电磁场与电磁波作业题
- 格式:doc
- 大小:119.00 KB
- 文档页数:6
第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a 2i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 变化的关系,请指出该曲线可描述下面那方面内容(E 为电场强度的大小,U为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和 2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()为零D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。
设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6q ε B 、12qε C 、24q ε D 、048qε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D ) 11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D )12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 答案(C )20)在边长为a 正方体中心处放置一电量为Q A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q 0πε D 、R22Q0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点的电势U 为()A 、r4Q Q 021πε+ B 、101R 4Q πε+202R 4Q πε C 、0 D 、101R 4Q πε 答案(B )22) 真空中一半径为R 的球面均匀带电为Q ,,在球心处有一带电量为q 的点电荷,如图设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为()A 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )A 、r4Q 0πε B 、)R Q r q (410+πε C 、r 4q Q 0πε+ D 、)RqQ r q (410-+πε 答案(B )23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U 将()A 、E 不变,U 不变 B 、E 不变,U 改变 C 、E 改变 ,U 不变 D 、E改变,U 也改变 答案(C )24) 真空中有一电量为Q 的点电荷,在与它相距为r 的A 点处有一检验电荷q,现使检验电荷q 从A 点沿半圆弧轨道运动到B 点,如图则电场场力做功为()A 、q2r r 4Q 220⋅π⋅πε B 、rq 2r 4Q 20⋅πε C 、rq r 4Q 20π⋅πε D 、0 答案(D ) 25) 两块面积为S 的金属板A 和B 彼此平行放置,板间距离为d (d 远远小于板的线度),设A 板带电量1q , B 板带电量2q ,则A,B 板间的电势差为() A 、S2q q 021ε+ B 、d S 4q q 021⋅ε+ C 、d S 2q q 021⋅ε- D 、d S4q q 021⋅ε- 答案(C )26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出() A 、c E >>b a E E c U >>b a U U C 、c E >>b a E E c U <<b a U UB 、c E <<b aE E c U <<ba U U D 、c E <<b a E Ec U >>b a U U 答案(A )27) 面积为S 的空气平行板电容器,极板上分别带电量为q ±,若不考虑边缘效应,则两极板间的相互作用力为()A 、S q 02ε- B 、S 2q 02ε- C 、202S 2q ε D 、202S q ε 答案(B )28)长直细线均匀带电。
电磁场与电磁波试题一、选择题1.物体自带的静电荷可以产生()电场。
A. 近距离的 B. 远距离的 C. 高速的 D. 恒定的2.下列哪个物理量是电场强度的定义? A. 电荷的大小 B. 电势差的变化C. 电场线的形状D. 电场力的大小3.两个相同电量的电荷之间的力为F,若电荷1的电量变为原来的4倍,电荷2的电量变为原来的2倍,则两个电荷之间的力变为原来的()倍。
A. 1/8B. 1/4C. 1/2D. 24.以下哪个物理量在电路中是守恒的? A. 电流 B. 电荷 C. 电压 D. 电功5.电流方向由正极流动到负极。
这是因为电流是由()极到()极流动的。
A. 正极,负极 B. 负极,正极 C. 高电势,低电势 D. 低电势,高电势二、填空题1.电场强度的单位是()。
2.在均匀介质中,电位与电势之间的关系是:()。
3.电容的单位是()。
4.电容和电容器的关系是:()。
三、解答题1.简述电场的概念及其性质。
答:电场是由电荷周围的空间所产生的物理现象。
当电荷存在时,它会在其周围产生一个电场。
电场有以下性质:–电场是矢量量,具有大小和方向。
–电场的强度随着距离的增加而减弱,遵循反比例关系。
–电场由正电荷指向负电荷,或由高电势指向低电势。
–电场相互叠加,遵循矢量相加原则。
–电场线表示了电场的方向和强度,线的密度表示电场强度的大小。
2.简述电流的概念及其特性。
答:电流是指单位时间内通过导体截面的电荷量,用符号I表示,单位是安培(A)。
电流具有以下特性:–电流的方向由正极流向负极,与电子的运动方向相反。
–电流是守恒量,即在封闭电路中,电流的大小不会改变。
–电流的大小与导体电阻、电势差和电阻之间的关系符合欧姆定律:I = U/R,其中I为电流,U为电势差,R为电阻。
3.电容器与电场之间有怎样的关系?答:电容器是一种用于储存电荷和电能的元件。
当电容器充电时,电荷会从一极板移动到另一极板,形成了电场。
电容器的电容决定了电容器储存电荷和电能的能力。
1 / 91.已知自由空间中均匀平面波磁场强度瞬时值为:())]43(cos[31,,z x t-e t z x H +=πωπy A/m ,求①该平面波角频率ω、频率f 、波长λ ②电场、磁场强度复矢量③瞬时坡印廷矢量、平均坡印廷矢量。
解:① z x z k y k x k z y x ππ43+=++;π3=x k ,0=yk ,π4=z k ;)/(5)4()3(22222m rad k k k k z y x πππ=+=++=;λπ2=k ,)(4.02m k ==πλ c v f ==λ(因是自由空间),)(105.74.010388Hz c f ⨯=⨯==λ;)/(101528s rad f ⨯==ππω②)/(31),()43(m A e e z x H z x j y +-=ππ; )/()243254331120),(),(),()43()43(m V e e e e e e e k k z x H e z x H z x E z x j z x z x z x j y n +-+--=+⨯⨯=⨯=⨯=πππππππηη(③ ()[])/()43(cos 2432),,(m V z x t e e t z x E z x +--=πω())]43(cos[31,,z x t-e t z x H +=πωπy (A/m ) ()[]()[])/()43(cos 322431)]43(cos[31)43(cos 243222m W z x t e e z x t-e z x t e e H E S z x z x +-+=+⨯+--=⨯=πωππωππωy ())43(2432),(z x j z x e e e z x E +--=π,)43(31),(z x j y e e z x H +-=ππ()())/(322461312432Re 21Re 212*)43()43(*m W e e e e e e e H E S z x z x j y z x j z x av +=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⨯-=⎪⎭⎫ ⎝⎛⨯=+-+-ππππ2.横截面为矩形的无限长接地金属导体槽,上部有电位为 的金属盖板;导体槽的侧壁与盖板间有非常小的间隙以保证相互绝缘。
电磁场与电磁波习题及答案1麦克斯韦方程组的微分形式是:.D H J t=+?u v u u v u v ,BE t =-?u v u v ,0B ?=u v g ,D ρ?=u v g2静电场的基本方程积分形式为:CE dl =?u v u u v g ? S D ds ρ=?u v u u vg ?3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:3.00n S n n n Se e e e J ρ??=??===?D B E H rr r r r r r r r 4线性且各向同性媒质的本构关系方程是:4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=uv u v5电流连续性方程的微分形式为:5.J t ρ??=-r g6电位满足的泊松方程为2ρ?ε?=-;在两种完纯介质分界面上电位满足的边界。
12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理论依据是: 唯一性定理。
8.电场强度E ?的单位是V/m ,电位移D ?的单位是C/m2 。
9.静电场的两个基本方程的微分形式为0E ??=ρ?=g D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用1.在分析恒定磁场时,引入矢量磁位A u v,并令B A =??u v u v 的依据是( 0B ?=u vg )2. “某处的电位0=?,则该处的电场强度0=E ?”的说法是(错误的)。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln(1aaD C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。
B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。
C.梯度的散度恒为零。
D.一个标量场的性质可由其梯度来描述。
5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。
一、填空题1、电荷守恒定律的微分形式是,其物理意义是[任何一点电流密度矢量的散度等于该点电荷体密度随时间的减少率];2、麦克斯韦第一方程=⨯∇HDJ t ∂+∂,它的物理意义是[电流与时变电场产生磁场];对于静态场,=⨯∇H[J ]];3、麦克斯韦第二方程E⨯∇B ∂,它表明[时变磁场产生电场];对于静态场,E⨯∇=[0],它表明静态场是[无旋场];4、坡印廷矢量S 是描述时变电磁场中电磁功率传输的一个重要的物理量,S=[E H ⨯],它表示[通过垂直于功率传输方向单位面积]的电磁功率;5、在两种不同物质的分界面上,[电场强度,(或E )]矢量的切向分量总是连续的, [磁感应强度,(或B )]矢量的法向分量总是连续的;6、平面波在非导电媒质中传播时,相速度仅与[媒质参数,(或μ、ε)]有关,但在导电媒质中传播时,相速度还与[频率,(或f ,或ω)],这种现象称为色散;7、两个同频率,同方向传播,极化方向互相垂直的线极化波合成为圆极化波时,它们的振幅[相等],相位差为[2π,(或-2π,或90)];8.均匀平面波在良导体中传播时,电场振幅从表面值E 0下降到E 0/e 时 所传播的距离称为[趋肤深度],它的值与[频率以及媒质参数]有关。
二、选择题1、能激发时变电磁场的源是[c]a.随时间变化的电荷与电流 b 随时间变化的电场与磁场c.同时选a 和b2、在介电常数为ε的均匀媒质中,电荷体密度为ρ的电荷产生的电场为),,(z y x E E =,若E Dε=成立,下面的表达式中正确的是[a]a. ρ=⋅∇Db. 0/ερ=⋅∇Ec. 0=⋅∇D3、已知矢量)()23(3mz y e z y e x e B z y x +--+=,要用矢量B 描述磁感应强度,式中 必须取[c(0=⋅∇B )] a. 2 b. 4 c. 64、导电媒质中,位移电流密度d J 的相位与传导电流密度J的相位[a]a.相差2πb.相同或相反c.相差4π5、某均匀平面波在空气中传播时,波长m 30=λ,当它进入介电常数为04ε=ε的介质中传播时,波长[b] a.仍为3m b.缩短为1.5m c. 增长为6m6、空气的本征阻抗π=η1200,则相对介电常数4=εr ,相对磁导率1=μr ,电导率0=σ的媒质的本征阻抗为[c].a.仍为)(120Ωπb. )(30Ωπc. )(60Ωπ 7、z j y z j x e j e e e E π-π-+=2242,表示的平面波是 [b] a.圆极化波 b.椭圆极化波 c.直线极化波8、区域1(参数为0,,10101===σμμεε)和区域2(参数为0,20,520202===σμμεε)的分界面为0=z 的平面。
电磁场与电磁波波试卷3套含答案电磁场与电磁波》试卷1一、填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场无漩涡流动。
另一个是环流量不为0,表明矢量场的流体沿着闭合回路做漩涡流动。
2.带电导体内静电场值为常数,从电势的角度来说,导体是一个等电位体,电荷分布在导体的表面。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为三个函数的乘积,而且每个函数仅是一个坐标的函数,这样可以把偏微分方程化为常微分方程来求解。
4.求解边值问题时的边界条件分为三类,第一类为整个边界上的电位函数为已知,这种条件称为XXX条件。
第二类为已知整个边界上的电位法向导数,称为诺伊曼条件。
第三类条件为部分边界上的电位为已知,另一部分边界上电位法向导数已知,称为混合边界条件。
在每种边界条件下,方程的解是唯一的。
5.无界的介质空间中场的基本变量B和H是连续可导的,当遇到不同介质的分界面时,B和H经过分界面时要发生突变,用公式表示就是n·(B1-B2)=0,n×(H1-H2)=Js。
6.亥姆霍兹定理可以对Maxwell方程做一个简单的解释:矢量场的旋度和散度都表示矢量场的源,Maxwell方程表明了电磁场和它们的源之间的关系。
二、简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:均匀导波系统上传播的电磁波有三种模式:横电磁波(TEM波)、横磁波(TM波)和横电波(TE波)。
其中,横电磁波在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内;横磁波在电磁波传播方向上有电场但没有磁场分量,即磁场在横平面内;横电波在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内。
从Maxwell方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。
2.写出时变电磁场的几种场参量的边界条件。
电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
1. 图示填有两层介质的平行板电容器,设两极板上半部分的面积为,下半部分的面积为,板间距离为,两层介质的介电常数分别为与。
介质分界面垂直于两极板。
若忽略端部的边缘效应,则此平行板电容器的电容应为______________。
2.1. 用以处理不同的物理场的类比法,是指当描述场的数学方式具有相似的____________ 和相似的__________,则它们的解答在形式上必完全相似,因而在理论计算时,可以把某一种场的分析计算结果 , 推广到另一种场中去。
2. 微分方程;边界条件1. 电荷分布在有限区域的无界静电场问题中,对场域无穷远处的边界条件可表示为________________________________,即位函数在无限远处的取值为________。
2. 有限值;1. 损耗媒质中的平面波,其电场强度,其中称为___________,称为__________。
2. 衰减系数;相位系数1. 在自由空间中,均匀平面波等相位面的传播速度等于________,电磁波能量传播速度等于________ 。
2. 光速;光速1. 均匀平面波的电场和磁场除了与时间有关外,对于空间的坐标,仅与___________ 的坐标有关。
均匀平面波的等相位面和________方向垂直。
2. 传播方向;传播1. 在无限大真空中,一个点电荷所受其余多个点电荷对它的作用力,可根据___________ 定律和__________ 原理求得。
2. 库仑;叠加1. 真空中一半径为a 的圆球形空间内,分布有体密度为ρ的均匀电荷,则圆球内任一点的电场强度1E =_________()r e r a <;圆球外任一点的电场强度2E =________()r e r a >。
2. 0/3r ρε;220/3a r ρε;1. 镜像法的关键是要确定镜像电荷的个数、_______________ 和_________________。
电磁场与电磁波第二版课后练习题含答案一、选择题1. 一物体悬挂静止于匀强磁场所在平面内的位置,则这个磁场方向?A. 垂直于所在平面B. 并行于所在平面C. 倾斜于所在平面D. 无法确定答案:B2. 在运动着的带电粒子所在区域内,由于其存在着磁场,因此在该粒子所处位置引入一个另外的磁场,引入后,运动着的电荷将会加速么?A. 会加速B. 不会加速C. 无法确定答案:B3. 一台电视有线播出系统, 将信号源之中所传输的压缩图像和声音还原出来,要利用的是下列过程中哪一个?A. 光速传输B. 超声波传输C. 磁场作用D. 空气振动答案:C4. 一根充足长的长直电导体内有恒定电流I通过,则令曼培尔定律最适宜描述下列哪一项观察?A. 两个直平面电流之间的相互作用B. 当一个直平面电流遇到一个平行于它的磁场时, 会发生什么C. 当两个平行电流直线之间的相互作用D. 当电磁波穿过磁场时会发生什么答案:C5. 电磁波的一个特点是什么?A. 电磁波是一种无质量的相互作用的粒子B. 电磁波的速度跟频率成反比C. 不同波长的电磁波拥有的能量不同D. 电磁波不会穿透物质答案:C二、填空题1. 一个悬挂静止的电子放在一个以5000 G磁场中,它会受到的磁力是____________N. 假设电子的电荷是 -1.6×10^-19 C.答案:-8.0×10^-142. 在一个无磁场的区域内,放置一个全等的圆形和正方形输电线, 则这两个输电线产生的射界是_____________.答案:相同的3. 一个点电荷1.0×10^-6 C均匀带电一个闪电球,当位于该点电荷5.0 cm处时, 该牛顿计的弦向上斜,该牛顿计的尺度读数是4.0N. 该电荷所处场强的大小约为_____________弧度.答案:1.1×10^4三、简答题1. 解释什么是麦克斯韦方程式?麦克斯韦方程式是一组描述经典电磁场的4个偏微分方程式,包括关于电场的高斯定律、关于磁场的高斯定律、安培环路定理和法拉第电磁感应定律。
电磁场与电磁波作业电子版071244146 朱志峰 071214121 周少波1.6 证明:如果C A B A ∙=∙和=⨯B A C A ⨯,则C B =。
解: C A B A ⨯=⨯,有)()(C A A B A A ⨯⨯=⨯⨯ C A A A C A B A A A B A ∙∙-∙=∙∙-∙∙)()()()(由C A B A ∙=∙同理有C A A B A A ∙∙=∙∙)()( ∴C B =1.14 利用直角坐标系证明:(∇uv)=u ∇v+v ∇u证明:u ∇v+v ∇u=u(zu v yu v xu v zv yv xv zyxz y x αααααααααααα+++++()()=)()()(yv v zv uyu v y v ux u v xv uy yz y yy x xx αααααααααααα+++++=)()()(z y x uv zuv yuv xαααααα++=)(uv ∇1.15 一球面S 的半径为5,球心在原点,计算s d er s∙⎰)sin 3(θ的值。
解:θϕθθrdrd drd r s d ==sin原式=θθθdrd rds er s⎰⎰=∙2sin 3sin 3=15⎰θθd er d er )5(sin =752π补充题 已知在直角坐标系中U(x,y ,z),求证u duu df u f ∇=∇)()(。
证明:e yu f ye xu f xe uf ++=∇αααα)()()(zzu f αα)(=zu duu df ze yu duu df ye xu duu df xe αααααα∙+∙+∙)()()(=u duu df ∇)(kk e k e k e z k y k x k ze z k y k x k y e z k y k x k x e r k zk y k x k r k k e k e k e k yr xr xr zr zr yr z e y e x e r yr x r e x r z r e z r y r e ze y e x e r zr y r x rk z e y e x e r k r k z z y y x x z y x z z y x y z y x x z y x z z y y x x x y z x y z y x xy zz x y y x z y x z y x z y x=++=++∂∂+++∂∂+++∂∂=∙∇∴++=∙++==⨯∇∴=∂∂=∂∂=∂∂=∂∂=∂∂=∂∂∴++=∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=⨯∇=++=∙∇∴++=∂∂+∂∂+∂∂=∙∇++==∙∇=⨯∇=∙∇)()()()(30r 0)()(r 23111r r 1)(30r 23r 123.1z z ,则)设()()(又)证明:(为一常矢量。
1麦克斯韦方程组的微分形式是:.D H J t∂∇⨯=+∂,B E t ∂∇⨯=-∂,0B ∇=,D ρ∇=2静电场的基本方程积分形式为:CE dl =⎰SD d s ρ=⎰3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。
6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。
7应用镜像法和其它间接方法解静态场边值问题的理论依据是。
8.电场强度E的单位是,电位移D的单位是 。
9.静电场的两个基本方程的微分形式为 0E ∇⨯= ρ∇=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用3.00n S n n n Se e e e J ρ⎧⋅=⎪⋅=⎪⎨⨯=⎪⎪⨯=⎩D B E H 4.D E ε=,B H μ=,J E σ=5.J t ρ∂∇=-∂ 6.2ρϕε∇=-12ϕϕ= 1212n n εεεε∂∂=∂∂7.唯一性定理 8.V/m C/m21.在分析恒定磁场时,引入矢量磁位A ,并令B A =∇⨯的依据是(c.0B ∇= )2. “某处的电位0=ϕ,则该处的电场强度0=E”的说法是(错误的 )。
3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )l n (01aa D C -=πε )。
4. 点电荷产生的电场强度随距离变化的规律为( 1/r2)。
5. N 个导体组成的系统的能量∑==Ni ii q W 121φ,其中iφ是(除i 个导体外的其他导体)产生的电位。
6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 )7. 应用高斯定理求解静电场要求电场具有(对称性)分布。
8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。
8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
电磁场与电磁波一、填空题。
1.已知电荷体密度为ρ,其运动速度为v,则电流密度的表达式为:_________________.2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为∈,电荷体密度为零,电位所满足的方程为__________________________.3.时变电磁场中,平均坡印延矢量的表达式为_________________________.4.时变电磁场中,变化的电场可以产生_________________________.5、位移电流的表达式为______________________.6、两相距很近的等值异性的点电荷称为_______________________.7、恒定磁场是______场,故磁感应强度沿任一闭合曲面的积分等于零。
8、如果两个不等于零的矢量的叉积等于零,则此两个矢量必然相互______________________.9、对平面电磁波而言,其电场、磁场和波的____________三者符合右手螺旋关系。
10、由恒定电流产生的磁场称为恒定磁场,恒定磁场是连续的场,因此,它可以用磁矢位函数的__________来表示。
11、静电场中,在给定的边界条件下,拉普拉斯方程或泊松方程的解是唯一的,这一定理称为________________.12、变化的磁场激发__________是变压器和感应电动机的工作原理。
13.从矢量场的整体而言,无旋场的___________不能处处为0。
14.________________方程式经典电磁场理论的核心。
15.如果两个不等于0的矢量的点乘等于0,则此两个矢量必然相互________16.在导电媒质中,电磁波的传播速度随_____________变化的现象称为色放。
17.电场强度矢量的方向随时间变化所描绘的_____________称为极化。
18.两个相互靠近,又相互_____________的任意形状的导体可以构成电容器。
电磁场与电磁波试题I一、填空题1.极化强度P的电介质中,极化(束缚)电荷密度P ρ=______,极化(束缚)电荷面密度SP ρ=______。
2.电荷定向运动形成电流,当电荷密度ρ满足tρ∂=∂时,电流密度J应满足______ ,此时电流线的形状应为 曲线。
3.已知体积为V 的介质的介电常数为ε,其中的静电荷(体密度为ρ)在空间形成点位分布ϕ和电场分布E和D,则空间的静电能量密度为______,空间的总静电能量为______。
4.若两个同频率、同方向传播、极化方向互相垂直的极化波的合成波为圆极化波,则它们的振幅为______,相位差为______。
5.当圆极化波以布儒斯特角b θ入射到两种不同电介质分界面上时,反射波是______极化波,折射(透射)波是______极化波。
6.在球坐标系中,沿z 方向的电偶极子的辐射场(远区场)的空间分布与坐标r 的关系为______,与坐标θ的关系为______。
7.均匀平面电磁波由空气中垂直入射无损耗介质(0μμ=,04εε=,0σ=)表面上时,反射系数Γ=______,折射(透射)系数T =______。
8.自由空间中原点处的源(ρ或J)在t 时刻发生变化,此变化将在______时刻影响到r 处的位函数(ϕ或A )。
二、单项选择题1. 空气(介电常数10εε=)与电介质(介质常数104εε=)的分界面是0z =的平面。
若已知空气的电场强度124x z E e e =+,则电介质中的电场强度应为____。
A. 1216x z E e e =+ B. 184x z E e e =+ C. 12x z E e e =+2. 以下三个矢量函数中,能表示磁感应强度的矢量函数是_____。
A. x z B ye xe =+B. x z B xe ye =+C. 22x z B x e y e =-3. 用镜像法求解静电场边值问题时,判断镜像电荷设置是否正确的依据是_____。
0引言
作业题:将下列科学家与其主要科学贡献连起来。
法拉第预言电磁波存在
奥斯特电磁感应定律
库仑发现电流的磁效应
安培定量研究电荷之间作用力赫兹研究电流元之间作用力
麦克斯韦实验证明电磁波的存在
1.1矢量的代数运算
1、根据矢量运算的性质证明,直角坐标系下cos x x y y z z A B AB A B A B A B θ⋅==++
2、求点P ’(-3, 1, 4)到点P(2, -2, 3)的距离矢量R 。
3、已知A =x e -9 y e -z e ,B =2x e -4y e +3z e ,求: (1) B A +=3 -13 2 (2) B A -=-1 -5 -4 (3) B A ⋅=35 (4)B A ⨯=-31ex-5ey+14ex
4、已知A =12 x e +9 y e +z e ,B =a x e +b y e ,若B ⊥A 及B 的模为1,试确定a 、b 。
1.2 方向导数和梯度
1、已知标量函数2u x yz =,求u 在点(2, 3, 1)处沿指定方向
l x y z e e e e =++的方向导数。
2、已知标量函数22223326u x y z x y z =+++--,(1)求u ∇;(2)在哪些点上u ∇等于0。
1、求下列矢量场在给定点的散度值
(1)()x y z xyz x y z =++A e e e 在(1,3,2)M 处;
(2)242x y z x xy z =++A e e e 在(1,1,3)M 处;
(3
)x y z
++=e e e A 在(1,1,1)M 处。
1、求下列矢量场在给定点的旋度值
(1)222x y z x y z =++A e e e 在(1,0,1)M -处;
(2)x y z yz zx xy =++A e e e 在(2,1,3)M 处;
(3)()x y z xyz =++A e e e 在(1,1,1)M -处。
1.5 矢量的恒等式和基本定理
1.6三种常用的正交坐标系
作业题
1、试将直角坐标系中的矢量2
x y z y x =++A e e ,转换为圆柱坐标系中表
达式的矢量。
提示:转换包括坐标变量的转换和单位矢量的转换。
答案:
的模
2、(1)求矢量22222324x y z x x y x y z =++A e e e 的散度;(2)求∇⋅A 对中心在原点的一个单位立方体的积分;(3)求A 对此立方体表面的积分,验证散度定理。
提示:需要利用直角坐标系下面积元的表达式。
3、求矢量22x y z x x y z =++A e e e 沿xy 平面上的一个边长为2的正方形回路的线积分,此正方形的两边分别与x 轴和y 轴重合。
再求∇⨯A 对此回路所包围的曲面的面积分,验证斯托克斯定理。
提示:需要利用直角坐标系下长度元的表达式。