两条直线的交点坐标
- 格式:doc
- 大小:235.50 KB
- 文档页数:6
两条直线的交点坐标公式
两条直线的交点坐标公式:y=x+2
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定。
坐标,数学名词,是指为确定天球上某一点的位置,在天球上建立的球面坐标系。
有两个基本要素:
①基本平面;由天球上某一选定的大圆所确定;大圆称为基圈,基圈的两个几何极之一,作为球面坐标系的极。
②主点,又称原点;由天球上某一选定的过坐标系极点的大圆与基圈所产生的交点所确定。
两直线的交点坐标和距离公式直线是平面几何中最基本的图形之一,计算两条直线的交点坐标和距离是解决许多几何问题的基础。
在本文中,我们将详细介绍如何计算两条直线的交点坐标和距离的公式和方法。
首先,我们需要了解什么是直线。
在平面几何中,直线是由一组点组成的,这些点在同一条直线上,且直线上的任意两点可以确定直线的一条直线是由两个不同的点定义。
那么,如何计算两条直线的交点坐标呢?要计算两条直线的交点,我们需要利用直线的方程。
在平面几何中,直线可以由一般方程、点斜式方程和两点式方程表示。
1.一般方程:Ax+By+C=0。
其中A、B、C是常数。
2.点斜式方程:y-y1=m(x-x1)。
其中m是斜率,(x1,y1)是直线上的一个点。
3.两点式方程:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
其中(x1,y1)和(x2,y2)是直线上的两个点。
像这样,当我们有两条直线的方程时,我们可以通过求解方程组,找到两条直线的交点坐标。
解方程组的方法有多种,比如代入法、消元法和克莱姆法则等。
让我们通过一个具体的例子来说明如何计算两条直线的交点坐标。
例1:已知直线L1的方程为y=2x-1,直线L2的方程为y=-x+3,求两条直线的交点坐标。
解:将L1和L2的方程联立起来,得到方程组:y=2x-1y=-x+3通过消元法,我们可以先将方程组中的y消去。
将L1中的y代入L2的方程中,得到:2x-1=-x+3整理方程,得到:3x=4解方程,得到:x=4/3将x的值代入L1的方程中,得到:y=2*(4/3)-1y=8/3-1y=5/3所以,两条直线的交点坐标为(4/3,5/3)。
接下来,我们将介绍如何计算两条直线的距离。
两条直线的距离是两条直线之间最短的直线距离,也就是垂直于两条直线的连线段的长度。
计算两条直线的距离,我们可以利用点到直线的距离公式来求解。
点到直线的距离公式:d=,Ax+By+C,/√(A^2+B^2)其中,A、B、C是直线的方程中的常数。
两直线的交点坐标和距离公式首先,我们假设有两条直线分别为L1和L2,它们可以表示为以下形式的参数方程:L1:P1=P0+t1*d1L2:P2=P0+t2*d2其中,P1和P2分别是L1和L2上的两个点,P0是直线的起点,d1和d2是直线的方向向量。
t1和t2是参数,用来确定直线上的点的位置。
要求两条直线的交点坐标,我们需要找到使L1和L2重合的参数值t1和t2、我们可以通过两个参数方程组相等来解这个方程组:P1=P2=>P0+t1*d1=P0+t2*d2化简上述方程,我们可以得到:P0+t1*d1-P0=P0+t2*d2-P0即:t1*d1=t2*d2这个方程告诉我们,d1和d2这两个方向向量成比例,它们的比例系数即为两个参数t1和t2的比值。
所以,我们可以将其表示为:d1=k*d2其中,k为比例系数。
在上述方程中,我们可以用矩阵的形式来表示方程:[d1,-d2]*[t1;-t2]=0其中,[d1,-d2]和[t1;-t2]分别是一个2x1的矩阵和一个2x1的列向量。
我们可以将上述方程拓展为一个矩阵方程:[A]*[x]=0其中,[A]是一个2x2的矩阵,其元素为[d1,-d2]。
[x]是一个2x1的列向量,其元素为[t1;-t2]。
根据行列式的定义,只有当[A]的行列式为0时,方程[A]*[x]=0有非零解。
计算[A]的行列式可得:det([A]) = ad1 - bd2对于两条直线相交的情况,其中ad1 - bd2不等于0。
形式上,我们可以将[A]*[x]=0表示为:[U]*[S]*[V^T]*[x]=0其中,[U]和[V]是正交矩阵,[S]是一个对角矩阵,其对角线元素为奇异值。
通过奇异值分解,我们可以得到:[U]*[S]*[V^T]=[R]*[T]其中,[R]是一个旋转矩阵,[T]是一个平移矩阵。
我们可以将解表示为:[x]=[V]*[T[2,:]]其中,[T[2,:]]表示[T]矩阵的第二行。
直线的交点坐标与距离公式一:两条直线的交点坐标:1、设两条直线分别为1l :1110A x B y C ++=,2l :2220A x B y C ++= 则1l 与2l 是否有交点,只需看方程组1112220A xB yC A x B y C ++=⎧⎨++=⎩是否有唯一解若方程组有唯一解,则这两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行; 若方程组有无穷多解,则两直线重合例1、求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=平行的直线方程。
经过两直线1111:0l A x B y C ++=与2222:0l A x B y C ++=交点的直线系方程为()1112220A x B y C A x B y C λ+++++=,其中λ是待定系数,在这个方程中,无论λ取什么实数,都得到2220A x B y C ++=,因此,它不能表示直线2l 。
2、对称问题(1)点关于点的对称,点A(a ,b)关于()000,P x y 的对称点B (m ,n ),则由中点坐标公式002,2m x a n y b =-=-,即B (002,2x a y b --) 。
(2)点关于直线的对称,点()00,A x y 关于直线:0l Ax By C ++=(A 、B 不同时为0)的对称点()'11,Ax y ,则有AA ’的中点在l 上且直线AA ’与已知直线l 垂直。
(3)直线关于直线的对称,一般转化为点关于直线的对称解决,若已知直线1l 与对称轴l 相交,则交点必在与1l 对称的直线2l上,然后再求出1l 上任意不同于交点的已知点1P 关于对称轴对称的点2P ,那么经过交点及点2P 的直线就是2l ;若直线1l 与对称轴l 平行,则在1l 上任取两不同点1P 、2P ,求其关于对称轴l 的对称点'1P 、'2P ,过'1P 、'2P 的直线就是2l。
一、内容及解析
1、内容:本节我们通过直线的方程,用代数方法解决与直线有关的问题,如求两条直线的交点坐标。
2、解析:教科书给出两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0的方程以后,设置了一个表格,要求学生填充表格,目的之一在于体验坐标法的思想。
两条直线交点位置的确定体现另外坐标法的思想。
二、目标及解析 1、目标:
(1)掌握两直线方程联立方程组解的情况与两直线不同位置的对应关系,并且会通过直线方程系数判定解的情况,培养学生树立辩证统一的观点.
(2) 当两条直线相交时,会求交点坐标.培养学生思维的严谨性,注意学生语言表述能力的训练.
(3) 学生通过一般形式的直线方程解的讨论,加深对解析法的理解,培养转化能力. 2、解析:
本节课从知识内容来说并不是很难,但从解析几何的特点看,就需要培养学生如何利用直线方程来讨论其特点,得到直线交点,以及交点个数对应于直线在平面内的相对位置关系.在教学过程中应该围绕两直线一般方程的系数的变化来揭示两直线方程联立解的情况,从而判定两直线的位置特点,设置平面内任意两直线方程组解的情况的讨论,为课题引入寻求理论上的解释,使学生从熟悉的平面几何的直观定义深入到准确描述这三类情况.在教学过程中,应强调用交点个数判定位置关系与用斜率、截距判定两直线位置关系的一致性. 三、数学问题诊断分析
在问题“在这个集合中,如何确定经过点(-2,2)的直线?”的问题中,学生会发现只要把坐标(-2,2)代入方程0)22(243=+++-+y x y x λ确定λ,反过来,把λ的值代入0)22(243=+++-+y x y x λ就可以了。
四、教学支持条件
本节内容联系生活,应用广泛,可以采取多样化的学生感兴趣的例子帮助学生分析掌握,若有条件可以利用多媒体教学。
五、教学过程设计 (一)教学基本流程
(二)导入新课
复习:直线上的点与其方程0Ax By C ++=的解有什么关系? 师生活动:教师提出问题;学生思考并回答问题.
设计意图:通过复习,学生意识到直线上的点的坐标是直线方程的解,为后面学习新知识做铺垫.
(三)新知探究
1.如何求解两条相交直线的交点坐标
问题1 已知两条直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0相交,如何求这两条直线的交点坐标?
师生活动:教师提出问题;学生尝试解决,引起认知冲突,激起探索兴趣. 设计意图:以问题为出发点,引起学生的学习兴趣. 问题2 完成书上P102的填表:
师生活动:教师引导学生填空,通过复习几何元素及关系的代数表示,找到求两条直线交点坐标的方法:求两条直线交点坐标就是求解相应的联立方程组.
设计意图:通过复习点与坐标的对应关系,引导学生意识到求两条直线交点坐标即求解相应方程组.
注意:此处应引导学生回到问题1,并作答案总结:相应方程组的解即是两直线的交点坐标. 例1:求下列两直线的交点坐标,l 1:3x +4y -2=0,l 2:2x +y +2=0.
解:解方程组⎩⎨
⎧=++=-+,
022,
023y x y x 得x =-2,y =2,所以l 1与l 2的交点坐标为(-2,2).
变式训练:求下列两直线的交点坐标,l 1:y =45+x ,l 2:
15
3=+y
x . 解:解方程组⎪⎩⎪
⎨⎧=++=,15
3,54y x x y 得x =0,y =5,所以l 1与l 2的交点坐标为(0,5).
2.相应直线方程组的解的情况与两条直线的位置关系之间的联系 问题3 利用求交点坐标的方法,能否判断两条直线的位置关系?
师生活动:教师提出问题,并引导学生复习二元一次方程组的解的情况;学生在教师的引导下总结出:若方程组只有一个解,说明两条直线只有一个交点;若方程组无解,说明两条直线没有公共点,即两直线平行;若有无数个解,说明两直线重合. 例2 : 判断下列各对直线的位置关系.如果相交,求出交点坐标.
(1) l 1:x -y =0,l 2:3x +3y -10=0. (2) l 1:3x -y +4=0,l 2:6x -2y -1=0. (3) l 1:3x +4y -5=0,l 2:6x +8y -10=0.
师生活动:教师让学生自己动手解方程组,看解题是否规范,条理是否清楚,表达是否简洁,然后再进行讲评.
解:(1)解方程组⎩⎨⎧=-+=-,01033,0y x y x 得⎪⎪⎩
⎪⎪⎨⎧
==.
35,3
5y x
所以l 1与l 2相交,交点是(
35,3
5). (2)解方程组⎩⎨
⎧=--=+-)
2(,
0126)1(,
043y x y x
①×2-②得9=0,矛盾,
方程组无解,所以两直线无公共点,l 1∥l 2.
(3)解方程组⎩⎨
⎧=-+=-+)
2(,
01086)1(,0543y x y x
①×2得6x +8y -10=0.
因此,①和②可以化成同一个方程,即①和②表示同一条直线,l 1与l 2重合.。