2$,即$x_1 = 2$,$x_2 =-2$。
2、方程$x^2 2x 3 = 0$的根的情况是()A 有两个不相等的实数根B 有两个相等的实数根C 没有实数根D 无法判断答案:A解析:在方程$x^2 2x 3 = 0$中,$a = 1$,$b =-2$,$c =-3$,判别式$\Delta = b^2 4ac =(-2)^2 4×1×(-3) = 16 > 0$,所以方程有两个不相等的实数根。
3、用配方法解方程$x^2 6x + 4 = 0$,下列配方正确的是()A $(x 3)^2 = 5$B $(x 3)^2 =-5$C $(x 3)^2 =13$ D $(x + 3)^2 = 5$答案:A解析:$x^2 6x + 4 = 0$,$x^2 6x =-4$,$x^2 6x + 9 =-4 + 9$,$(x 3)^2 = 5$。
二、填空题1、一元二次方程$x^2 + 3x = 0$的解是________。
答案:$x_1 = 0$,$x_2 =-3$解析:$x(x + 3) = 0$,则$x = 0$或$x + 3 = 0$,所以$x_1 =0$,$x_2 =-3$。
2、若关于$x$的一元二次方程$(k 1)x^2 + 2x 2 = 0$有实数根,则$k$的取值范围是________。
答案:$k ≥ \frac{1}{2}$且$k ≠ 1$解析:因为是一元二次方程,所以$k 1 ≠ 0$,即$k ≠ 1$。
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.5D解析:D【分析】设AD 长为x 米,四边形ABCD 是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x (30−4x )=54,解此方程即可求得x 的值.【详解】解:设与墙头垂直的边AD 长为x 米,四边形ABCD 是矩形,∴BC =MN =PQ =x 米,∴AB =30−AD−MN−PQ−BC =30−4x (米),根据题意得:x (30−4x )=54,解得:x =3或x =4.5,∴AD 的长为3或4.5米.故选:D .【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.3.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5%A 解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】 本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 4.下列方程中,没有实数根的是( )A .2670x x ++=B .25260x x --=C .22270x x -=D .2220x x -+-=D解析:D【分析】根据判别式的意义对各选项进行判断.【详解】A 、224641780b ac =-=-⨯⨯=>,则方程有两个不相等的实数根,所以A 选项不符合题意;B 、()()224541261290b ac =-=--⨯⨯-=>,则方程有两个不相等的实数根,所以B 选项不符合题意;C 、()224274207290b ac =-=--⨯⨯=>,则方程有两个不相等的实数根,所以C 选项不符合题意;D 、()()224241240b ac =-=-⨯-⨯-=-<,则方程没有实数根,所以D 选项符合题意.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.5.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116 D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109B 解析:B【分析】 将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A 、由x 2﹣2x ﹣99=0得x 2﹣2x=99,则x 2﹣2x+1=100,即(x ﹣1)2=100,故本选项正确,不符合题意;B 、由x 2+8x+9=0得x 2+8x=-9,则x 2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C 、由2x 2﹣7x ﹣4=0得2x 2﹣7x=4,则x 2﹣72x =2,∴x 2﹣72x+4916=2+4916,即274x ⎛⎫- ⎪⎝⎭=8116,故本选项正确,不符合题意; D 、由3x 2﹣4x ﹣2=0,得3x 2﹣4x=2,则x 2﹣43x =23,∴故x 2﹣43x+49=23+49,即(x﹣23)2=109,故本选项正确,不符合题意; 故选:B .【点睛】 本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a 2x +bx +c =0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4B 解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m 的一元一次不等式,解不等式即可得出k 的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14, ∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .3D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.8.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=D 解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.9.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=D 解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.10.下列方程中,有两个不相等的实数根的是( )A .x 2=0B .x ﹣3=0C .x 2﹣5=0D .x 2+2=0C 解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A .由x 2=0得x 1=x 2=0,不符合题意;B .由x ﹣3=0得x =3,不符合题意;C .由x 2﹣5=0得x 1=x 2=,符合题意; D .x 2+2=0无实数根,不符合题意;故选:C .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 二、填空题11.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.故答案为6.【点睛】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 12.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或 解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.13.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019.【点睛】本题考查根与系数关系.熟记根与系数关系的公式是解题关键.14.用配方法解方程x 2+4x+1=0,则方程可变形为(x+2)2=_____.3【分析】先移项再两边配上4写成完全平方公式即可【详解】解:∵∴即故答案为:3【点睛】本题考查了用配方法解一元二次方程掌握用配方法解一元二次方程的步骤即可 解析:3【分析】先移项,再两边配上4,写成完全平方公式即可.【详解】解:∵241x x +=-,∴24414x x ++=-+,即()223x +=,故答案为:3.【点睛】本题考查了用配方法解一元二次方程,掌握用配方法解一元二次方程的步骤即可. 15.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.16.已知实数a ,b 是方程210x x --=的两根,则11a b+的值为______.-1【分析】利用根与系数的关系得到a+b=1ab=-1再根据异分母分式加减法法则进行计算代入求值【详解】∵是方程的两根∴a+b=1ab=-1∴===-1故答案为:-1【点睛】此题考查一元二次方程根与解析:-1【分析】利用根与系数的关系得到a+b=1,ab=-1,再根据异分母分式加减法法则进行计算代入求值.【详解】∵a ,b 是方程210x x --=的两根,∴a+b=1,ab=-1, ∴11a b+ =a b ab+ =11- =-1, 故答案为:-1.【点睛】此题考查一元二次方程根与系数的关系式,异分母分式的加减法计算法则.17.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.18.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 19.若()22214x y +-=,则22x y +=________.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a aαβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021; ∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.解析:(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.22.某口罩生产厂生产的口罩1月份平均日产量为30000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求,厂决定从2月份起扩大产量,3月份平均日产量达到36300个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?解析:(1)口罩日产量的月平均增长率为10%;(2)预计4月份平均日产量为39930个.【分析】(1)根据题意设口罩日产量的月平均增长率为x ,根据题意列出方程即可求解;(2)结合(1)按照这个增长率,根据3月份平均日产量为36300个,即可预计4月份平均日产量.【详解】(1)设口罩日产量的月平均增长率为x ,根据题意,得30000(1+x )2=36300,解得x 1=−2.1(舍去),x 2=0.1=10%,答:口罩日产量的月平均增长率为10%;(2)36300(1+10%)=39930(个).答:预计4月份平均日产量为39930个.【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握增长率问题应用题的等量关系. 23.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 解析:每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.24.(1)用配方法解:221470x x --=;(2)用因式分解法解:()()222332x x -=-.解析:(1)1x =,2x =2)x 1=1,x 2=-1. 【分析】(1)先移项,把二次项系数化为1,再把方程两边同时加上一次项系数一半的平方,进而开平方解方程即可得答案;(2)先根据完全平方公式把方程两边展开,再移项整理成一元二次方程的一般形式,再利用因式分解法解方程即可得答案.【详解】(1)221470x x --=移项得:2x 2-14x=7,二次项系数化为1得:x 2-7x=72, 配方得:x 2-7x+27()2=72+27()2,即(x-72)2=634,开平方得:x-72=2±,解得:1x =2x =. (2)()()222332x x -=-展开得:4x 2-12x+9=9x 2-12x+4移项、合并得:5x 2-5=0,分解因式得(x+1)(x-1)=0,解得:x 1=1,x 2=-1.【点睛】本题考查配方法及因式分解法解一元二次方程,熟练掌握解方程的步骤是解题关键. 25.先化简,再求值:(1﹣1a )21a a -,其中a 满足方程a 2﹣a ﹣2=0. 解析:11a +,13. 【分析】 先根据分式的基本性质化简,再求解关于a 的一元二次方程,代入求解即可;【详解】 解:原式=()()11111a a a a a a -=++-, 解方程a 2﹣a ﹣2=0得,a 1=2,a 2=﹣1,当a =2时,原式=11=2+13, 当a =﹣1时,分式无意义, 则分式的值为13. 【点睛】本题主要考查了分式化简求值,与一元二次方程的求解,准确分析计算是解题的关键. 26.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.解析:(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴22x -±=, 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用求解. 27.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩ 解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-.(2)()31512272x x x ->⎧⎨+<+⎩解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】 本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.28.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+解析:(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=, 【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
一元二次方程及解法经典习题及解析
知识技能:
一、填空题:
1.下列方程中是一元二次方程的序号是 .
42x①
522yx② ③01332xx 052x④
5232xx⑤
412xx⑥
xxxxxx2)5(0143223。。。。⑧⑦
2.已知,关于2的方程12)5(2axxa是一元二次方程,则a
3.当k 时,方程05)3()4(22xkxk不是关于X的一元二次方程.
4.解一元二次方程的一般方法有 , , , ·
5.一元二次方程)0(02acbxax的求根公式为: .
6.(2004·沈阳市)方程0322xx的根是 .
7.不解方程,判断一元二次方程022632xxx的根的情况是 .
8.(2004·锦州市)若关于X的方程052kxx有实数根,则k的取值范围是 .
9.已知:当m 时,方程0)2()12(22mxmx有实数根.
10.关于x的方程0)4(2)1(222kkxxk的根的情况是 .
二、选择题:
11.(2004·北京市海淀区)若a的值使得1)2(422xaxx成立,则a的值为( )
A.5 8.4 C.3 D.2
12.把方程xx332化为02cbxax后,a、b、c的值分别为( )
3.3.0.A 3.3.1.B 3.3.1.C 3.3.1.D
13.方程02xx的解是( )
xA.=土1 0.xB 1,0.21xxC 1.xD
14.(2006·广安市)关于X的一元二次方程 有两个不相等的实数根,
则k的取值
范围是( )
1.kA 1.kB 0.kC 1.kD
且0k
15.(2006·广州市)一元二次方程0322xx的两个根分别为( )
3,1.21xxA 3,1.21xxB 3,1.21xxC 3,1.21xxD
16.解方程
.251212;0)23(3)32(;0179;072222xxxxxxx④③②①
较简便的方法是( )
A.依次为:开平方法、配方法、公式法、因式分解法
B.依次为:因式分解法、公式法、配方法、直接开平方法
①.C用直接开平方法,②④
用公式法,③用因式分解法
①.D用直接开平方法,②用公式法,③④
用因式分解法
17.(2004·云南省)用配方法解一元二次方程.0782xx则方程可变形为( )
9)4.(2xA 9)4.(2xB 16)8.(2xC 57)8.(2xD
18.一元二次方程012)1(2xxk有两个不相等的实数根,则k的取值范围是( )
2.kA 2.kB且1k 2.kC 2.kD
且1k
19.下列方程中有两个相等的实数根的方程是( )
09124.2xxA 032.2xxB
02.2xxC 072.2xxD
20.(2004·大连市)一元二次方程0422xx的根的情况是( )
A.有一个实数根 B.有两个相等的实数根
C.有两个不相等的实数根 D.没有实数根
21.下列命题正确的是( )
xxA22.。
只有一个实根 111.2xxB有两个不等的实根
C.方程032x有两个相等的实根 D.方程04322xx无实根
三、解答题:
22.(2006·浙江省)解方程.222xx
23.用因式分解法解方程:.15)12(8)3(;05112)2(;015123)1(22xxxxxx
24.解关于2的方程:
);0(0)()()1(mxccxmx
).0(0)()2(2mnxnmmx
25.不解方程,判别下列方程根的情况.
5)3(2)1(xx
;0352)2(2xx
;04129)3(2xx .0)2()12)(4(2yyy
26.已知关于z的方程,03)12(22kxkx当k为何值时,
(1)方程有两个不相等的实数根?
(2)方程有两个相等的实数根?
(3)方程无实根?
27.已知:023242aaxx无实根,且a是实数,化简
.3612912422aaaa
28.k取何值时,方程0)4()1(2kxkx有两个相等的实数根?并求出这时方程的
根.
29.求证:关于2的方程013)32(2mxmx有两个不相等的实数根.
30.求证:无论k为何值,方程03)1(4)12(22kkxkx都没有实数根.
31.当cba是实数时,求证:方程0)()(22cabxbax必有两个实数根,并求两
根相等的条件.
32.如果关于z的一元二次方程06)4(22xmxx没有实数根,求m的最小整数值.
◆
综合运用:
一、填空题:
33.方程01)1()3(24xmxmn是关于x的一元二次方程,则nm,
34.关于z的方程;1)32()2(2xxxmmx
(1)当m 时,这个方程是一元二次方程;
(2)当m 时,这个方程是一元一次方程.
35.已知方程1)12(2kxkx的根是,2x则k
二、选择题:
36.(2004·郴州市)方程0562xx的左边配成完全平方后所得方程为( )
14)3.(2xA 14)3.(2xB
2
1
)6.(2xC
D.以上答案都不对
37.已知:关于2的方程019)13(22mxmmx有两个实数根,则m的范围为( )
51.mA 5
1
.mB
且51.0mCm51.mD
38.已知a、b、c是ABC的三条边,且方程0)(2)(2baxabxbc有两个相
等实数根,那
么,这个三角形是( )
A.等边三角形 B.等腰三角形
C.直角三角形 D.等腰直角三角形
39.(2004·海南省)已知关于2的方程0)12(22mxmx有两个不相等的实数根,
那么m的
最大整数值是( )
2.A 1.B 0.C 1.D
三、解答题:
40.用因式分解法解下列方程:
0)3()3(4)1(2xxx
93)3(7)2(xxx
;25)1(16)3(2x .)32()23(25)4(22xx
41.解方程.04||52xx
42.(1)已知方程,091022yxyx求证:yx9或;yx
(2)已知方程,065422zxzx求证:zx2或.43zx
43.m为何值时,方程0)12(4)1(22mmxxm有两个不相等的实数根?
44.已知方程022)1(2mmxxm有实根,求m的取值范围.
45.若关于2的方程041)1(22axax有两个不相等的实数根,试化简代数式
.441912422aaaa
46、当m是什么整数时,0442xmx与0544422mmmxx的根都是整数?
◆
47.求方程014934881141422yxyxyx的实数解.
48.设a、6、c为三角形的三条边长.求证:方程0)(222222cxacbxb无实根.
49.若方程0)(2)(2222222bcxcbxCa有两个相等的实数根,且a、b、c是
ABC
的三条边,求证:ABC是等腰三角形.
50.设m、k为有理数,当k为何值时,关于z的方程04234422kmmxmxx
的根为有理数?
51、已知关于x的一元二次方程.012kxx
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根分别为z,,X。,且满足,2121xxxx求k的值