15相变动力学热力学与动力学
- 格式:ppt
- 大小:474.50 KB
- 文档页数:21
第九章相变过程相变过程是物质从一个相转变为另一个相的过程。
一般相变前后相的化学组成不变,因而相变是个物理过程不涉及化学反应。
从狭义讲,相变仅限于同组成的两相之间的结构变化;但广义概念,相变应包括过程前后相组成发生变化的情况。
第一节相变的热力学分类一.一级相变热力学特点:1.相变时,两相的自由焓相等(即G1=G2,dG=0)。
∵G = U+pV-TSdG = dU+pdV+Vdp-TdS-SdT = 0假设是可逆过程且只做体积功,由热力学第一定律,内能增量为dU = TdS-pdV∴dG = T dS-pdV+pdV+Vdp-TdS-SdT∴dG = Vdp-SdT2.相变的时候,两相的自由焓一阶导数不连续。
恒压条件下,自由焓对温度求导,(∂G1/∂T)P≠(∂G2/∂T)P而恒压下,(∂G/∂T)=-S∴S1≠S2∴两相的熵发生不连续的变化(即没有相变潜热)。
温度T一定时,(∂G1/∂p)T≠(∂G2/∂p)T而温度T一定时,(∂G/∂p)=V∴V1≠V2∴有体积效应所以,相变时,有相变潜热,有体积效应。
二. 二级相变热力学特点:1.两相的自由焓相等。
2.两相自由焓的一阶导数是连续的(即相变时,没有相变潜热,没有体积效应)。
3.自由焓的二阶导数不连续。
P一定时,(∂2G/∂T2)P=-(∂S/∂T)P=-(C p/T),即二级相变时,C p1≠C p2,也就是两相的热容不等。
T一定时,(∂2G/∂p2)T=(∂V/∂p)T=(1/V)*(∂V/∂p)T*V,而K=(1/V)*(∂V/∂p)TK为等温压缩系数,所以K1≠K2;即二级相变时,两相的等温压缩系数是变化的。
(∂2G/∂p*∂T)=(∂V/∂T)p=(1/V)*(∂V/∂T)p*V,而α=(1/V)*(∂V/∂T)p为等压热膨胀系数,所以α1≠α2;即二级相变时,两相的等压热膨胀系数是变化的。
第二节液——固相变(熔体结晶)一.核化均匀熔体实际上必须冷却到比熔点更低的一个温度才开始析晶。
材料热力学与动力学材料热力学与动力学是材料科学中两个重要的分支,它们研究物质的热力学和动力学特性,对于了解材料的性质、结构和行为有着重要的意义。
在本文中,我们将从基本概念、应用领域和实验方法等方面介绍材料热力学与动力学。
首先,让我们来了解一下材料热力学。
热力学是研究物质与能量之间转化关系的科学,热力学定律描述了物质和能量的行为规律。
热力学的研究对象是宏观系统,即大量粒子组成的系统。
材料热力学是将热力学原理应用于材料科学领域的一门学科,主要研究材料的热力学性质和热力学过程。
材料热力学研究的对象包括材料的热容、热导率、热膨胀、热稳定性等热力学性质,以及材料的相变、晶体结构、晶体缺陷、溶解度等热力学过程。
热力学定律可以用数学方程式描述物质和能量之间的关系,通过热力学定律的应用,我们可以预测材料在不同条件下的热力学性质和热力学过程。
材料热力学在材料科学中有着广泛的应用领域。
在材料制备过程中,我们可以利用热力学原理来优化材料的制备条件,提高制备效率和质量。
例如,通过热力学计算可以确定合适的温度和压力条件来合成具有特定结构和性能的材料。
在材料设计和优化中,热力学计算可以帮助我们预测材料的相变和稳定性,选择合适的材料和工艺条件。
材料动力学是研究物质的运动和变化过程的科学,它描述了物质在力的作用下的行为规律。
材料动力学研究的对象是微观粒子,在材料科学领域中主要研究材料的相变、晶体生长、晶体缺陷和扩散等动力学过程。
材料动力学的研究方法有实验方法和理论方法两种。
实验方法主要通过实验观察和测试来研究材料的动力学过程,例如通过晶体生长实验和扩散实验来研究材料的生长速度和扩散行为。
理论方法则通过建立数学模型和方程式来描述材料的动力学过程,并通过数值计算和模拟来预测材料的行为。
材料动力学在材料科学中也有着广泛的应用领域。
在材料制备过程中,我们可以利用动力学原理来控制和优化材料的生长速度和形貌,以实现期望的结构和性能。
例如,通过研究晶体生长动力学过程,可以选择合适的生长条件来制备高质量的晶体。
相变原理复习习题第一章固态相变概论相变:指在外界条件(如温度、压力等)发生变化时,体系发生的从一相到另一相的变化过程。
固态相变:金属或陶瓷等固态材料在温度和/或压力改变时,其内部组织或结构会发生变化,即发生从一种相状态到另一种相状态的改变。
共格界面:若两相晶体结构相同、点阵常数相等、或者两相晶体结构和点阵常数虽有差异,单存在一组特定的晶体学平面使两相原子之间产生完全匹配。
此时,界面上原子所占位置恰好是两相点阵的共有位置,界面上原子为两相所共有,这种界面称为共格界面。
当两相之间的共格关系依靠正应变来维持时,称为第一类共格;而以切应变来维持时,成为第二类共格。
半共格界面:半共格界面的特点:在界面上除了位错核心部分以外,其他地方几乎完全匹配。
在位错核心部分的结构是严重扭曲的,并且点阵面是不连续的。
非共格界面:当两相界面处的原子排列差异很大,即错配度δ很大时,两相原子之间的匹配关系便不在维持,这种界面称为非共格界面;一般认为,错配度小于0.05时两相可以构成完全的共格界面;错配度大于0.25时易形成非共格界面;错配度介于0.05~0.25之间,则易形成半共格界面。
一级相变:相变前后若两相的自由能相等,但自由能的一级偏微商(一阶导数)不等的相变。
特征:相变时:体积V,熵S,热焓H发生突变,即为不连续变化。
晶体的熔化、升华,液体的凝固、气化,气体的凝聚,晶体中大多数晶型转变等。
二级相变:相变时两相的自由能及一级偏微商相等,二级偏微商不等。
特征:在临界点处,这时两相的化学位、熵S和体积V相同;但等压热容量Cp、等温压缩系数β、等压热膨胀系数α突变。
例如:合金的有序-无序转变、铁磁性-顺磁性转变、超导态转变等。
均匀相变:没有明显的相界面,相变是在整体中均匀进行的,相变过程中的涨落程度很小而空间范围很大。
特点:A: 无需形核;B: 无明确相界面;非均匀相变:是通过新相的成核生长来实现的,相变过程中母相与新相共存,涨落的程度很大而空间范围很小。
固态相变形核机制固态相变是指物质在温度、压力等条件变化下,从一种固态结构转变为另一种固态结构的过程。
固态相变形核机制是指在固态相变过程中,物质从原有的晶体结构转变为新的晶体结构的过程中,形核起始的机制和过程。
相变是物质状态的变化,是由于温度、压力等条件的改变,使得物质的分子或原子重新排列,从而引起物质性质的变化。
在固态相变中,形核机制起着重要的作用。
形核机制决定了相变的起始过程,即在何种条件下,原有的结构开始发生变化。
固态相变的形核机制可以分为两种类型:热力学形核和动力学形核。
热力学形核是指在热力学平衡条件下,固态相变发生的形核过程。
在热力学形核中,物质的自由能达到最小值,使得原有的晶体结构不再稳定,从而发生相变。
热力学形核是一个自发的过程,不需要外界的干扰。
动力学形核是指在非平衡条件下,固态相变发生的形核过程。
在动力学形核中,物质的结构发生突变,从而发生相变。
动力学形核需要外界的干扰,例如温度的变化、压力的变化等。
动力学形核可以通过控制外界条件来实现,例如通过改变温度、压力等参数来促进相变的发生。
固态相变的形核过程涉及到原子或分子的重新排列,使得原有的结构发生变化。
在固态相变的形核过程中,首先需要形成一个临界核,然后才能发生相变。
临界核是指具有足够的稳定性和成长能力的微小结构。
在固态相变的过程中,临界核的形成是一个关键的步骤。
固态相变的形核机制还涉及到界面的形成和扩展。
在相变的过程中,相变界面是形核的核心部分。
相变界面是指物质从一种结构转变为另一种结构的边界。
相变界面的形成和扩展决定了相变的速率和过程。
固态相变的形核机制还与晶体的缺陷和异质核心有关。
晶体的缺陷是指晶体中存在的缺陷,例如晶格缺陷、晶粒界面等。
在相变的过程中,晶体的缺陷可以作为形核的起始点,从而促进相变的发生。
异质核心是指物质中存在的不同的晶体结构。
在相变的过程中,异质核心可以作为形核的起始点,从而引发相变的发生。
固态相变的形核机制是相变过程中的重要环节。
结晶相变的热力学条件动力学条件能量及结构条件1. 热力学条件结晶相变是指系统在温度压力条件下从一种无序物质逐渐转变为有序的晶体结构的过程。
这个过程需要满足一定的热力学条件。
首先,对于固体的结晶相变,在一定温度和压力下,系统的自由能必须具有全局极小值。
其次,固体的结晶相变过程必须是放热的。
因为自由能的变化可以通过热力学第一定律来表达,即ΔG=ΔH-TΔS,其中ΔG、ΔH和ΔS分别为自由能、焓和熵的变化量。
如果ΔH是负数,即结晶相变是放热的,那么ΔG也将是负数,从而满足全局极小值的要求。
2. 动力学条件除了热力学条件外,结晶相变还需要满足动力学条件。
动力学条件是指在热力学条件下,物质原子或分子在结晶过程中的运动规律。
结晶相变的动力学条件通常被描述为“核心形成”的问题。
在结晶相变之前,系统中必须存在一定的有序结构或“核心”,从而可以吸引周围无序的分子或原子团聚在一起形成晶核。
此时,系统需要消耗一定的自由能来建立新的有序结构,从而使得原有的无序状态失稳。
结晶核心的形成需要克服一定的自由能壁垒,因此结晶相变的速度往往受限于核心形成的速度。
3. 能量及结构条件最后,结晶相变还需要满足能量和结构条件。
能量条件主要是指原始物质的内能和产品的内能之间的差异。
换句话说,结晶相变需要吸收或者释放一定的能量差来完成。
结构条件则是对应着物质的原子结构的对称性。
举个例子,如果一种物质的结构是立方体,那么在结晶相变中产生的产品也必须具有相同的立方体结构。
这是因为,在相变过程中,原有的无序结构破坏了当前结构状态下的对称性,而新的有序结构往往可以对称性来表达。
综上所述,结晶相变是一个复杂的过程,需要满足一系列热力学、动力学、能量和结构等条件。
对于这些条件的深刻理解和掌握,无疑可以为更好地理解结晶相变提供有力的理论基础。
最新《材料热力学与动力学》复习题最新《材料热力学与动力学》复习题篇一:《材料热力学与动力学》复习题一、常压时纯Al的密度为= 2.7 g/cm3,熔点Tm = 660.28 C,熔化时体积增加5%。
用理查德规则和克劳修斯-克拉佩龙方程估计一下,当压力增加等1 GPa时其熔点大约是多少。
二、热力学平衡包含哪些内容,如何判断热力学平衡?三、试比较理想熔体模型与规则熔体模型的异同点。
四、固溶体的亚规则溶体模型中,自由能表示为Gmxi0GiRTxilnxiEGmii其中过剩自由能表示为EGmxAxBLAB(xAxB)实际测得某相中0LAB和1LAB,请分别给出组元A和B的化学位表达式五、向Fe中加入形成元素会使区缩小,但无论加入什么元素也不能使两相区缩小到0.6 at%以内,请说明原因。
六、今有Fe-18Cr-9Ni和Ni80-Cr20两种合金,设其中含碳量为0.1wt%,求T=1273C时碳在这两种合金中活度。
七、假如白口铁中含有3.96%C及2.2%Si,计算在900C时发生石墨化的驱动力,以铸铁分别处于+渗碳体两相状态与+石墨两相状态时碳的活度差来表示此驱动力。
由于Si不进入Fe3C中,所以有KSiCem/= 0。
在Fe-C二元合金中,已知900C时+渗碳体两相状态碳的活度为二aC= 1.04;当与石墨平衡时aC= 1。
八、通过相图如何计算溶体的热力学量如熔化热、组元活度。
九、请说明相图要满足那些基本原理和规则。
十、请说明表面张力产生的原因?十一、已知温度为608 K时,Bi的表面张力为371 mJ/m2,Sn 的表面张力为560 mJ/m2,Bi的摩尔原子面积为6.95104 m2/mol,Sn的摩尔原子面积为6.00104 m2/mol。
试Bi-Sn二元合金的表面张力。
十二、以二元合金为例,分析析出相表面张力对相变的影响。
十三、请解释钢中淬火马氏体低温回火时为什么先析出亚稳化合物而不是稳定的渗碳体(Fe3C)十四、通过原子的热运动,分析影响扩散系数的因素。