飞机结构设计思想变迁_二_王辰
- 格式:pdf
- 大小:6.54 MB
- 文档页数:2
第29卷 第1期 飞 机 设 计V ol 129N o 11 2009年 2月 A I RCRA FT D ES I GN Feb 2009 基金项目:空军技术基础研究项目(N3BK0501)收稿日期:2008-09-22;修订日期:2009-01-10 文章编号:1673-4599(2009)01-0037-07飞机结构的耐久性与损伤容限设计王远达1,梁永胜2,王宏伟1(1.空军航空大学航空机械工程系,吉林长春 130022)(2.空军航空大学科研部,吉林长春 130022)摘 要:飞机结构设计思想随着航空技术的发展而不断进步,经历了从静强度、动强度、疲劳强度到断裂强度的变化过程,耐久性/损伤容限设计是当前飞机结构设计规范的核心方法。
本文归纳了飞机结构设计思想的发展历程,重点讨论了耐久性/损伤容限设计的基本思想、基本理论和基本方法,有助于深入理解该设计思想的本质。
关键词:耐久性设计;损伤容限设计;飞机结构设计思想中图分类号:V21515 文献标识码:AD esi gn of D urab ility and Damage Tolerance for A i rcraft StructureWANG Yuan-da 1,L I A NG Yong-sheng 2,WANG Hong-wei1(1.Depart m ent of Aer onauticalMechanics Engineering,Aviati on University of A ir Force,Changchun 130022,China )(2.Depart m ent of Scientific Research,Aviati on University of A ir Force,Changchun 130022,China )Abstract:W ith the devel opment of aer onautical technol ogies,aircraft structure design concep t has made continues p r ogress,and underg oes an evolutive course fr om static,dyna m ic,and fatigue t o fracture strength .And then,durability and da mage t olerance design become the key method of cur 2rent aircraft structure design criteri on .The paper su mmarizes the devel op ing hist ory of design concep t,e mphatically discusses the basic concep t,theory and method of the durability and da mage t olerancedesign .These will be useful t o understand an essence of the design concep t .Key words:durability design;da mage t olerance design;aircraft structure design concep t 飞机结构耐久性与损伤容限设计是在结构分析方法迅速发展、断裂力学等理论成熟应用、对飞机结构大量试验和服役经验积累的基础上,于20世纪70年代中期以设计规范形式确定下来的一种设计方法,是对传统设计方法的补充和发展,目前已达到实用阶段,形成了具有完整体系的设计工程系统。
飞机结构的优化设计与改进飞机作为现代交通工具的重要组成部分,其结构的设计与改进一直是航空工程师们关注的焦点。
随着科技的进步与发展,飞机结构的优化设计日益被重视,以求在提高航空性能的同时减少重量、提高安全性和降低能耗。
本文将探讨飞机结构优化设计的几个方面,并介绍目前的改进措施。
一、材料选择与性能优化在飞机结构的设计过程中,材料的选择是一个十分关键的环节。
传统的飞机结构多使用铝合金材料,具有良好的加工性能和强度,但整体密度较高,容易腐蚀。
现在,随着新型材料的研发与应用,碳纤维复合材料被广泛应用于飞机结构中。
碳纤维复合材料具有重量轻、强度高、耐腐蚀等特点,可以有效减少飞机的自重,提高载重能力。
此外,还可以通过优化复合材料的层压结构,提高其承载能力和韧性。
材料的性能优化也是飞机结构设计中关注的问题,通过优化材料的力学性能和耐久性,可以进一步提高整个结构的可靠性。
二、结构布局与力学分析飞机的结构布局是指整个飞机的形状和分布,包括机体的长度、翼展、机翼参数等。
结构布局的合理性直接影响到飞机的飞行性能和操纵性能。
在结构布局的设计中,需要综合考虑飞机的飞行特性、气动力学特性以及机载设备的布置等因素。
力学分析是飞机结构设计中的核心环节,通过数学建模和计算分析,确定飞机各个结构部件的受力情况,从而指导结构的设计和强度校验。
近年来,随着计算机仿真技术的不断发展,力学分析的精度和效率得到了大幅提升,为飞机结构优化设计提供了有力的支持。
三、新技术和工艺应用随着科技的不断进步,新的技术和工艺在飞机结构的设计与改进中得到了广泛应用。
例如,激光焊接技术可以提高飞机结构的连接质量和结构整体的强度;激光切割技术可以实现精确的零部件制造和材料的优化利用;3D打印技术可以实现复杂结构的制造和快速原型制作等。
这些新技术和工艺的应用,不仅提高了飞机结构的制造质量和效率,还为飞机的结构优化设计提供了更多的可能性。
四、先进设计理念与空气动力学优化在飞机结构的优化设计与改进中,先进的设计理念和空气动力学分析是不可忽视的因素。
飞机结构设计⼀、飞机研制技术要求(1)战术技术要求军⽤飞机(2)使⽤技术要求(民⽤飞机)它包括飞机最⼤速度、升限、航程、起飞着陆滑跑距离、载重量、机动性(对战⽃机)等指标和能否全天候飞⾏,对机场以及对飞机本⾝的维修性、保障性等⽅⾯的要求。
⼆、飞机的研制过程四个阶段:1.拟订技术要求2.飞机设计过程3.飞机制造过程4.飞机的试飞、定型过程三、飞机的技术要求是飞机设计的基本依据四、飞机设计⼀般分为两⼤部分:总体设计结构设计五、飞机结构设计是飞机设计的主要阶段“结构”是指“能承受和传递载荷的系统”——即“受⼒结构”。
六、安全系数:安全系数定义为设计载荷与使⽤载荷之⽐也就是设计载荷系数与使⽤载荷系数之⽐。
其物理意义就是实际使⽤载荷要增⼤到多少倍结构才破坏,这个倍数就是安全系数。
⼋、飞机结构设计的基本要求1.空⽓动⼒要求和设计⼀体化的要求2.结构完整性及最⼩重量要求3.使⽤维修要求4.⼯艺要求5.经济性要求九、结构完整性:是指关系到飞机安全使⽤、使⽤费⽤和功能的机体结构的强度、刚度、损伤容限及耐久性(或疲劳安全寿命)等飞机所要求的结构特性的总称。
⼗、全寿命周期费⽤(LCC) (也称全寿命成本) 主要是指飞机的概念设计、⽅案论证、全⾯研制、⽣产、使⽤与保障五个阶段直到退役或报废期间所付出的⼀切费⽤之和。
⼗⼀、现代军机和旅客机的新机设计,规范规定都必须按损伤容限/耐久性或按损伤容限/疲劳安全寿命设计。
⼗⼆、结构完整性及最⼩重量要求就是指:结构设计应保证结构在承受各种规定的载荷和环境条件下,具有⾜够的强度,不产⽣不能容许的残余变形;具有⾜够的刚度,或采取其他措施以避免出现不能容许的⽓动弹性问题与振动问题;具有⾜够的寿命和损伤容限,以及⾼的可靠性。
在保证上述条件得到满⾜的前提下,使结构的重量尽可能轻,因此也可简称为最⼩重量要求。
⼗三、使⽤维修要求飞机的各部分(包括主要结构和装在飞机内的电⼦设备、燃油系统等各个重要设备、系统),须分别按规定的周期进⾏检查、维护和修理。
飞机结构设计知识点归纳飞机结构设计是航空工程中至关重要的一部分,它涉及到飞机的各个方面,包括材料选择、结构设计、强度分析等等。
在本文中,我们将对飞机结构设计的一些重要知识点进行归纳和总结。
一、材料选择1. 材料性能:飞机结构设计中材料的选择至关重要,需要考虑其强度、韧性、刚性等性能指标。
常用的航空材料包括铝合金、钛合金、复合材料等,它们在强度和重量方面具有较好的平衡。
2. 耐久性:飞机材料需要具备较好的耐久性,能够承受长期的飞行和各种环境条件的影响。
耐久性包括抗腐蚀、抗疲劳和抗应力腐蚀开裂等。
3. 热特性:由于飞机在高空中会面临较高的温度变化,所以材料的热特性也是考虑的因素之一。
需要选择具备较好热传导性和热膨胀性的材料,以确保飞机结构在温度变化时的稳定性。
二、结构设计1. 强度设计:飞机结构设计中最重要的一部分是强度设计,包括材料的强度和结构的强度计算。
强度设计需要考虑到各种载荷情况,包括重力载荷、气动载荷、机身弯曲、气动弯曲等,并根据这些载荷计算结构的强度和刚度。
2. 稳定性设计:飞机在飞行时需要保持稳定性,结构设计中需要考虑到飞机的静稳定性和动态稳定性。
静稳定性要求飞机在受到扰动后能够自动回复平衡姿态,动态稳定性则要求飞机在各种飞行状态下都能保持稳定。
3. 气动设计:飞机结构设计中的气动设计包括机翼、机身、尾翼等部分的气动外形设计和气动力学性能分析。
气动设计需要考虑到飞机的升力、阻力、气动特性等因素,以优化飞机的飞行性能。
三、强度分析1. 应力分析:强度分析中的应力分析是关键环节,通过有限元分析等方法来计算结构在不同载荷下的应力分布。
应力分析可以帮助设计师更好地了解飞机结构的强度情况,发现可能存在的问题并进行改进。
2. 疲劳分析:疲劳是飞机结构中常见的问题之一,疲劳分析可以帮助设计师评估材料的疲劳性能,并预测结构在长期使用过程中可能出现的疲劳破坏情况。
疲劳分析是飞机结构设计中不可或缺的一环。
飞机结构设计思想变迁(二)文/图 王辰 胡丹
1903年莱特兄弟的“飞行者一号”
使人类第一次乘坐有动力的飞机翱翔
蓝天时,还没有飞机结构设计这个概
念。
2O世纪初,飞机的飞行速度和飞
行高度很低、续航时间也较短,有效
载荷更是小到除了飞行员和燃料以外
几乎无法携带多余的和物品,飞机结
构设计的概念还不清晰,当时的结构
设计只需满足重量轻、静强度大的要
求就可以了,由于材料和工艺水平的
限制,所使用的材料主要为木材、航
空层板和亚麻布。
这一时期指导飞机结构设计的主
要是静强度设计,而静强度主导飞机
结构设计一直持续到二战结束以后,
直至今天,静强度设计一直是飞机结
构设计所必须遵守的所有准则的基础。
静强度设计思想可以表达为飞机
在受到静力载荷时,其结构的强度必
须大于结构所受的载荷,并达到一定
的倍数,否则结构就可能工作在不安
全的情况下,甚至出现变形或破坏。
也就是说,当结构所能够承受的最大
载荷要大于飞机实际受到的载荷达一
定倍数时,此结构就是安全的。
这个“倍
数”就是所谓的“安全系数”,对于
飞机结构各零部件,其安全系数都是
技术解密
2012.9 AVIATION WORLD 71
设计与其他民用结构设计一样,还处于采用静强度分析、并进行定性设计的阶段。
由于当时的飞机中虽然有很大的进步,但终究不具有较高的性能水准(相对于今天),加上当时的飞机主要是以军用飞机为主,在战时军用飞机的寿命通常都很短,因为绝大多数的飞机在结构用到足够的寿命前就被击落了。
而当时的民用飞机的性能仍然较为低下,以当时使用最广的DC-3为例,其最大飞行速度只有370千米/小时左右,升限也只有7000多米,此时飞机的结构受到的应力并不算很大,因此采用静强度设计也是可以接受的。
但是这一切随着喷气时代的到来而结束了,当然当时的人们并没有意识到这一点。
在1949年,英国德·哈唯兰公司的喷气式客机DH106“慧星”(Comet)首飞成功,标示着人类的航空旅行进入一个新时代。
由于采用了喷气式发动机,“慧星”的最大速度可以达到800千米/小时左右,升限可以达到14000米,均为活塞螺旋桨式客机的两倍左右。
但是在使用中“慧星”出现了多次严重事故,经过调查发现,在飞机舷窗部分发现有裂痕,这种裂纹发生扩展而造成了严重的解体事故。
产生这种裂纹的原因是由于高空飞行的“彗星”客机使用增压座舱,长时间飞行频繁起降使机体反复的承受增压和减压产生的压力差,引发飞机铝制蒙皮的金属疲劳所致。
“慧星”飞机还是按老的设计思想设计的,虽然飞机结构的静强度是足够的,但设计师们没有考虑到金属材料的疲劳效应,因为在螺旋桨时代,飞机飞行的高度相对较低,压力差较小,同时航班的频率也没有
“慧星”这么频繁,因此螺旋桨飞机没有出现过这样的事故,人们也没有发现新飞机存在的新问题。
所以从这以后,飞机的金属疲劳设计就取代了静强度设计成为那一时期的主要设计思想。
二战后期,随着飞机飞行速度和战术技术性能要求的提高,飞机机翼采用薄翼型和后掠翼,是气动弹性问题变得突出起来。
因此要求飞机结构不仅要有足够的静强度,而且还应有足够的刚度,不仅要避免结构处于共振点附近,而且还要保证结构不出现过大的变形而影响飞机的性能。
我们知道,飞机能够在天空中飞行是因为飞机与空气的相对运动可以在机翼和机身等部位的上下表面产生压力差,从而产生升力来抵消重力,尤其是作为升力产生的主要来源的机翼承受了很大的气动载荷。
这些载荷按气流密度、压力和飞行速度、飞机外形的不同,以一定的规律分布在飞机的机身、机翼、尾翼等部位,其中以作用在机翼上的载荷最大。
当飞机做一定的机动动作的时候,还会产生一定的过载,这时载荷的大小会成倍的增加。
在这些载荷的作用下,各部位尤其是机翼会发生弯曲和扭转变形。
一旦这种变形超过了一定的限度,将破坏飞机原有的气动外形,造成飞机性能的下降甚至是飞机结构发生破坏或飞机的操纵失灵导致坠毁等事故,例如机翼的扭转刚度不足造成的扭转变形就有可能造成飞机的“副翼反效”现象,导致滚转操纵失效甚至飞机坠毁。
可见,保证飞机结构具有一定的高度是非常重要的。
关于气动弹性引起的颤振,这种颤振
现象常导致灾难性的结构破坏,例如1940年美国的塔科马海峡大桥因颤振而倒塌就是一个非常知名的例子,当然在飞机上是肯定不允许出现这样情况的。
在一定的飞行速度下,飞机结
构会在气动力的作用下产生变形,而随着结构外形的改变,作用在结构上的气动力也会发生改变,改变后的气动力又会给飞机结构带来一个新的变形。
结构自身的刚性会产生一个弹性力使结构具有保持其原有形状的趋势,结构在不断变化的气动力、弹性力和惯性力的作用下发生了振动。
如果在某一速度下,这种自激振动的振动频率未能收敛而是接近了结构自身的共振点的话,则会产生无法挽回的共振现象,其结果将是灾难性的。
在我国“飞豹”歼击轰炸机的试飞过程中就曾遇到过飞机平尾和垂尾的颤振问题,在一次试飞中,方向舵被震掉,试飞员黄炳新艺高人胆大,将几乎失去航向安定性的飞机成功迫降。
静强度和刚度设计的飞机结构设计思想直至今天是飞机结构设计必须遵从的设计尊则。
(未完待续)
德·哈维兰公司“慧星”客机。
因为风力引起的颤振而垮塌的桥梁。