(精品)一元二次方程典型例题整理版
- 格式:doc
- 大小:387.00 KB
- 文档页数:8
一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
一元二次方程典型例题整理版一元二次方程专题一:一元二次方程的定义典例分析:1.下列方程中是关于x的一元二次方程的是()2.若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()3.关于x的一元二次方程(a-1)x²+x+a²-l=0的一个根是。
则a的值为( )4.若方程(m-1)x²+m·x=1是关于x的一元二次方程,则m的取值范围是。
5.关于x的方程(a+a-2)x+a·x+b=0是一元二次方程的条件是()专题二:一元二次方程的解典例分析:1.关于x的一元二次方程(a-2)x²+x+a²-4=0的一个根为-2,则a的值为。
2.已知方程x²+kx-10=0的一根是2,则k为-5,另一根是-8.3.已知a是x²-3x+1=0的根,则2a²-6a+3=0.4.若方程ax²+bx+c=0(a≠0)中,a,b,c满足a+b+c=0和a-b+c=0,则方程的根是1和-1.5.方程(a-b)x²+(b-c)x+c-a=0的一个根为1,则另一个根为-b/c。
课堂练:1.已知一元二次方程x²+3x+m=0的一个根为-1,则另一个根为-2-m。
2.已知x=1是一元二次方程x²+bx+5=0的一个解,则b=-6,另一个根为-5.3.已知2y²+y-3=2,则4y²+2y+1=11/2,xy=-3/2.4.已知关于x的一元二次方程ax²+bx+c=(a≠0)的系数满足a+c=b,则此方程必有一根为1.专题三:一元二次方程的求解方法典例分析:1.直接开平方法:(1-x)²-9=0,解得x=-2或4.2.配方法:x²-2x+3>0,解得x∈(-∞,1)∪(3,+∞)。
难度训练:1.如果二次三项式x²-(2m+1)x+16是一个完全平方式,那么m的值是1.2.试用配方法说明x²-2x+3的XXX大于2.3.已知x²+y²+4x-6y+13=0,x、y为实数,求xy的值。
《一元二次方程的解法》典型例题及解析1.以配方法解3x2+4x+1 = 0时,我们可得出下列哪一个方程式( )A.(x+2) 2= 3 B.(3x+)2 =C.(x+)2 =D.(x+)2 =答案:D说明:先将方程3x2+4x+1 = 0的二次项系数化为1,即得x2+x+= 0,再变形得x2+x+()2 =()2−,即(x+)2 =,答案为D.2.想将x2+x配成一个完全平方式,应该加上下列那一个数( )A. B. C.D.答案:D说明:题目所给的式子中x2系数为1,因此,要将它配成一个完全平方式只需加上一次项系数一半的平方,即,所以答案为D.3.下列方程中,有两个不相等的实数根的是( )A.x2−9x+100 = 0 B.5x2+7x+5 = 0C.16x2−24x+9 = 0 D.2x2+3x−4 = 0答案:D说明:方程x2−9x+100 = 0中b2−4ac = 81−400<0;方程5x2+7x+5 = 0中b2−4ac = 49−4×5×5 = 49−100<0;方程16x2−24x+9 = 0中b2−4ac = 576−4×16×9 = 0;方程2x2+3x−4 = 0中b2−4ac = 9+32 = 41>0,所以方程2x2 = 3x−4 = 0有两个不相等的实数根,故选D.4.下列方程中,有两个相等实数根的是( )A.4(x−1)2−49 = 0 B.(x−2)(x−3)+(3−x) = 0C.x2+(2+1)x+2= 0 D.x(x−)+1 = 0答案:B说明:A中方程整理为一般形式为4x2−8x−45 = 0,这里b2−4ac = 64+720 = 784>0;B中方程整理为一般形式为:x2−6x+9 = 0,这里b2−4ac = 36−36 = 0;C中方程b2−4ac = 21+4−8= 21−4>0;D中方程整理为一般形式为x2−x+1 = 0,这里b2−4ac = 5−4 = 1>0;所以只有方程(x−2)(x−3)+(3−x) = 0有两个相等实数根,答案为B.5.下列方程4x2−3x−1 = 0,5x2−7x+2 = 0,13x2−15x+2 = 0中,有一个公共解是( )A.x =B.x = 2 C.x = 1 D.x = −1 答案:C说明:方程4x2−3x−1 = 0可变形为(4x+1)(x−1) = 0,方程5x2−7x+2 = 0可变形为(x−1)(5x−2) = 0,方程13x2−15x+2 = 0可变形为(x−1)(13x+2) = 0,所以这三个方程的公共解为x = 1,答案为C.6.用适当的方法解下列一元二次方程.(1)(x+4)2−(2x−1)2 = 0(2)x2−16x−4 = 0(3)2x2−3x−6 = 0(4)(x−2)2 = 256(5)(2t+3)2 = 3(2t+3)(6)(3−y)2+y2 = 9(7)(1+)x2−(1−)x = 0解:(1)平方差公式分解因式,方程变形为[(x+4)+(2x−1)][(x+4)−(2x−1)] = 0,化简后即3(x+1)(5−x) = 0,因此,可求得x1 = −1,x2 = 5.(2)用配方法,方程可变形为(x−8)2 = 68,两边开方化简可得x = 8±2(3)用公式法,b2− 4ac = (−3)2−4×2×(−6) = 57,所以x =(4)方程两边直接开方,得x−2 = ±16,即x1 = 18,x2 = −14(5)方程可化为(2t+3)(2t+3−3) = 0,即2t(2t+3) = 0,解得t1 = 0,t2 = −(6)方程变形为(y−3)2+y2−9 = 0,(y−3)[(y−3)+(y+3)] = 0,即2y(y−3) = 0,解得y1 = 0,y2 = 3(7)用因式分解法,方程可变形为x[(1+)x−1+] = 0,所以x1 = 0,x2 === 2−3扩展资料一元二次方程,数学史上的一场论战中世纪的欧洲,代数学的发展几乎处于停滞的状态,其真正的起步,始于公元1535年的一场震动数学界的论战.大家知道,尽管在古代的巴比伦或古代的中国,都已掌握了某些类型一元二次方程解法.但一元二次方程的公式解法,却是由中亚数学家阿尔·花拉子米于公元825年给出的.花拉子米是把方程x2+px+q = 0配方后改写为:的形式,从而得出了方程的两个根为:在欧洲,被誉为“代数学鼻祖”的古希腊的丢番图,虽然也曾得到过类似的式子,但由于丢番图认定只有根式下的数是一个完全平方数,且根为正数时,方程才算有解,因而数学史上都认为阿尔·花拉子米为求得一元二次方程一般解的第一人.花拉子米之后,许多数学家都致力于三次方程公式解的探求,但在数百年漫漫的历史长河中,除了取得个别方程的特解外,都没有人取得实质性进展,许多人因此怀疑这样的公式解根本不存在!话说当时意大利的波伦亚大学,有一位叫费洛的数学教授,也潜心于三次方程公式解这一当时世界难题的研究,功夫不负有心人,他终于取得了重大突破.公元1505年,费洛宣布自己已经找到了形如x3 + px = q方程的一个特别情形的解法,但他没有公开自己的成果,为的是能在一次国际性的数学竞赛中一放光彩.遗憾的是,费洛没能等到一个显示自己的才华的机会就抱恨逝去,临死前他把自己的方法传给了得意门生,威尼斯的佛罗雷都斯.现在话转另外一头,在意大利北部的布里西亚,有一个颇有名气的年轻人,叫塔塔里亚(Nicolo Tartaglia,1500-1557),此人从小天资聪明,勤奋好学,在数学方面表现出超人的才华,尤其是他发表的一些论文,思路奇特,见地高远,因而一时间名闻遐迩.塔塔里亚自学成才自然受到了当时一些习惯势力的歧视,公元1530年,当时布里西亚的一些人公开向塔塔里亚发难,提出以下两道具有挑战性的问题:(1)求一个数,其立方加上平方的3倍等于5;(2)求三个数,其中第二个数比第一个数大2,第三个数又比第二个数大2,它们的积为1000.读者不难知道,对第一个问题,若令所求数为x,则依题意有:x3+3x2 = 5而对第二个问题,令第一个数为x,则第二、三数分别为x+2,x+4,于是依题意有:x(x+2)(x+4)=1000化简后x3+6x2+8x−1000 = 0以上是两道三次方程的求解问题,塔塔里亚求出了这两道方程的实根,从而赢得了这场挑战,并为此名声大震!消息传到了波伦亚,费洛的门生佛罗雷都斯心中顿感震怒,他无法容忍一个不登大雅之堂的小人物与他平起平坐!于是双方商定,在1535年2月22日,于意大利的米兰,公开举行数学竞赛,各出30道问题,在两小时内决定胜负.赛期渐近,塔塔里亚因自己毕竟是自学出身而感到有些紧张.他想:佛罗雷都斯是费洛的得意弟子,难保他不会拿解三次方程来对付自己,那么自己所掌握的一类方法与费洛的解法究竟相距多远呢?他苦苦思索着,脑海中的思路不断进行着各种新的组合,这些新的组合终于撞击出灵感的火花,在临赛前八天,塔塔里亚终于找到了解三次方程的新方法,为此他欣喜若狂,并充分利用剩下的八天时间,一面熟练自己的新方法,一面精心构造了30道只有运用新方法才能解出的问题.2月22日那天,米兰的大教堂内,人头攒动,热闹非凡,大家翘首等待着竞赛的到来.比赛开始了,双方所出的30道题都是令人眩目的三次方程问题,但见塔塔里亚从容不迫,运笔如飞,在不到两小时的时间内,解完了的佛罗雷都斯的全部问题.与此同时,佛罗雷都斯却提笔拈纸,望题兴叹,一筹莫展,终于以0:30败下阵来!消息传出,数学界为之震动.在米兰市有一个人坐不住了,他就是当时驰名欧洲的医生卡当(Girolamo Cardano,1501-1576).卡当其人,不仅医术颇高,而且精于数学.他也潜心于三次方程的解法,但无所获.所以听到塔塔里亚已经掌握三次方程的解法时,满心希望能分享这一成果.然而当时的塔塔里亚已经誉满欧洲,所以并不打算把自己的成果立即发表,而醉心于完成《几何原本》的巨型译作.对众多的求教者,则一概拒之门外.当过医生的卡当,熟谙心理学的要领,软缠硬磨,终于使自己成了唯一的例外.公元1539年,塔塔利亚终于同意把秘诀传授给他,但有一个条件,就是要严守发现的秘密.然而卡当实际上没有遵守这一诺言.公元1545年,他用自己的名字发表了《大法》一书,书中介绍了不完全三次方程的解法,并写道:“大约30年前,波伦亚的费洛就发现了这一法则,并传授给威尼斯的佛罗雷都斯,后者曾与塔塔里亚进行过数学竞赛,塔塔里亚也发现了这一方法.在我的恳求下,塔塔里亚把方法告诉了我,但没有给出证明.借助于此,我找到了若干证明,因其十分困难,特叙述如下.”卡当指出:对不完全三次方程x3+px+q = 0,公式给出了它的解,这就是今天我们所说的卡当公式.《大法》发表第二年,塔塔里亚发表了的《种种疑问及发明》一文,谴责卡当背信弃义,并要求在米兰与卡当公开竞赛,一决雌雄.然而到比赛那一天,出阵的并非卡当本人,而是他的天才学生斐拉里(Ferrari L.,1522-1565),此时斐拉里,风华正茂,思维敏捷,他不仅掌握了解三次方程的全部要领,而且发现了一般四次方程的极为巧妙的解法.塔塔里亚自然不是他的对手,终于狼狈败退,并因此番挫折,心神俱伤,于公元1557年溘然与世长辞!没想到,正是这场震动数学界的论战,使沉沦了一千三百多年的欧洲代数学,揭开了划时代的新篇章!。
一元二次方程应用题20及答案1、有两个连续整数,它们的平方和为25,求这两个数。
解:设这两个数分别是a和a+1. 根据题意列方程:a²+(a+1)²=25整理得:a²+a-12=0 解得:a1=3 a2=-4当a=3时,两个数分别是3和4 当a=-4时,两个数分别是-3和-42、有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之积的3倍刚好等于这个两位数。
求这个两位数。
解:设个位数为x,则十位数为x-2 x(x-2)3=10(x-2)+x3 a²2-17x+20=0 (3x-5)(x-4)=0 x=5/3(舍去)或x=4则这两位数为243、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。
解:设这个两位数个位数为x,则(10x+6-x)(10(6-x)+x) = 1008,化简得到x ²-6x+8=0,所以x=2或4面积问题4、用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的边长为Xcm的小正方形,然后做成底面积为1500cm2的无盖的长方形盒子,求X的值。
解:设小正方形的边长为X厘米(80-2X)(60-2X)=1500 x² -70X+825=0(X-15)(X-55)=0 X=15或X=55(不符合,舍去)X=155、如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?解:设宽度为xm,640-(20*2*x+32*x)+2x^=570x²-36x+35=0 (X-1)(X-35)=0x=1 或35(不合题意,舍去)x=1增长率问题6、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?解:设增长率为x,则 32+32(1+x)+32(1+x)(1+x)=122(4x-1)(4x+13)=0 x=0.25或-3.25(不合题意,舍去)二月发行图书32(1+x)=40册三月发行图书32(1+x)(1+x)=50册7、某校2009年捐款1万元给希望工程,以后每年都捐款,计划到2011年共捐款4.75万元,问该校捐款的平均年增长率是多少?解:设平均年增长率为X。
一元二次方程10道例题一、直接开平方法例1:解方程(x - 3)^2=16解析:对于方程(x - 3)^2 = 16,根据直接开平方法,我们得到:x-3=±4当x - 3=4时,x=4 + 3=7;当x-3=-4时,x=- 4+3=-1。
所以方程的解为x_1 = 7,x_2=-1。
二、配方法例2:解方程x^2+6x - 7 = 0解析:在方程x^2+6x-7 = 0中,1. 移项得x^2+6x=7。
2. 配方:在等式两边加上一次项系数一半的平方,即x^2+6x + 9=7 + 9,得到(x + 3)^2=16。
3. 然后用直接开平方法,x+3=±4。
- 当x+3 = 4时,x=1。
- 当x + 3=-4时,x=-7。
所以方程的解为x_1=1,x_2 = - 7。
三、公式法例3:解方程2x^2-5x+3=0解析:对于一元二次方程ax^2+bx + c=0(a≠0),其求根公式为x=(-b±√(b^2 - 4ac))/(2a)。
在方程2x^2-5x + 3=0中,a = 2,b=-5,c = 3。
1. 先计算判别式Δ=b^2-4ac=(-5)^2-4×2×3=25 - 24 = 1。
2. 把a、b、Δ的值代入求根公式,得到x=(5±√(1))/(4)。
- 当取正号时,x=(5 + 1)/(4)=(3)/(2)。
- 当取负号时,x=(5-1)/(4)=1。
所以方程的解为x_1=(3)/(2),x_2 = 1。
四、因式分解法例4:解方程x^2-3x+2=0解析:1. 对x^2-3x + 2进行因式分解,得到(x - 1)(x - 2)=0。
2. 则有x-1=0或者x - 2=0。
- 当x-1=0时,x = 1。
- 当x-2=0时,x=2。
所以方程的解为x_1=1,x_2=2。
例5:解方程6x^2+x - 1=0解析:1. 对6x^2+x - 1进行因式分解,得到(2x + 1)(3x - 1)=0。
一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。
一元二次方程经典例题及答案1、下列方程:(1)x 2-1=0; (2)4 x 2+y 2=0; (3)(x-1)(x-3)=0; (4)xy+1=3. (5)3212=-x x其中,一元二次方程有( ) A .1个 B .2个 C .3个 D .4个2、一元二次方程(x+1)(3x-2)=10的一般形式是 ,二次项 ,二次项系数 ,一次项 ,一次项系数 ,常数项 。
二、牛刀小试正当时,课堂上我们来小试一下身手!3、小区在每两幢楼之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?4、一个数比另一个数大3,且两个数之积为10,求这两个数。
5、下列方程中,关于x 的一元二次方程是( )A.3(x+1)2= 2(x+1) B .05112=-+xx C.ax 2+bx+c= 0 D.x 2+2x= x 2-16、把下列方程化成ax 2+bx+c= 0的形式,写出a 、b 、c 的值:(1)3x 2= 7x-2 (2)3(x-1)2 = 2(4-3x)7、当m 为何值时,关于x 的方程(m-2)x 2-mx+2=m-x 2是关于x 的一元二次方程?8、若关于的方程(a-5)x ∣a ∣-3+2x-1=0是一元二次方程,求a 的值?三、新知识你都掌握了吗?课后来这里显显身手吧!9、一个正方形的面积的2倍等于15,这个正方形的边长是多少?10、一块面积为600平方厘米的长方形纸片,把它的一边剪短10厘米,恰好得到一个正方形。
求这个正方形的边长。
11、判断下列关于x 的方程是否为一元二次方程:(1)2(x 2-1)=3y ; (2)4112=+x ; (3)(x -3)2=(x +5)2; (4)mx 2+3x -2=0;(5)(a 2+1)x 2+(2a -1)x +5―a =0.12、把下列方程化成一元二次方程的一般形式,并写出它们的二次项系数,一次项系数及常数项。
(1)(3x-1)(2x+3)=4; (2)(x+1)(x-2)=-2.13、关于x 的方程(2m 2+m-3)x m+1-5x+2=13是一元二次方程吗?为什么?4.2一元二次方程的解法(1)第一课时一、磨刀不误砍柴工,上新课之前先来热一下身吧!1、3的平方根是 ;0的平方根是 ;-4的平方根 。
《一元二次方程的解法》经典例题精讲例1解方程025x 2=-.分析:解一元二次方程的方法有四种,而此题用直接开平方法较好.解一元二次方程的方法有四种,而此题用直接开平方法较好.解:025x 2=-,25x 2=,25x ±=,x =±=±55. ∴5x 5x 21-==,.例2解方程2)3x (2=+.分析:如果把x +3看作一个字母y ,就变成解方程2y 2=了.了.解:2)3x (2=+,23x ±=+,23x 23x -=+=+,或, ∴23x 23x 21--=+-=,.例3解方程081)2x (42=--.分析:解此题虽然可用因式分解法、公式法来解,但还是用直接开平方法较好.较好.解:081)2x (42=-- 整理,81)2x (42=-,481)2x (2=-, 292x ±=-,∴25x 213x 21-==,.注意:对可用直接开平方法来解的一元二次方程,一定注意方程有两个解;若a x 2=,则a x ±=;若b )a x (2=-,则a b x +±=.例4解方程02x 3x 2=+-.分析:此题不能用直接开平方法来解,可用因式分解法或用公式法来解.此题不能用直接开平方法来解,可用因式分解法或用公式法来解. 解法一:02x 3x 2=+-,(x (x--2)(x 2)(x--1)1)==0, x -2=0,x -1=0,∴2x 1x 21==,. 解法二: ∵a =1,b =-=-33,c =2, ∴01214)3(ac 4b 22>=´´--=-,∴213x ±=.∴1x 2x21==,.注意:用公式法解方程时,要正确地确定方程各项的系数a 、b 、c 的值,先计算“△”的值,若△先计算“△”的值,若△<0<0<0,则方程无解,就不必解了.,则方程无解,就不必解了.,则方程无解,就不必解了.例5解关于x 的方程0n )n m 2x 3(m x 22=-+--.分析:先将原方程加以整理,化成一元二次方程的一般形式,注意此方程为关于x 的方程,即x 为未知数,为未知数,m m ,n 为已知数.在确定0ac 4b 2³-的情况下,利用公式法求解.利用公式法求解.解:把原方程左边展开,整理,得把原方程左边展开,整理,得0)n mn m 2(mx 3x 222=--+-.∵a =1,b =-=-3m 3m 3m,,22n mn m 2c --=, ∴)n mn m 2(14)m 3(ac 4b 2222--´´--=-22n 4mn 4m ++= 0)n 2m (2³+=.∴2)n 2m (m 3x 2++=2)n 2m (m 3+±=.∴nm x n m 2x 21-=+=,. 注意:解字母系数的一元二次方程与解数字系数的一元二次方程一样,都要先把方程化为一般形式,确定a 、b 、c 和ac 4b 2-的值,然后求解.但解字母系数方程时要注意:系数方程时要注意:(1)(1)(1)哪个字母代表未知数,也就是关于哪个未知数的方程;哪个字母代表未知数,也就是关于哪个未知数的方程;(2)(2)不要把一元二次方程一般形式中的不要把一元二次方程一般形式中的a 、b 、c 与方程中字母系数的a 、b 、c 相混淆;混淆;(3)(3)(3)在在ac 4b 2-开平方时,可能会出现两种情况,但根号前有正负号,开平方时,可能会出现两种情况,但根号前有正负号,已包已包括了这两种可能,因此,)n 2m ()n 2m (2+±=+±.例6用配方法解方程x 73x 22=+.分析:解一元二次方程虽然一般不采用配方法来解,但配方法的方法本身重要,要记住.重要,要记住.解:x 73x 22=+,23x 27x 2=+-,0234747x 27x 22=+÷øöçèæ-÷øöçèæ+-2, 162547x 2=÷øöçèæ-, ∴4547x ±=-. ∴21x3x21==,. 注意:用配方法解一元二次方程,要把二次项系数化为1,方程左边只有二次项,一次项,次项,一次项,右边为常数项,然后方程两边都加上一次项系数一半的平方,左右边为常数项,然后方程两边都加上一次项系数一半的平方,左边就配成了一个二项式的完全平方.边就配成了一个二项式的完全平方.例7不解方程,判别下列方程的根的情况:不解方程,判别下列方程的根的情况:(1)04x 3x 22=-+;(2)y 249y 162=+;(3)0x 7)1x (52=-+.分析:要判定上述方程的根的情况,只要看根的判别式ac 4b 2-=D 的值的符号就可以了.符号就可以了.解:(1)(1)∵∵a =2,b =3,c =-=-44, ∴041)4(243ac 4b 22>=-´´-=-. ∴方程有两个不相等的实数根.∴方程有两个不相等的实数根. (2)(2)∵∵a =1616,,b =-=-242424,,c =9, ∴09164)24(ac 4b 22=´´--=-. ∴方程有两个相等的实数解.∴方程有两个相等的实数解.(3)(3)将方程化为一般形式将方程化为一般形式0x 75x 52=-+,05x 7x 52=+-.∵a =4,b =-=-77,c =5, ∴554)7(ac 4b 22´´--=- =4949--100 =-=-51<051<051<0..∴方程无实数解.∴方程无实数解.注意:对有些方程要先将其整理成一般形式,再正确确定a 、b 、c 的符号.例8已知方程06kx x 52=-+的一个根是2,求另一根及k 的值.的值.分析:根据韦达定理a cx x abxx2121=×-=+,易得另一根和k 的值.再是根据方程解的意义可知x =2时方程成立,即把x =2代入原方程,先求出k 值,再求出方程的另一根.但方法不如第一种.求出方程的另一根.但方法不如第一种.解:设另一根为2x ,则,则56x 25k x 222-=×-=+,,∴53x 2-=,k =-=-77.即方程的另一根为53-,k 的值为-的值为-77. 注意:一元二次方程的两根之和为a b -,两根之积为a c.例9利用根与系数的关系,求一元二次方程01x 3x 22=-+两根的两根的 (1)(1)平方和;平方和;平方和;(2)(2)(2)倒数和.倒数和.倒数和.分析:已知21x x 23xx2121-=×-=+,.要求.要求(1)(1)2221x x +,(2)21x 1x 1+,关键是把2221x x +、21x 1x 1+转化为含有2121x x x x ×+、的式子.的式子.因为两数和的平方,等于两数的平方和加上这两数积的2倍,即ab 2b a )b a (222++=+,所以ab 2)b a (b a 222-+=+,由此可求出,由此可求出(1)(1)(1).同样,可用.同样,可用两数和与积表示两数的倒数和.两数和与积表示两数的倒数和.解:(1)(1)∵∵21x x 23x x 2121-=×-=+,,∴212212221x x 2)x x (x x -+=+÷øöçèæ--÷øöçèæ-=212232149+= 413=; (2)211221x x x x x 1x 1+=+ 2123--==3.注意:利用两根的和与积可求两根的平方和、倒数和,其关键是把平方和、倒数和变成两根的和与积,其变形的方法主要运用乘法公式.倒数和变成两根的和与积,其变形的方法主要运用乘法公式.例10已知方程0m x 4x 22=++的两根平方和是3434,求,求m 的值.的值.分析:已知34x x 2m x x 2x x 22212121=+=×-=+,,,求m 就要在上面三个式子中设法用222121x x x x ++和来表示21x x ,m 便可求出.便可求出.解:设方程的两根为21x x 、,则,则2mx x 2x x 2121=×-=+,.∵212212221x x 2)x x (x x -+=+, ∴)x x ()x x (x x 2222122121+-+=34)2(2--==-=-303030..∵2mxx 21=,∴m =-=-303030..注意:解此题的关键是把式子2221x x x x+变成含2121x x x x 、+的式子,从而求得m 的值.的值.例11求一个一元二次方程,使它的两个根是2、1010..分析:因为任何一元二次方程都可化为因为任何一元二次方程都可化为((二次项系数为1)0q px x 2=++的形式.如设其根为21x x 、,根据根与系数的关系,得q x x p x x 2121=×-=+,.将p 、q 的值代入方程0q px x 2=++中,即得所求方程0x x x )x x (x 21212=×++-.解:设所求的方程为0q px x 2=++.∵2+1010=-=-=-p p ,2×1010==q ,∴p =-=-121212,,q =2020..∴所求的方程为020x 12x 2=+-.注意:以21x x 、为根的一元二次方程不止一个,为根的一元二次方程不止一个,但一般只写出比较简单的一但一般只写出比较简单的一个.个.例12已知两个数的和等于8,积等于9,求这两个数.,求这两个数. 分析:把这两个数看作某个二次项系数为1的一元二次方程的两个根,则这个方程的一次项系数就应该是-这个方程的一次项系数就应该是-88,常数项应该是9,有了这个方程,再求出它的根,即是这两个数.它的根,即是这两个数.解:设这两个数为21x x 、,以这两个数为根的一元二次方程为0q px x 2=++.∵qx x p 8xx2121=×-==+,,∴方程为09x 8x 2=+-.解这个方程得74x 74x21-=+=,,∴这两个数为7474-+和.例13如图22-2-122-2-1,在长为,在长为32m 32m,宽为,宽为20m 的长方形地面上,修筑两条同样宽而且互相垂直的道路,余下的部分作为绿化用草地,要使草地的面积为2m 540,那么道路的宽度应是多少?那么道路的宽度应是多少?分析:设道路的宽度为x m ,则两条道路的面积和为,则两条道路的面积和为2x x 20x 32-+. 题中的等量关系为:草地面积+道路面积=长方形面积.题中的等量关系为:草地面积+道路面积=长方形面积.解:设道路的宽度为x m ,则,则,则 2032x x 20x 325402´=-++. 0100x 52x 2=+-,(x (x--2)(x 2)(x--50)50)==0, x -2=0,x -5050==0, ∴50x 2x21==,.∵x =50不合题意,不合题意, ∴取x =2.答:道路的宽度为2m 2m..注意:两条道路重合了一部分,重合的面积为2x .因此计算两条道路的面积和时应减去重合面积2x .例14某钢铁厂去年1月份钢的产量为5000吨,吨,33月份上升到7200吨,求这两个月平均每月增长的百分率是多少?这两个月平均每月增长的百分率是多少?分析:设平均每月增长的百分率为x ,则增长一次后的产量为5000(15000(1++x)x),,增长两次后的产量是2)x 1(5000+,….增长n 次后的产量b 是n )x 1(5000b +=.这就是重要的增长率公式.这就是重要的增长率公式.解:设平均每月增长的百分率为x .则.则7200)x 1(50002=+,2536)x 1(2=+,56x 1±=+,∴22x 20x 21.,.-==(不合题意,舍去不合题意,舍去)). 答:平均每月增长的百分率是20%20%..注意:解方程时,由1+x 的值求x ,并舍去负值.,并舍去负值.。
一元二次方程应用题精选1、有两个连续整数,它们的平方和为25,求这两个数。
2、一个两位数,十位数字与个位数字之和是6,把这个数的个位数字与十位数字对调后,所得的新两位数与原来的两位数的积是1008,求这个两位数.3、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施。
经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案。
4.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施,调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台,商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?5.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?6. 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?7. 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?8、有一块长方形的铝皮,长24cm、宽18cm,在四角都截去相同的小正方形,折起来做成一个没盖的盒子,使底面积是原来面积的一半,求盒子的高.9、如图,在一块长为32m,宽为20m长方形的土地上修筑两条同样宽度的道路,余下部,求小路宽的宽度.分作为耕地要使耕地的面积是540m210、如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?11、有一人患了流感,经过两轮传染后共有169人患了流感.(1)求每一轮传染中平均一个人传染了几个人?(2)如果按照这样的传染速度,经过三轮传染后共有多少人患上流感?12、甲、乙两艘旅游客轮同时从台湾省某港出发来厦门。
一元二次方程典型例题整理版专题一:一元二次方程的定义典例分析:例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x x B 02112=-+x xC 02=++c bx axD 1222+=+x x x2、若方程013)2(||=+++mx x m m 是关于x 的一元二次方程,则( )A .2±=mB .m=2C .2-≠mD .2±≠m3、关于x 的一元二次方程(a -1)x 2+x+a 2-l=0的一个根是0。
则a 的值为( )A 、 1B 、-lC 、 1 或-1D 、 124、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
5、关于x 的方程0)2(22=++-+b ax x a a 是一元二次方程的条件是( )A 、a ≠1B 、a ≠-2C 、a ≠1且a ≠-2D 、a ≠1或a ≠-2专题二:一元二次方程的解典例分析:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
3、已知a 是0132=+-x x 的根,则=-a a 622 。
4、若方程ax 2+bx+c=0(a ≠0)中,a,b,c 满足a+b+c=0和a-b+c=0,则方程的根是_______。
5、方程()()02=-+-+-a c x c b x b a 的一个根为( )A 1-B 1C c b -D a -课堂练习:1、已知一元二次方程x 2+3x+m=0的一个根为-1,则另一个根为2、已知x=1是一元二次方程x 2+bx+5=0的一个解,求b 的值及方程的另一个根.3、已知322-+y y 的值为2,则1242++y y 的值为 。
4、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
专题三:一元二次方程的求解方法典例分析:一、直接开平方法();0912=--x二、配方法.难度训练:1、如果二次三项式16)122++-x m x (是一个完全平方式,那么m 的值是_______________.2、试用配方法说明322+-x x 的值恒大于0。
3、已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
4、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
三、公式法1、0822=--x x2、01522=+-x x四、因式分解法1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x五、整体思维法例:()()=+=-+-+2222222,06b 则a b ab a 。
变式1:若()()032=+--+y x y x ,则x+y 的值为 。
变式2:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
变式3:已知5)3)(1(2222=-+++y x y x ,则22y x +的值等于 。
专题四:一元二次方程中的代换思想(降次)典例分析: 1、已知0232=+-x x,求代数式()11123-+--x x x 的值。
2、如果012=-+x x ,那么代数式7223-+x x 的值。
3、已知βα,是方程012=--x x 的两个根,那么=+βα34 .4、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。
专题五:根的判别式典例分析:1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
2、关于X 的方程0162=+-x kx 有两个不相等的实数根,则k 的取值范围是( )A 、k >9B 、k <9且k ≠0C 、k <9D 、k ≤9且k ≠03、关于x 的一元二次方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m 4、对于任意实数m ,关于x 的方程一定( )A. 有两个正的实数根B. 有两个负的实数根C. 有一个正实数根、一个负实数根D. 没有实数根课堂练习:1、已知关于x 的方程02)12(22=++++m x m x 有两个不等实根,试判断直线x m y )32(-=74+-m 能否通过A (-2,4),并说明理由。
2、若关于x 的方程0342=+-x kx 有实数根,则k 的非负整数值是 。
3、已知关于x 的方程有两个相等的正实数根,则k 的值是( ) A.B.C. 2或D.4、已知a 、b 、c 为ABC ∆的三边,且关于x 的一元二次方程()()()04322=---++c a x c a x b c 有两个相等的实数根,那么这个三角形是 。
5、如果关于x 的方程()05222=+++-m x m mx 没有实数根,那么关于x 的方程()()02252=++--m x m x m 的实根个数是 。
6、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
专题六:根与系数的关系(韦达定理)典例分析:一、常见变形1、若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x xC .0622=-+y yD .0622=++y y3、甲、乙两人同解一个一元二次方程,甲看错常数项,解得两根为8和2,乙看错一次项系数,解得两根为-9和-1,则这个方程是4、已知m 、n 是方程0719992=++x x 的两个根,则=++++)82000)(61998(22n n m m ( ) A 、1990 B 、1992 C 、-1992 D 、19995、方程02x 5x 2=+-与方程06x 2x 2=++的所有实数根的和为___________.6、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。
7、设方程0m x 5x 32=+-的两根分别为21x ,x ,且0x x 621=+,那么m 的值等于( )A.32-B.—2C.92D.—928、设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .9、若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .10、已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或特殊技巧:1、已知b a ≠,0122=--a a ,0122=--b b ,求=+b a变式:若0122=--a a ,0122=--b b ,则abb a +的值为 。
变式:已知实数a 、b 满足b b a a 22,2222-=-=,且a ≠b ,求abb a +的值。
变式:若ab ≠1,且有0520119092011522=++=++b b a a ,求ba 的值。
变式:若实数a 、b 满足0582=+-a a ,0582=+-b b ,则1111--+--b a a b 的值是( ) A 、-20 B 、2 C 、2或-20 D 、21大题突破:1、已知一元二次方程(1)当m 取何值时,方程有两个不相等的实数根? (2)设是方程的两个实数根,且满足,求m 的值。
2、已知关于x 的方程()011222=+-+x k x k 有两个不相等的实数根21,x x , (1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?若存在,求出k 的值;若不 存在,请说明理由。
3、已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =. 4、已知关于x 的一元二次方程2(41)210x m x m +++-=.(1) 求证:不论为任何实数,方程总有两个不相等的实数根;(2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值. 5、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.6、已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.巩固提高:1、(2010•南充)关于x 的一元二次方程230x x k --=有两个不相等的实数根. (1)求k 的取值范围.(2)请选择一个k 的负整数值,并求出方程的根. 2、(2011•南充)关于的一元二次方程x 2+2x +k +1=0的实数解是x 1和x 2. (1)求k 的取值范围;(2)如果x 1+x 2-x 1x 2<-1且k 为整数,求k 的值。
3、(2012•南充)关于x 的一元二次方程x 2+3x+m ﹣1=0的两个实数根分别为x 1,x 2. (1)求m 的取值范围;(2)若2(x 1+x 2)+x 1x 2+10=0,求m 的值.4、(2013四川南充,20,8分)关于x 的一元二次方程为(m-1)x 2-2mx +m+1=0 (1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?根.(1)求实数m 的最大整数值;(2)在(1)的条下,方程的实数根是x 1,x 2,求代数式x 12+x 22-x 1x 2的值.6、已知关于x 的方程222(1)740x a x a a +-+--=的两根为1x 、2x ,且满足12123320x x x x ---=.求242(1)4a a a++⋅-的值。
7、已知关于x 的方程()0132=++-kx x k 。