【精品】飞机结构受力分析和抗疲劳设计思想
- 格式:ppt
- 大小:4.37 MB
- 文档页数:7
航空设计中的结构强度与安全性分析航空器是人类历史上最伟大的科技创造之一。
从莱特兄弟制造出第一架飞机,到如今各种类型的航空器在大气中飞行,航空技术的进步使得人类的生活质量得到了极大的提高,并促进了全球经济的发展。
在航空器的设计中,结构强度和安全性分析是非常重要的环节,它们保证了航空器在高空飞行中的稳定性和安全性。
1. 结构强度分析结构强度分析是指在设计和制造航空器时,考虑各个零部件和构件所需的强度及承受能力,避免任何强度不足的设计或制造错误。
因此,在航空器的设计中,结构强度分析是必不可少的。
首先,在结构强度分析中,需要考虑航空器外部所受的载荷。
载荷包括静载荷和动载荷两种。
静载荷是由于重力和悬挂负荷所产生的力,动载荷则是由于由风,加速度和其他运动因素产生的动态力。
对于静载荷,可以采用求和的方法来计算载荷总和从而得出最终的载荷。
而对于动载荷,则需要采用动态分析来计算。
其次,在结构强度分析中,应当考虑每个部件所承受的负荷。
这可以通过有限元分析方法来实现,从而确定每个部件的最大应力值和变形程度,以保证其能够承受设计所需的载荷和力。
如果任何一个部件在强度分析中出现了不足的情况,则需要重新设计或更换。
另外,结构强度分析还应考虑到材料的特性,例如弹性模量,疲劳寿命和裂纹扩展率。
这些因素被用来确定航空器部件的强度设计和使用寿命。
为了保证高度的结构强度和可靠性,航空器的每个部件都应该符合设计要求,并经过认真的测试和验证。
2. 安全性设计安全性设计是指在设计航空器时,应该将各个零部件的失效模式和失效可能性进行分析,以预防事故的发生。
在航空器设计过程中,安全性设计是同样重要的环节。
首先,需要识别和分析可能导致事故的因素。
例如,航空器过度重量或压力机械故障等。
下一步,需要评估这些因素所带来的风险。
如果这些风险超过设计标准,则必须采取必要的措施,如改变设计方法、提高组件质量等。
其次,安全性设计还应考虑到应对事故的应急措施。
基于复合材料的飞机结构设计与优化近年来,随着航空技术的不断发展和人们对飞行安全性和燃油经济性的要求不断提高,基于复合材料的飞机结构设计与优化成为了航空工程领域的热门话题。
本文将从复合材料的优势、飞机结构设计与优化的方法等方面展开论述,以期为相关研究提供一些参考和启示。
一、复合材料的优势复合材料由两种或两种以上的不同材料组成,在组合后具有更好的性能和性质。
相较于传统的金属材料,在航空工程领域中广泛应用的复合材料具有以下几个优势:1. 强度高:与金属相比,复合材料的强度更高,能够承受更大的受力。
2. 轻量化:复合材料的密度相对较低,所以用复合材料制造的结构件相对轻巧,可以大幅度减轻整个飞机的重量。
3. 优异的抗腐蚀性能:复合材料不易受到氧化、腐蚀等化学反应的影响,能够更好地保护飞机的结构。
4. 良好的瞬态响应特性:复合材料的瞬态响应特性优于传统金属材料,能够提供更好的飞行控制性能。
综上所述,复合材料在飞机结构设计与优化中具有明显的优势,可以提高飞机的性能和安全性。
二、飞机结构设计与优化的方法1. 结构设计理论在飞机结构设计与优化过程中,需要运用一些基本的结构设计理论。
(1)受力分析:通过受力分析,可以确定结构的受力状态,找到潜在的应力集中点,为后续的结构设计提供依据。
(2)材料力学分析:了解复合材料的性能和力学特性,选取合适的材料。
(3)结构优化:通过数值模拟和计算,对飞机结构进行优化,使得结构更加合理且满足性能要求。
2. 优化方法优化是飞机结构设计与优化的关键环节之一,目的是为了实现最佳设计。
(1)拓扑优化:拓扑优化是一种基于材料分布和结构形态的优化方法,通过调整材料的分布,实现结构受力的优化。
(2)参数化设计:通过定义一些参数,对各种结构进行建模,然后通过改变参数实现结构的优化设计。
(3)多目标优化:多目标优化考虑了各种结构设计要素的多个目标或指标,既追求轻量化,又考虑到结构强度、疲劳寿命等多个方面。
飞机机翼-机身连接结构受力特性分析研究叶聪杰;杜艳梅;于振波【摘要】机翼-机身连接结构作为飞机设计中最重要的一环,应当准确分析其受力特性,合理设计其连接结构.基于有限元计算结果对A、B两种机翼-机身连接结构形式进行受力特性研究,分析表明B结构的机翼后梁后梯形板(或A结构前三角板)分担了部分载荷,减轻了后梁站位加强框承受的载荷.B结构连接刚度相对柔性,减小了后梁处协调变形的影响.A结构设计了后三角板,通过后三角板将起落架部分机构与机身的连接,后三角板分担了部分起落架载荷,对于机身的内力均匀分布是有利的.【期刊名称】《民用飞机设计与研究》【年(卷),期】2017(000)002【总页数】8页(P59-66)【关键词】受力特性;梯形板;有限元分析【作者】叶聪杰;杜艳梅;于振波【作者单位】上海飞机设计研究院,上海201210;上海飞机设计研究院,上海201210;上海飞机设计研究院,上海201210【正文语种】中文【中图分类】V214.1+1机翼-机身连接结构作为飞机设计中最重要的一环,应当准确分析其受力特性,合理设计其连接结构。
基于有限元计算结果对A、B两种机翼-机身连接结构形式进行受力特性研究,分析表明B结构的机翼后梁后梯形板(或A结构前三角板)分担了部分载荷,减轻了后梁站位加强框承受的载荷。
B结构连接刚度相对柔性,减小了后梁处协调变形的影响。
A结构设计了后三角板,通过后三角板将起落架部分机构与机身的连接,后三角板分担了部分起落架载荷,对于机身的内力均匀分布是有利的。
飞机根据机翼相对于机身的位置可分为上单翼布局、中单翼布局和下单翼布局[1-2]。
现代民用飞机中多采用下单翼布局,其机翼-机身连接的典型设计,是把机身的主隔框螺接在中央翼盒的前、后翼梁上,多年来这种连接方法已广泛地为飞机设计人员采用[1]。
典型的机翼-机身连接结构如图1所示。
MD-82飞机在机翼-机身的连接上没有采用以上设计[3-4],机身在中央翼后梁位置并没有机身框,左右各设计一个向后延伸的梯形板,通过梯形板将机翼后梁与机身的框连接。
航空器结构设计中的抗疲劳分析在航空领域,航空器的安全和可靠性始终是至关重要的考量因素。
而在航空器结构设计中,抗疲劳分析是一个关键环节,直接关系到航空器的使用寿命和飞行安全。
首先,我们需要明白什么是疲劳。
简单来说,疲劳就是材料或结构在反复承受载荷作用下,性能逐渐劣化,最终导致失效的现象。
对于航空器而言,由于其在飞行过程中会经历无数次的起降、飞行中的气流颠簸、机动动作等,结构所承受的载荷是不断变化且反复的。
这就使得疲劳成为了航空器结构可能面临的一个严重问题。
航空器的结构部件众多,从机翼、机身到发动机支架等,每个部分都可能受到疲劳的影响。
以机翼为例,在飞行时,机翼不仅要承受自身的重量,还要承受空气动力产生的升力和阻力。
这些力的大小和方向不断变化,使得机翼内部的结构材料反复受到拉伸、压缩和弯曲。
长期下来,就可能出现微小的裂纹。
这些裂纹如果不及时发现和处理,会逐渐扩展,最终导致机翼结构的失效,引发严重的飞行事故。
那么,在航空器结构设计中,如何进行抗疲劳分析呢?材料的选择是第一步。
不同的材料具有不同的抗疲劳性能。
高强度的金属材料,如钛合金、铝合金等,通常被广泛应用于航空器结构中。
这些材料具有较好的强度和韧性,能够在一定程度上抵抗疲劳损伤。
同时,新型的复合材料,如碳纤维增强复合材料,由于其优异的力学性能和抗疲劳特性,也在现代航空器设计中得到了越来越多的应用。
在设计阶段,合理的结构布局和几何形状设计至关重要。
避免尖锐的转角和突变的截面可以减少应力集中,从而降低疲劳裂纹产生的可能性。
例如,在机翼与机身的连接处,采用平滑的过渡设计,可以使载荷分布更加均匀,减少局部应力过高的情况。
载荷的准确评估是抗疲劳分析的基础。
通过风洞试验、飞行测试以及数值模拟等手段,获取航空器在各种飞行状态下所承受的载荷数据。
这些数据包括气动载荷、惯性载荷、温度载荷等。
然后,利用这些数据结合材料的疲劳性能曲线,采用合适的疲劳分析方法,如应力寿命法、应变寿命法等,对结构的疲劳寿命进行预测。
飞机结构力学分析与设计的要点飞机作为现代交通运输的重要工具,其结构的安全性、可靠性和性能优化至关重要。
飞机结构力学分析与设计是确保飞机能够在各种复杂的工况下安全飞行的关键环节。
下面我们将详细探讨飞机结构力学分析与设计的一些要点。
首先,材料的选择是飞机结构设计的基础。
飞机结构所使用的材料需要具备高强度、高韧性、耐疲劳、耐腐蚀等特性。
常见的飞机结构材料包括铝合金、钛合金、复合材料等。
铝合金具有良好的加工性能和较高的比强度,但在高温环境下性能会有所下降。
钛合金则具有更高的强度和耐高温性能,但成本相对较高。
复合材料如碳纤维增强复合材料具有优异的比强度和比刚度,能够显著减轻结构重量,但在制造和维修方面存在一定的难度。
在力学分析方面,静力学分析是必不可少的。
这包括对飞机在各种载荷条件下(如自身重力、燃油重量、乘客和货物重量、飞行中的气动力等)的结构强度和刚度进行评估。
通过建立飞机结构的有限元模型,可以精确计算各个部件所承受的应力和变形。
如果应力超过材料的许用应力或者变形过大,就需要对结构进行重新设计或加强。
动力学分析也是关键的一环。
飞机在飞行过程中会受到各种动态载荷,如发动机振动、气流颠簸等。
通过模态分析可以确定飞机结构的固有频率和振型,避免与外界激励频率发生共振,从而防止结构的破坏。
此外,还需要进行颤振分析,以确保飞机在高速飞行时不会发生颤振现象,保证飞行的稳定性和安全性。
疲劳分析是飞机结构设计中需要特别关注的问题。
由于飞机在其使用寿命内要经历无数次的起降循环和飞行中的各种载荷变化,结构容易出现疲劳裂纹。
通过对材料的疲劳性能进行研究,并结合实际的飞行载荷谱,采用合适的疲劳分析方法,可以预测结构的疲劳寿命,从而在设计阶段采取相应的措施,如优化结构细节、采用抗疲劳设计方法等,来延长结构的使用寿命。
在结构设计方面,要充分考虑结构的整体性和传力路径的合理性。
飞机结构通常由多个部件组成,这些部件之间的连接方式和传力路径直接影响结构的性能。
飞行器结构的疲劳寿命分析及其加固设计飞行器结构的疲劳寿命分析和加固设计是飞行器设计和制造中的重要环节。
在长期使用过程中,飞行器受到各种外力的作用,如重力,气动荷载,以及机械震动等,这些力的作用会使飞行器结构材料产生疲劳损伤,从而导致结构的寿命减少和安全性能下降。
因此,结构疲劳寿命分析和加固设计是确保飞行器安全飞行的重要保证,本文将探讨飞行器结构的疲劳寿命分析及其加固设计的相关内容。
一、疲劳损伤疲劳是指材料受到周期性应力作用下,发生的一种渐进性损伤,会导致结构的疲劳裂纹和损伤,严重时可能导致结构的故障甚至坍塌。
各种不同的材料在受到疲劳损伤时表现出不同的特征。
例如,金属材料在受到疲劳损伤时会出现疲劳裂纹,塑料材料则会发生剥落和断裂。
对于复合材料而言,由于其具有复杂的结构和不同的材料组成,其疲劳损伤的形式也比较复杂,通常表现为层间剪切、纵向剪切和挤压等形式。
因此,对于不同材料的飞行器结构进行疲劳寿命分析时需要进行不同的分析方法和加固设计。
二、疲劳寿命分析疲劳寿命分析是指在预测某个部件在疲劳试验条件下的寿命时所进行的一种数学分析方法,在飞机结构设计中具有重要的应用价值。
疲劳寿命分析主要涉及到以下几个方面:1. 部件的工作环境和负载特征。
疲劳寿命分析需考虑飞机的运行环境和其所受飞行负载的特征。
工作环境因飞机的使用目的不同,其包括温度、湿度、湍流、撞击、振动和压力等各种因素。
而负载特征则是指支撑飞行和飞行中所受的各种负载,例如重心移动和引擎推力。
2. 疲劳裂纹的扩展分析。
疲劳寿命分析不仅需要预测部件的寿命,还需预测并分析疲劳裂纹的扩展形态和进展速度,为加固设计提供依据。
等效应力极差法、线性累积损伤法和疲劳裂纹扩展速度-应力幅值曲线等方法都可以用来预测疲劳裂纹的扩展行为。
3. 判定裂纹大小。
在确立裂纹的大小之后,需根据有限元分析和疲劳裂纹的扩展规律分析飞行器结构在疲劳载荷下的寿命。
疲劳裂纹影响因素有很多,如裂纹长度、深度、形状、方向、位置、应力分布等等。
模型飞机受力情况和结构原理第五章模型飞机受力情况和结构原理前面我们学习了模型飞机的空气动力学原理,以及模型飞机的控制等方面的知识。
但是,要制作一架模型飞机,仅凭这些,是远远不够的。
飞机在飞行时要受到各种各样的外力,有些力还很大,有可能会对飞机结构造成破坏。
因此,飞机结构必须要有一定强度。
但是强度又不能太大,否则飞机又会太重,不利于飞行。
这就要求模型飞机的结构设计必须在重量与强度之间找“最佳平衡点”。
为此,需要研究飞机飞行时各部分的受力情况,并根据各部分受力的情况设计具有合适强度、刚度、稳定性、重量足够轻的构件。
为此,我们必须从静力学、材料力学、结构力学的基本概念开始学习。
第一节力载荷:施加在结构上的力称为载荷。
载荷可按以下三种情况来划分:1 按加载时速度变化情况来划分(1)静载荷——加载时速度变化比较小,即没有加速度,或者加速度极小。
如模型飞机以稳定的姿态滑翔时作用在模型上的质量力和空气动力。
(2)动载荷——加载时的速度变化大,如用榔头敲击物体。
2 按载荷的分布范围来划分(1)集中载荷——力作用在一个点上。
比如飞机降落时由起落架传递给飞机结构的冲击力。
(2)分布载荷——以一定规律或形式分布在构件上的力。
如飞机滑翔时分布在机翼上的空气动力。
3 按载荷的作用方式来划分可分为力、力矩、力偶。
内力:构件或物体承受载荷后产生变形,构件内部产生抵抗变形、平衡载荷的力称为内力。
内力可分解为沿构件轴线方向的轴向力和于构件垂直的切向力。
应力:单位面积上的内力称为应力。
任何复杂的受力情况都是可以把应力分为垂直于承力平面的正应力和平行于承力平面的剪应力。
应力是衡量物体受力程度的标准。
力对物体的作用不仅决定于它的强度,同时决定于它的方向,因此力向量,向量的图像表示是具有一定长度和一定方向的线段。
第二节力的合成当几个力同时作用于某点所产生的效果与另一个单力对该点的作用效果相同,则此单力成为几个力的合力。
合力的求法如下:1作用在一点上的多个力如果是两个力作用在一点,则可用平行四边形法则,三角函数进行计算求出。
飞行器结构设计与优化作为现代航空领域的核心技术之一,飞行器结构设计和优化已成为影响飞行器性能和质量的重要因素。
在飞行器的设计和制造过程中,结构设计和优化涉及到重要的材料、制造工艺和设计参数等方面,其重要性显而易见。
一、飞行器结构设计的原则在飞行器结构设计中,设计原则主要包括受力性、可靠性、轻量化、可制造性和可维护性等多个方面。
在结构设计中,要根据不同部位和不同功能的要求设置不同的设计原则。
例如,机翼和机身整体结构的设计应当考虑到提高飞行器的刚度和强度,而发动机舱的设计则需重点考虑飞行器的耐高温、防火和减重等问题。
在受力性方面,飞行器的结构设计应考虑到各种可能出现的荷载情况,并对不同部位和不同功能的部件进行合理的强度和刚度分配。
在可靠性方面,飞行器的结构设计应考虑到各种可能出现的故障和损耗情况,尽可能避免单点故障和故障的扩展与蔓延。
在轻量化方面,飞行器的结构设计应尽可能减少飞行器的重量,从而提高飞行器的载荷能力和燃油经济性。
在制造方面,飞行器的结构设计应考虑到各种可能出现的制造工艺问题,尽可能降低制造成本。
在维护方面,飞行器的结构设计应考虑到各种不同维护环境,尽可能提高维护效率和疲劳寿命。
二、飞行器结构优化的方法和手段为了在飞行器结构设计中达到最佳的技术和经济效果,飞行器结构优化是必不可少的步骤。
当前飞行器结构优化主要通过有限元分析、优化算法和虚拟样机试验等手段来实现。
有限元分析是一种常用的飞行器结构优化方法,主要用于分析不同荷载条件下飞行器各部位和部件的受力状态和变形情况,进一步优化飞行器的结构,提高飞行器的机械性能和耐久性。
有限元分析是一种非常精准的工具,但需要丰富的理论知识和良好的模型建立能力。
优化算法是另一种常用的飞行器结构优化方法,主要用于寻找最优解,通过数值优化、元启发式算法、人工智能等各种优化手段,提高飞行器的机械性能、重量和生产效率等多个方面。
优化算法具有高效性和可靠性的特点,但需要高超的数学处理能力。
附件八民用航空器部件修理人员执照基础培训大纲中国民用航空总局飞标司2002年11月编写说明1、航空器部件修理人员执照培训(基础部分)大纲是依据“中国民用航空总局民用航空器维修人员合格审定的规定”(即CCAR-66AA部)而编写的。
2、按照CCAR-66AA部第二十条的规定,航空器部件修理人员执照(基础部分)培训的对象应具备以下条件:具有中专(含)以上航空技术专业学历,并从事所申请专业的修理工作在二年以上:或者取得上岗资格后,并从事所申请专业的修理工作在三年以上。
该大纲的相关理论培训深度与上述培训对象相适应,侧重于便于掌握和理解的定性分析方法。
3、CCAR-66AA部第十九条规定:航空器部件修理人员执照共有六个,它们分别是:•航空器结构(STR)•航空器动力装置(PWT)•航空器起落装置(LGRO)•航空器机械附件(MEC)•航空器电子附件(AVC)•航空器电气附件(EC)4、航空器部件修理人员执照(基础部分)培训大纲以模块形式组成:+5、在航空器部件修理人员执照培训大纲中,采用三种知识等级标识(1,2,3)表示航空器部件修理人员应掌握的知识深度和广度。
各知识等级标识应达到的要求如下:1级:•学员应熟悉本科目的基本内容;•学员应能概述本科目的有关基本概念。
2级:•学员应能理解本科目的基本理论知识;•学员应能概述与本科目有关的基本概念、工作原理、故障诊断以及维修技术等方面的问题;•学员应能阅读、理解和描述本科目的原理图、线路图等;•学员应能较灵活地将学得的基本理论知识应用到修理实践中。
3级:•学员应能掌握本科目的基本理论以及与其它科目的关系;•学员应熟练地掌握航空器部件修理理论和技术;•学员应能灵活地将学得的基本理论知识应用修理实践中。
6、学时分配。
(1)各模块的学时分配模块名称学时模块名称学时航空器起落装置修理模块 40 通用模块 18航空器机械附件修理模块 70 机械类公共模块 92航空器结构修理模块 70航空器电子附件修理模块 222 航空器动力装置修理模块 70 航空器电气附件修理模块 132 (2)各个航空器部件修理人员执照培训大纲需用学时执照培训大纲名称学时执照培训大纲名称学时航空器结构培训大纲 180航空器机械附件培训大纲 180 航空器动力装置培训大纲 180 航空器电子附件培训大纲 240 航空器起落装置培训大纲 150 航空器电气附件培训大纲 150通用模块培训大纲通用模块培训大纲为航空器结构、航空器动力装置、航空器机械附件、航空器起落装置、航空器电子附件、航空器电气附件等六个基础执照培训大纲的公共部分。