中考函数专题基础练习题
- 格式:doc
- 大小:878.00 KB
- 文档页数:22
函数专题 一次函数一、填空题:1.函数 y = 自变量 x 的取值范围是___2.将直线 y =3x -1 向上平移 3 个单位,得到直线_______3.求一次函数22-=x y 及x 轴的交点坐标 ,及y 轴的交点坐标 ,直线及两坐标轴所围成的三角形面积为4.如果直线 y =ax +b 不经过第四象限,那么 ab ___0(填“≥”、“≤”或“=”)5.已知关于x 、y 的一次函数()12y m x =--的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是6.已知一次函数26y x =-及3y x =-+的图象交于点P ,则点P 的坐标为7.及直线y =-2x+1 平行且经过点(-1,2)的直线解析式为8.一次函数y =34x +4分别交x 轴、y 轴于A 、B 两点,在x 轴上取一点,使△ABC 为等腰三角形,则这样的的点C 最多..有 个. 二、填空题:1.在函数中,自变量x 的取值范围是( )A.x ≥3B.x ≠3C.x>3D.x<3 2.点P (-1,2)关于y 轴对称的点的坐标是( ) A .(1,2) B .(-1,2) C .(1,-2) D .(-1,-2) 3.点 P (a ,a -2)在第四象限,则 a 的取值范围是( )A.-2<a <0B.0<a <2C.a >2D.a <04.如图所示,以恒定的速度向此容器注水,容器内水的高度(h )及注水时间(t )之间的函数关系可用下列图像大致描述的是( )5.关于函数,下列说法中正确的是( )A.函数图象经过点(1,5)B.函数图像经过一、三象限C.y 随x 的增大而减小D.不论x 取何值,总有0<y 6.对于函数y =k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是( ) A .是一条直线 B .过点(1k,k )C .经过一、三象限或二、四象限D .y 随着x 增大而增大7.若一次函数y kx b =+的图象经过第一象限,且及y 轴负半轴相交,那么( )A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <8.一次函数1y kx b =+及2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1C .2D .39.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A.20y -<<B.40y -<<C.2y <-D.4y <-10.若直线)(32222为常数与直线m m y x m y x +=+=+的交点在第四象限,则整数m 的值为( ) A .-3,-2,-1,0 B .-2,-1,0,1 C .-1,0,1,2 D .0,1,2,311.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( ) A .1或-2 B .2或-1 C .3 D .412.已知一次函数y =kx+b,当0≤x ≤2时,对应的函数值y 的取值范围是-2≤y ≤4,则kb 的值为( ) A.12 B.-6 C.-6或-12 D. 6或12三、计算题:1.如图,一个正比例函数的图象和一个一次函数的图象交于点 A (-1,2),且△ABO 的面积为 5,求这两个函数的解析式。
中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。
中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。
中考数学专项复习《函数基础知识》练习题带答案一、单选题1.如图,直角梯形AOCD的边OC在x轴上,O为坐标原点,CD垂直于x轴,D(5,4),AD=2.若动点E、F同时从点O出发,E点沿折线OA→AD→DC运动,到达C点时停止;F点沿OC运动,到达C点时停止,它们运动的速度都是每秒1个单位长度.设E运动x秒时,△EOF的面积为y(平方单位),则y关于x的函数图象大致为()A.B.C.D.2.三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.43.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A.小强从家到公共汽车站步行了2公里B.小强在公共汽车站等小明用了10分钟C.公共汽车的平均速度是30公里/小时D.小强乘公共汽车用了20分钟4.在圆的面积公式S=πr2中是常量的是()A.s B.πC.r D.S和r5.已知点A(﹣1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可以是()A.B.C.D.6.如图,AD、BC是△O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设△APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.7.在某次试验中测得两个变量m和v之间的4组对应数据如下表:m1234v0.01 2.98.0315.1()A.v=2m−2B.v=m2−1C.v=3m−3D.v=m+18.如图,已知线段AB=12厘米,动点P以2厘米/秒的速度从点A出发向点B运动,动点Q以4厘米/秒的速度从点B出发向点A运动.两点同时出发,到达各自的终点后停止运动.设两点之间的距离为s(厘米),动点P的运动时间为t秒,则下图中能正确反映s与t之间的函数关系的是()A.B.C.D.9.某公司为了激发员工工作的积极性,规定员工每天的薪金如下:生产的产品不超过m件,则每件3元,超过m件,超过的部分每件n元.下图是一名员工一天获得的薪金y(元)与其生产的产品件数x之间的函数关系图像,则下列结论错误的是()A.m=20B.n=4C.若该员工一天获得的薪金是180元,则其当天生产了50件产品D.若该员工一天生产了46件产品,则其当天获得的薪金是160元10.函数y=√x−1的自变量取值范围是()A.x≥0B.x≤0C.x≥1D.x≤111.货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y(千米)与各自行驶时间t(小时)之间的图象是()A.B.C.D.12.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是()A.B.C.D.二、填空题13.如图,在平面直角坐标系中半径均为1个单位长度的半圆O1、O2 、O3…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2020秒时,点P的坐标是.14.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象回答:(1)甲、乙两地之间的距离为;(2)两车同时出发后h相遇;(3)慢车的速度为千米/小时;快车的速度为千米/小时;(4)线段CD表示的实际意义是.15.抛物线的部分图象如图所示,则当y<0时,x的取值范围是.16.如图,长方形ABCD中AB=5,AD=3,点P从点A出发,沿长方形ABCD的边逆时针运动,设点P运动的距离为x;△APC的面积为y,如果5<x<8,那么y关于x的函数关系式为.17.甲骑自行车、乙骑摩托车沿相同路线匀速由A地到B地,行驶过程中路程与时间的函数关系如图所示.根据图象信息可知,乙在甲骑行分钟时追上甲.有意义的x的取值范围是.18.使函数y=√x+2x−2三、综合题19.在平面直角坐标系xOy中抛物线y=ax2+bx−5a与y轴交于点A,将点A向左平移4个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(−1,−2a),Q(−4,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.20.已知:一次函数y=﹣23x+2的图象分别与x轴、y轴交于点A、B.(1)请直接写出A,B两点坐标:A、B(2)在直角坐标系中画出函数图象;(3)若平面内有一点C(5,3),请连接AC、BC,则△ABC是三角形.21.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?22.在学习函数的过程中我们经历了通过列表,描点,连线来画函数图象,观察分析图象特征,从而概括出函数的性质的过程.下面是研究函数y={1x−1(x>0)x2+2x+1(x≤0),性质及其应用的部分过程.请按要求完成下列各小题.列表:x…-3-2-1−12015133223…y…4a0141−54−3221b…(2)根据函数图象,写出该函数的一条性质;(3)已知函数y=2x−3的图象如图所示,结合你所画的函数图象,请直接写出不等式y<2x−3的解集.23.某公园有一个小型喷泉,水柱从垂直于地面的喷水枪喷出,水柱落于地面的路径形状可以看作是抛物线的一部分.记喷出的水柱距喷水枪的水平距离为(单x位:m),距地面的垂直高度为y(单位:m),现测得x与y的几组对应数据如下:水平距离x/m0123456…垂直高度y/m0.7 1.6 2.3 2.8 3.1 3.2 3.1…请根据测得的数据,解决以下问题:(1)在平面直角坐标系xOy中描出以表中各组对应数据为坐标的点,并画出该函数的图象;(2)结合表中所给数据或所画图象,得出水柱最高点距离地面的垂直高度为m;(3)求所画图象对应的二次函数表达式;(4)公园准备在水柱下方的地面上竖直安装一根高1.6m的石柱,使该喷水枪喷出的水柱恰好经过石柱顶端,则石柱距喷水枪的水平距离为m.(注:不考虑石柱粗细等其他因素)24.某单位需要用车,准备和一个体车主或一国有出租车公司其中的一家签订合同.设汽车每月行驶x km,应付给个体车主的月租费是y1元,付给国有出租车公司的月租费是y2元,y1,y2分别与x之间的函数关系图象是如图所示的两条直线,观察图象,回答下列问题:(1)每月行驶的路程等于多少时,租两家车的费用相同?(2)每月行驶的路程在什么范围内时,租国有出租车公司的出租车合算?(3)如果这个单位估计每月行驶的路程为2300 km,那么这个单位租哪家的车合算?参考答案1.【答案】C2.【答案】D3.【答案】D4.【答案】B5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】C11.【答案】C12.【答案】C13.【答案】(2020,0)14.【答案】(1)900km(2)4(3)75;150(4)快车到达乙地后,慢车继续行驶到甲地15.【答案】x>3或x<﹣116.【答案】y=- 52x+2017.【答案】2018.【答案】x≥﹣2且x≠219.【答案】(1)解:∵抛物线y=ax2+bx−5a与y轴交于点A,∴点A(0,-5a)∵将点A向左平移4个单位长度,得到点B∴B(-4,-5a)(2)解:对称轴是x= 0−42=−2(3)解:如图:当a<0时∵A(0,-5a), P(−1,−2a),且-5a>-2a∴点P在抛物线下方∵Q(−4,2),抛物线与线段PQ恰有一个公共点,B(-4,-5a)∴点Q在抛物线上方或是在抛物线上,即2≥−5a解得a≥−2 5∴−25≤a<0时抛物线与线段PQ恰有一个公共点;当a>0时,∵A(0,-5a), P(−1,−2a),且-5a<-2a<0∴点P在抛物线上方,在x轴下方∵Q(−4,2),B(-4,-5a)∴点Q在抛物线上方∴此时抛物线与线段PQ没有公共点;综上,−25≤a<0时抛物线与线段PQ恰有一个公共点20.【答案】(1)(3,0);(0,2)(2)解:如图(3)等腰直角21.【答案】(1)解:由图象可知,对于每一个摆动时间t,h都有唯一确定的值与其对应∴变量h是关于t的函数(2)解:①由函数图象可知,当t=0.7s时,h=0.5m,它的实际意义是秋千摆动0.7s时,离地面的高度是0.5m②由图象可知,秋千摆动第一个来回需2.8s22.【答案】(1)解:当x=−2时,a=(−2)2+2×(−2)+1=1;当x=3时,b=13−1=12;故a=1,b=1 2;补全图象如图;(2)解:当x≤−1,0<x<1或x>1时,y随x的增大而减小;当 −1<x ≤0 时,y 随x 的增大而增大;(任写一条即可)(3)解:由图可知, y =2x −3 与所画函数的交点横坐标大于02x −3=1x−1解得: x 1=2,x 2=12经检验 x 1=2,x 2=12是原方程的根 故两个交点为: (2,1),(12,−2) 由函数图象可知当 12<x <1 或 x >2 时, y =2x −3 在所画函数图象上方 即 y <2x −3 的解集为 12<x <1 或 x >2 . 23.【答案】(1)解:描出各组对应数据为坐标的点,画出该函数的图象如下:(2)3.2(3)解:设二次函数表达式为y =ax 2+bx +c 将(0,0.7),(1,1.6),(2,2.3)代入得:{c =0.7a +b +c =1.6a +2b +c =2.3解得:{a =−0.1b =1c =0.7∴二次函数表达式为y =−0.1x 2+x +0.7(4)1或924.【答案】(1)解:两条直线在1 500 km 处相交,故每月行驶的路程等于1500km 时,租两家车的费用相同.(2)解:由图可知当y 2<y 1时,对应的x 的范围是x<1 500,所以每月行驶的路程在1 500 km 内时,租国有出租公司的出租车合算.(3)解:由图象可知,当x=2300 km 时,2300>1 500,y 1<y 2,即租用个体车主的车合算.。
中考数学总复习《函数基础知识》练习题附带答案一、单选题1.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.2.如图,点G、D 、C在直线a上,点E、F、A、B 在直线b上,若a∥b,RtΔGEF从如图所示的位置出发,沿直线b向右匀速运动,直到EG与BC重合.运动过程中ΔGEF与矩形ABCD重合部分....的面积(S)随时间(t)变化的图象大致是()A.B.C.D.3.如图是y关于x的一个函数图象,根据图象,下列说法正确的是()A.该函数的最大值为7B.当x≥2时,y随x的增大而增大C.当x=1时,对应的函数值y=3D.当x=2和x=5时,对应的函数值相等4.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家,图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A.体育场离林茂家2.5 kmB.体育场离文具店1 kmC.林茂从体育场出发到文具店的平均速度是50 m/minD.林茂从文具店回到家的平均速度是60 m/min5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C→D的路径运动到点D停止.设点P的运动路程为x(cm),则下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的是()A.B.C.D.6.A、B两地相距90km,甲骑摩托车由A地出发,去B地办事,甲出发的同时,乙骑自行车同时由B地出发沿着同一条道路前往A地,甲办完事后原速返回A地,结果比乙早到0.5小时.甲、乙两人离A地距离y(km)与时间x(h)的函数关系图象如图所示.下列说法:①a=3.5,b=4;②甲走的全路程是90km;③乙的平均速度是22.5km/h;④甲在B地办事停留了0.5小时.其中正确的说法有()A.1个B.2个C.3个D.4个7.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,88.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是().A.①;B.①②;C.①②③;D.①②③④9.球的体积V与半径R之间的关系式为V=43πR3,下列说法正确的是()A.变量为V,R,常量为43π,3 B.变量为V,R,常量为43,πC.变量为V,R,π,常量为43D.变量为V,R3,常量为π10.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,下列结论正确的是().A.火车的长度为120米B.火车的速度为30米/秒C.火车整体都在隧道内的时间为35秒D.隧道的长度为750米11.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.12.如图,平行四边形纸片ABCD,CD=5,BC=2,△A=60°,将纸片折叠,使点A落在射线AD上(记为点A′),折痕与AB交于点P,设AP的长为x,折叠后纸片重叠部分的面积为y,可以表示y 与x之间关系的大致图象是()A.B.C.D.二、填空题13.知函数y={(x−2)2−2,x≤4(x−6)2−2,x>4使y=a成立的x的值恰好只有2个时,则a满足的条件是.14.如图,在△ABC中,AC=6,BC=10,tanC=34点D是AC边上的动点(不与点C重合),过点D作DE△BC,垂足为E,点F是BD的中点,连接EF,设CD=x,△DEF的面积为S,则S与x之间的函数关系式为.15.若y+1与x成正比例,且当x=2时,y=3 ,则y与x之间的函数关系为.16.函数y=2√1−x+1x中,自变量x的取值范围是.17.如图为二次函数y=ax2+bx+c(a≠0)的图象,下列说法正确的有.①abc>0;②a+b+c>0;③b2−4ac<0④当x>1时,y随x的增大而增大;⑤方程ax2+bx+c=0(a≠0)的根是x1=−1和x2=3.18.在如图所示的三个函数图象中,近似地刻画如下a、b、c三个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.情境c:小芳从家出发,到学校上学,放学回到了家.情境a,b,c所对应的函数图象分别是(按次序填写a,b,c对应的序号)三、综合题19.如图AD,BC,CD分别与⊙O相切于A,B, E三点,AB是⊙O的直径.(1)连接OC,OD若OC=4,OD=3求CD的长;(2)若AD=x,BC=y ,AB=4 ,请画出y关于x的函数图象.20.李老师一家去离家200千米的某地自驾游,周六上午8点整出发.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)出发1小时后,在服务区等另一家人一同前往,等到后以每小时80千米的速度直达目的地;求等侯的时间及线段BC的解析式;(3)上午11点时,离目的地还有多少千米?21.小婷家与学校之间是一条笔直的公路,小婷从家步行前往学校的途中发现忘记带昨天的回家作业本,便向路人借了手机打给妈妈,妈妈接到电话后,带上作业本马上赶往学校,同时小婷沿原路返回.两人相遇后,小婷立即赶往学校,妈妈沿原路返回家,并且小婷到达学校比妈妈到家多用了5分钟,若小婷步行的速度始终是每分钟100米,小婷和妈妈之间的距离y与小婷打完电话后步行的时间x之间的函数关系如图所示(1)妈妈从家出发分钟后与小婷相遇;(2)相遇后妈妈回家的平均速度是每分钟米,小婷家离学校的距离为米. 22.如图所示,l1,l2分别为走私船与我公安快艇航行时路程y(nmile)与时间x(min)之间的函数图象,根据图象回答下列问题:(1)请问在刚出发时,我公安快艇距离走私船多少海里?(2)请求出走私船与公安快艇的速度。
初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。
答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。
答案:013. 函数y=1/x的图象在x=2处的斜率是________。
答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。
答案:115. 函数y=2x^2-4x+1的顶点坐标是________。
答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。
答案:顶点坐标为(1, 1)。
2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。
初三函数练习题及答案函数是数学中一个重要的概念,也是初中数学学习的重点内容之一。
通过解决函数练习题,可以帮助学生更好地理解和掌握函数的概念和性质。
下面是一些初三函数练习题及答案,供同学们参考。
练习一:函数的定义与判断1. 函数的定义是什么?函数是两个集合之间的一种特殊对应关系。
对于定义域内的每一个元素,都有唯一对应的值域元素与之对应。
2. 下列哪些对应关系是函数?(1) (1, 2), (2, 3), (3, 4), (1, 5)(2) (1, 2), (2, 3), (1, 4), (2, 5)(3) (1, 2), (2, 3), (3, 4), (4, 2)(4) (1, 2), (2, 3), (3, 2), (4, 1)答案:(1) 是函数。
(2) 不是函数。
(3) 不是函数。
(4) 是函数。
练习二:函数的图像与性质3. 画出函数 y = 2x + 1 的图像,并描述其特点。
答案:函数 y = 2x + 1 的图像为一条直线,通过点 (0, 1)。
斜率为 2,表示函数图像上任意两点的纵坐标之差与横坐标之差的比例为 2:1。
函数图像是上升的,斜率大于 0,表示随着自变量的增大,因变量也增大。
练习三:函数的性质应用4. 已知函数 f(x) 的定义域为实数集 R,值域为区间 [-1, 3]。
若函数g(x) = f(2x),求函数 g(x) 的定义域和值域。
答案:因为 f(x) 的定义域为实数集 R,所以 g(x) 的定义域为实数集 R。
对于任意的 x,有 2x 在 R 上取值。
因此,g(x) 的定义域也为实数集 R。
对于任意的 x,2x 都在定义域内,根据 f(x) 的值域为 [-1, 3],得出f(2x) 的值域也为 [-1, 3]。
因此,函数 g(x) 的值域为 [-1, 3]。
练习四:函数关系的综合应用5. 已知函数 h(x) = |x - 2| + |3 - x|,求使 h(x) 最小的 x 的值,及最小值是多少。
中考数学总复习《函数基础知识》练习题附带答案一、单选题(共12题;共24分)1.如图,小明使用图形计算器探究函数y=ax(x−b)2的图象,他输入了一组a,b的值,得到了下面的函数图象,由学习函数的经验,可以推断出小明输入的a,b的值满足()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<0 2.已知某二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,下列结论中正确的有()①abc<0;②a﹣b+c<0;③a=−1b;④8a+c>0.A.1个B.2个C.3个D.4个3.函数y=1x−2中,自变量x的取值范围是()A.x>2B.x<2C.x≠2D.x≠﹣2 4.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度5.已知函数y=3x﹣1,当x=3时y的值是()A.5B.7C.8D.96.如图1,点P为矩形ABCD边上的一个动点,点P从A出发沿着矩形的四条边运动,最后回到A.设点P 运动的路程长为x,△ABP的面积为y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是()A.√34B.√41C.8D.107.为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:①若每户居民每月用电量不超过100度,则按0.60元/度计算;②若每户居民每月用电量超过100度,则超过部分按0.8元度计算(未超过部分仍按0.60元/度计算).现假设某户居民某月用电量是x(单位:度),电费为以(单位:元),则y与x的函数关系用图象表示正确的是()A.B.C.D.8.如图1,矩形ABCD中,动点E从点C出发,速度为2cm/s,沿C→D→A→B方向运动至点B处停止.设点E运动的时间为xs,△BCE的面积为y,如果y关于x的函数图象如图2所示,则四边形ABCD的面积为()A.48cm2B.24cm2C.21cm2D.12cm29.函数y=ax(x−b)2的图象如下图所示:其中a、b为常数.由学习函数的经验,可以推断常数a、b的值满足()A.a>0,b>0B.a<0,b>0C.a>0,b<0D.a<010.如图,△ABC是等腰直角三角形,AC=BC,AB=4,D为AB上的动点,DP△AB交折线A﹣C﹣B于点P,设AD=x,△ADP的面积为y,则y与x的函数图象正确的是()A.B.C.D.11.甲、乙两位同学进行长跑训练,甲和乙所跑的路程S(单位:米)与所用时间t(单位:秒)之间的函数图象分别为线段OA和折线OBCD.则下列说法正确的是()A.两人从起跑线同时出发,同时到达终点B.跑步过程中,两人相遇一次C.起跑后160秒时甲、乙两人相距最远D.乙在跑前300米时速度最慢12.已知函数y={(x−1)2−1(x≤3)(x−5)2−1(x>3),则使y=k成立的x值恰好有三个,则k的值为()A.0B.1C.2D.3二、填空题(共6题;共8分)13.放学后,小刚和同学边聊边往家走,突然想起今天是妈妈的生日,赶紧加快速度,跑步回家.小刚离家的距离s(m)和放学后的时间t(min)之间的关系如图所示.给出下列结论:①小刚边走边聊阶段的行走速度是125m/min;②小刚家离学校的距离是1000m;③小刚回到家时已放学10min;④小刚从学校回到家的平均速度是100m/min.其中正确的是.(把你认为正确答案的序号都填上)14.在圆的面积公式S=πR2中,常量是.15.某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温y(△)与向上攀登的高度x(km)的几组对应值如表所示:向上攀登的高度x/km0.5 1.0 1.5 2.0气温y/△ 2.0-1.0-4.0-7.02.3 km时登山队所在位置的气温约为°C.16.有一个面积为30的梯形,其下底长是上底长的3倍.若设上底长为x,高为y,则y关于x的函数解析式是.17.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间的图象如图,则慢车比快车早出发小时快车追上慢车行驶了千米,快车比慢车早小时到达B地.中,自变量的取值范围是18.在函数√x−2x−3三、综合题(共6题;共79分)19.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)分别求出线段AB和双曲线CD的函数关系式.(2)上课后的第5分钟与第30分钟相比较,分钟时学生的注意力更集中.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?20.小波同学根据学习函数的经验,对函数y=2x−3+1的图象与性质进行了探究,下面是小波同学的探究过程,请根据题意补充完整:(1)下表是y与x的几组对应值:x…-2-1012n5678…y (3)512m0-132533275…=,=;(2)在平面直角坐标系xOy中,补全此函数图象;(3)小渡同学发现y=2x−3+1的图象关于平面直角坐标系中某一点或中心对称,这一点的坐标是;(4)根据函数图象,直接写出不等式2x−3+1>2x−5的解集.21.经过实验获得两个变量x(x>0),y(>0)的一组对应值如表:x123456y6 2.92 1.5 1.21(1)在如图的直角坐标系中,画出相应函数的图象.(2)求y关于x的函数表达式.(3)当x>1.5时求y的取值范围.22.由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时日销售量y(单位:千克)与x之间的函数关系式为y={12x(0≤x≤10),−20x+320(10<x≤16),草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当4≤x≤12时草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?23.中国最大的水果公司“佳沃鑫荣懋”旗下子公司“欢乐果园”购进某种水果的成本为20元/kg,经过市场调研发现,这种水果在未来48天的销售单价p(元/kg)与时间t(天)之间的函数关系式为P={14t+30(1≤t≤24,t为整数)−12t+48(25≤t≤48,t为整数),且其日销售量y(kg)与时间t(天)的关系如表:时间t(天)136102040…日销售量y(kg)1181141081008040…(2)问哪一天的销售利润最大?最大日销售利润为多少?(3)在实际销售前24天中,子公司决定每销售1kg水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.24.已知图形ABCDEF的相邻两边垂直,AB=8cm.当动点M以2cm/s的速度沿图①的边框按B→C→D→E→F→A的路径运动时△ABM的面积S随时间t的变化如图②所示.回答下列问题:(1)求a的值和EF的长度;(2)当点M运动到DE上时求S与t的关系式.参考答案1.【答案】A 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】B 10.【答案】B 11.【答案】C 12.【答案】D 13.【答案】②③④ 14.【答案】π 15.【答案】-8.8 16.【答案】y =15x17.【答案】2;276;4 18.【答案】x≥2且x≠319.【答案】(1)解: 设线段AB 所在的直线的解析式为y 1=k 1x +30把B (10,50)代入得,k 1=2∴AB 解析式为:y 1=2x +30(0≤x≤10).设C 、D 所在双曲线的解析式为y 2=k 2x把C (20,50)代入得,k 2=1000∴曲线CD 的解析式为:y 2=1000x (x≥20);(2)5(3)解:当y =40时2x +30=40,x =5.1000x =40,x =25. ∴25−5=20>18.∴教师能在学生注意力达到所需要求状态下讲完这道题.20.【答案】(1)13;4(2)在平面直角坐标系xOy中,补全此函数图象如图(3)(3,1)(4)观察函数图象,不等式2x−3+1>2x−5的解集是x<2或3<x<4.21.【答案】(1)解:如图(2)解:由(1)得y是x的反比例函数∵图象经过(1,6)∴k=xy=6∴y关于x的函数表达式为y=6 x .(3)解:当x=1.5时y=61.5=4∵在第一象限内,y 随x 的增大而减小 ∴0<y <4.22.【答案】(1)解:∵当10<x ≤16时y =−20x +320∴当x =14时y =−20×14+320=40(千克). ∴第14天小颖家草莓的日销售量是40千克.(2)解:当4≤x ≤12时设草莓价格m 与x 之间的函数关系式为m =kx +b ∵点(4,24),(12,16)在m =kx +b 的图像上 ∴{4k +b =24,12k +b =16.解得{k =−1,b =28.∴函数关系式为m =−x +28. (3)解:∵当0≤x ≤10时y =12x ∴当x =8时y =12×8=96 当x =10时y =12×10=120. ∵当4≤x ≤12时m =−x +28∴当x =8时m =−8+28=20,当x =10时m =−10+28=18. ∴第8天的销售金额为:96×20=1920(元) 第10天的销售金额为:120×18=2160(元). ∵2160>1920∴第10天的销售金额多.23.【答案】(1)解:依题意,设y=kt+b ,将(10,100),(20,80)代入y=kt+b{100=10k +b 80=20k +b ,解得 {k =−2b =120∴日销售量y (kg )与时间t (天)的关系 y=120﹣2t 当t=30时y=120﹣60=60.答:在第30天的日销售量为60千克;(2)解:设日销售利润为W 元,则W=(p ﹣20)y . 当1≤t≤24时W=(t+30﹣20)(120﹣t ) =﹣t 2+10t+1200=﹣(t ﹣10)2+1250 当t=10时W 最大=1250当25≤t≤48时W=(﹣t+48﹣20)(120﹣2t ) =t 2﹣116t+3360=(t ﹣58)2﹣4 由二次函数的图象及性质知:第 11 页 共 11 当t=25时W 最大=1085∵1250>1085∴在第10天的销售利润最大,最大利润为1250元;(3)解:依题意,得W=﹣t 2+(2n+10)t+1200﹣120n (1≤t≤24) 其对称轴为t=2n+10,要使W 随t 的增大而增大 由二次函数的图象及性质知:2n+10≥24解得n≥7又∵n <9∴7≤n <9.24.【答案】(1)解:由S 随时间t 的变化的函数图象得:a= 12 ×8×2×6=48EF=2×(14-12.5)=3cm ;(2)解:∵AB=8cm ,EF=3cm∴CD=8-3=5cm∴点M 在CD 上运动的时间为:5÷2=2.5s∴b=6+2.5=8.5由函数图象可知:当t=12.5时S= 12×8×[2×6-(12.5-8.5)×2]=16 设当点M 运动到DE 上时S 与t 的关系式为:S=kt+n则 {16=12.5k +n 48=8.5k +n ,解得: {k =−8n =116∴S=-8t+116.。
初三数学函数部分练习题【题目一】1. 已知函数$f(x)=2x^2-3x+5$,求当$x=2$时的函数值。
2. 若函数$g(x)$的图像关于$y$轴对称,且$g(1)=-3$,求$g(-1)$的值。
3. 函数$h(x)=\frac{x+1}{\sqrt{x}}$,求$h(-4)$的值。
4. 若函数$p(x)$的图像通过点$(1,2)$,求$p(-1)$的值。
【解答一】1. 计算$f(2)$的值,将$x=2$代入函数$f(x)$的表达式:$$f(2)=2\times 2^2 -3\times 2 +5$$计算得$f(2)=9$,所以当$x=2$时,函数值为9。
2. 由题意可知,函数$g(x)$关于$y$轴对称,即满足$g(x)=g(-x)$,因此有:$$g(1)=g(-1)$$已知$g(1)=-3$,代入上式可得$g(-1)=-3$,所以$g(-1)$的值为-3。
3. 将$x=-4$代入函数$h(x)$的表达式计算,有:$$h(-4)=\frac{(-4)+1}{\sqrt{-4}}$$由于$\sqrt{-4}$不存在实数解,所以$h(-4)$的值为无解。
4. 已知函数$p(x)$通过点$(1,2)$,即满足$p(1)=2$,代入$p(x)$的表达式,可以确定一个方程:$$p(1)=2$$$$2=1^2-1+b$$解方程可得$b=2$,因此函数$p(x)$的表达式变为$p(x)=x^2-x+2$。
将$x=-1$代入可得:$$p(-1)=(-1)^2-(-1)+2$$计算得$p(-1)=4$,所以$p(-1)$的值为4。
【题目二】1. 已知函数$f(x)=\frac{2x-1}{x-1}$,求$f(0)$的值。
2. 若函数$g(x)=\frac{x-1}{3x+2}$,求$g(2)$的值。
3. 函数$h(x)=\frac{1}{x^2-1}$,求$h(-1)$的值。
4. 若函数$p(x)=\frac{ax-b}{x-c}$,并且$p(1)=3$,求$p(-1)$的值。
函数专题 一次函数一次函数y=kx +b 的图象(1)一次函数)0(≠+=k b kx y ,当k 0时,y 的值随x 值得增大而增大;当k 0时,y 的值随x 值得增大而减小。
(2)正比例函数,当k 0时,图象经过一、三象限;当k 0时,图象经过二、四象限。
强调:k,b 与 一次函数y=kx +b 的图象与性质:k 决定函数的增减性;b 决定图象与y 轴的交点位置 ②当k>0时,y 随着x 的增大而增大, ③当k<0时,y 随着x 的增大而减小, ④当b >0时,直线交于y轴的正半轴, ⑤当b <0时,直线交于y轴的负半轴 ⑥当b =0时,直线交经过原点,一次函数)0(≠+=k b kx y 的图象如下图,请你将空填写完整。
一次函数b kx y +=可以看作是由正比例函数kx y =平移︱b ︱个单位得到的,当b >0时,向 平移b个单位;当b <0时,向 平移︱b ︱个单位。
用函数观点解决方程(组)与不等式1.一元一次方程ax+b=0(a ≠0)与一次函数y=ax+b(a ≠0)的关系(1)一元一次方程ax+b=0(a ≠0)是一次函数y=ax+b(a ≠0)的函数值为0时的特殊情形。
(2)直线y=ax+b 与x 轴交点的横坐标是一元一次方程a+b=0的解 2.一元一次不等式与一次函数的关系:(1)一元一次不等式ax+b>0或ax+b<0(a ≠0)是一次函数y=ax+b (a ≠0)的函数值不等于0的情形。
(2)直线y=ax+b 上使函数值y>0(x 轴上方的图像)的x 的取值范围是ax+b>0的解集;使函数值y<0(x 轴下方的图像)的x 的取值范围是ax+b<0的解集。
3.二元一次方程与一次函数的联系(1)任意一个二元一次方程都可化成y=kx+b 的形式,即使每个二元一次方程都对应一个一次函数,也对应一条直线。
(2)直线y=kx+b 的每一点的坐标均为这个二元一次方程的解。
4.二元一次方程组与一次函数的关系(1)二元一次方程组中的每个方程可看作函数解析式。
(2)求二元一次方程组的解可以看作求两个一次函数的交点坐标。
练习题一、填空题:1.函数 y =x -2 自变量 x 的取值范围是___2.直线 y =4x -3 过点(____,0)(0,____)3.将直线 y =3x -1 向上平移 3 个单位,得到直线_______4.求一次函数2=xy与x轴的交点坐标,与y轴的交点坐标,直2-线与两坐标轴所围成的三角形面积为5.一次函数 y=-3x+4 的图象与坐标轴所围成的三角形面积是___6.如果直线 y=ax+b 不经过第四象限,那么 ab___0(填“≥”、“≤”或“=”)7.已知关于x、y的一次函数()12=--的图象经过平面直角坐标系中的第y m x一、三、四象限,那么m的取值范围是8.已知一次函数26=-+的图象交于点P,则点P的坐标为y xy x=-与39.某书定价 8 元,如果购买 10本以上,超过 10 本的部分打八折。
请写出购买数量 x(本)与付款金额 y(元)之间的关系式_________10.在一次函数3y中,y随x的增大而(填“增大”或“减小”),2+=x当50≤≤x时,y的最小值为.11.与直线y =-2x+1 平行且经过点(-1,2)的直线解析式为4x+4分别交x轴、y轴于A、B两点,在x轴上取一点,使△ABC 12.一次函数y=3为等腰三角形,则这样的的点C最多..有个.13.将直线 y = 2 x ─ 4 向上平移5个单位后,所得直线的表达式是14.如图,在平面直角坐标系xoy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形.那么所有满足条件的点P的坐标是15.如图,直线与x轴、y轴分别交于A、B两点.(1)将直线AB 绕原点O 沿逆时针方向旋转90°得到直线11B A . 请在《答题卡》所给的图中画出直线11B A ,此时直线AB 与11B A 的位置关系为 (填“平行”或“垂直”) (2)设(1)中的直线AB 的函数表达式为111b x k y +=,直线11B A 的函数表达式为222b x k y +=,则k 1·k 2= .二、填空题:1.在函数35-=x y 中,自变量x 的取值范围是( )A.x ≥3B.x ≠3C.x>3D.x<3 2.点P (-1,2)关于y 轴对称的点的坐标是( )A .(1,2)B .(-1,2)C .(1,-2)D .(-1,-2)3.点M (1,2)关于x 轴对称点的坐标为( )A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)4.点 P (a ,a -2)在第四象限,则 a 的取值范围是( )A.-2<a <0B.0<a <2C.a >2D.a <0 5.下列函数中是一次函数的是( ) A.122-=x yB.x y 1-= C.31+=x yD.1232-+=x x y 6.如图所示,以恒定的速度向此容器注水,容器内水的高度(h )与注水时间(t )之间的函数关系可用下列图像大致描述的是( )7.如图,小明从家走了10分钟后到达了一个离家900米的报亭,看了10分钟的报纸,然后用了15分钟返回到家,下列图象中能表示小明离家距离y (米)与时间x (分)关系的是( ).8.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O路线作匀速运动,设运动时间为x(秒),∠APB =y(度),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( )A .2B .2πC .12π+ D .2π+29.关于函数xy 51-=,下列说法中正确的是( ) A.函数图象经过点(1,5) B.函数图像经过一、三象限 C.y 随x 的增大而减小 D.不论x 取何值,总有0<y 10.一次函数y =-3x -2的图象不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限11.已知一次函数(1)y a x b =-+的图象如图所示,那么a 的取值范围是( ) A.1a > B.1a < C.0a >D.0a <12.一次函数34y x =-的图象不经过( )。
A.第一象限B.第二象限C.第三象限D.第四象限 13.对于函数y =k 2x (k 是常数,k ≠0)的图象,下列说法不正确的是( ) A .是一条直线 B .过点(1k,k )C .经过一、三象限或二、四象限D .y 随着x 增大而增大 14.若一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )A.0k >,0b >B.0k >,0b <C.0k <,0b >D.0k <,0b <15.若一次函数y kx b =+的函数值y 随x 的增大而减小,且图象与y 轴的负半轴相交,那么对k 和b 的符号判断正确的是( )A.0,0k b >>B.0,0k b ><C.0,0k b <>D.0,0k b <<16.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1C .2D .317.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A.20y -<<B.40y -<<C.2y <-D.4y <-18.直线b kx y +=交坐标轴于A (—3,0)、B (0,5)两点,则不等式0<--b kx 的解集为( )A .3->xB .3-<xC .3>xD .3<x19.如图,一次函数图象经过点A ,且与正比例函数y x =-的图象交于点B ,则该一次函数的表达式为( ) A.2y x =-+B.2y x =+C.2y x =-D.2y x =--20.在平面直角坐标系中,将直线23+-=x y 向下平移动4个单位长度后,所得直线的解析式为( )A.43--=x y B .43+-=x y C.63+-=x y D.23--=x y 21.在函数 y =kx (k <0)的图象上有A (1,y1)、B (-1,y )、C (-2,y )三个点,则下列各式中正确的是( )A.y 1<y 2<y 3B.y 1<y 3<y 2C.y 3<y 2<y 1D.y 2<y 3<y 122.如图,过点Q (0,3.5)的一次函数与正比例函数y=2x 的图象相交于点P ,能表示这个一次函数图象的方程是( )A.3x-2y+3.5=0B.3x-2y-3.5=0C.3x-2y+7=0 D.3x+2y-7=023.函数xy=1,34312+=xy.当21yy>时,x的范围是()A.x<-1 B.-1<x<2 C.x<-1或x>2 D.x >224.若直线)(32222为常数与直线mmyxmyx+=+=+的交点在第四象限,则整数m 的值为()A.-3,-2,-1,0 B.-2,-1,0,1 C.-1,0,1,2 D.0,1,2,325.在一次“寻宝”游戏中,“寻宝”人找到了如图所标示的两个标志点A()3,2、B()1,4,A、B两点到“宝藏”点的距离都是10,则“宝藏”点的坐标是() A.()0,1B.()4,5C.()0,1或()4,5D.()1,0或()5,426.若一次函数y kx b=+,当x得值减小1,y的值就减小2,则当x的值增加2时,y的值()A.增加4 B.减小4 C.增加2 D.减小227.已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是12,则k的值为()A.1或-2 B.2或-1 C.3 D.428.已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是-2≤y ≤4,则kb的值为()A.12B.-6C.-6或-12D. 6或12三、计算题:1.已知一次函数y=kx+b(k ≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。
2.在直角坐标系中,一次函数y =kx +b 的图像经过三点A (2,0)、B (0,2)、C (m ,3),求这个函数的关系式,并求m 的值。
3.一次函数 y =kx +b 的图象经过点 A (5,-3)和点 B ,其中点 B 是直线 y =-x +2 与 x 轴的交点,求函数的解析式。