某电厂超临界塔式锅炉启动系统的技术特点
- 格式:doc
- 大小:24.50 KB
- 文档页数:3
600MW超临界机组锅炉启动系统特点与运行控制研究发表时间:2018-05-11T16:12:47.447Z 来源:《电力设备》2017年第36期作者:令狐绍伟[导读] 摘要:文章基于600MW超临界机组介绍其汽包锅炉与直流锅炉启动系统的特点,并重点分析锅炉启动前的水冲洗阶段、碱洗和酸洗阶段、热态冲洗和吹管阶段以及干湿态转换阶段的运行控制措施。
(贵州兴义电力发展有限公司贵州省兴义市 562400)摘要:文章基于600MW超临界机组介绍其汽包锅炉与直流锅炉启动系统的特点,并重点分析锅炉启动前的水冲洗阶段、碱洗和酸洗阶段、热态冲洗和吹管阶段以及干湿态转换阶段的运行控制措施。
关键词:600MW超临界机组;锅炉;启动系统1引言随着我国国民经济的发展,人们对于电力能源的需求量不断增加,而且随着能源紧缺和环境恶化问题的不断加剧,我国针对电力行业也加速了能源结构调整和电力企业改革。
对于燃煤火电厂来说,目前主要的发展方向就是发展大容量的超临界以及超超临界机组,其较强的负荷适应性和较高的经济性,符合我国建设资源节约型和环境友好型社会的要求。
超临界直流炉和汽包炉在结构、运行特性和控制方式上有着较大的不同,需要对600MW超临界机组锅炉启动系统特点和运行控制进行研究和讨论。
2 600MW超临界机组锅炉启动系统特点直流锅炉的构造与汽包锅炉不同,其构造中没有汽包的存在,其炉内工质的流动主要依靠水泵的压力作用,由于没有汽包的存在,炉内的水、汽水混合物以及蒸汽会在此压力作用下一次性全部通过受热面。
所以在直流锅炉点火启动时,为了确保启动安全,必须要保证炉膛水冷壁管内的流量应大于最小流量值,从而确保流动的稳定性和确保水冷壁管壁温度在允许的范围之内。
此外,一旦锅炉在启动过程中,以及运行中的产汽量低于最小流量值时,为了防止多余的水进入过热器系统中,还需要在过热器之前增加一个启动旁路系统中将多余的水排掉。
综上所述,对于直流锅炉来说,其启动系统的主要作用就是在锅炉启停以及低负荷的运行过程中,为了确保炉膛内的流量并对水冷壁管进行保护,同时还需要满足机组启停以及低负荷运行时对蒸汽流量的要求。
超临界锅炉与自然循环锅炉相比,有以下的启动特点:超临界机组是指过热器出口主蒸汽压力超过22.129Mpa。
目前运行的超临界机组运行压力均为24Mpa~25Mpa, 理论上认为,在水的状态参数达到临界点时(压力22.129、温度374.℃),水完全汽化会在一瞬间完成,即在临界点时饱和水和饱和蒸汽之间不再有汽、水共存的二相区存在,二者的参数不再有区别。
由于在临界参数下汽水密度相等,因此在超临界压力下无法维持自然循环即不能采用汽包锅炉,直流锅炉成为唯一型式。
提高蒸汽参数并与发展大容量机组相结合是提高常规火电厂效率及降低单位容量造价最有效的途径。
与同容量亚临界火电机组的热效率相比,在理论上采用超临界参数可提高效率2%~2.5%,采用超超临界参数可提高4%~5%。
目前,世界上先进的超临界机组效率已达到47%~49%。
1.1.1.超临界机组的启动特点超临界锅炉与亚临界自然循环锅炉的结构和工作原理不同,启动方法也有较大的差异,超临界锅炉与自然循环锅炉相比,有以下的启动特点:•设置专门的启动旁路系统直流锅炉的启动特点是在锅炉点火前就必须不间断的向锅炉进水,建立足够的启动流量,以保证给水连续不断的强制流经受热面,使其得到冷却。
一般高参数大容量的直流锅炉都采用单元制系统,在单元制系统启动中,汽轮机要求暖机、冲转的蒸汽在相应的进汽压力下具有50℃以上的热度,其目的是防止低温蒸汽送入汽轮机后凝结,造成汽轮机的水冲击,因此直流炉需要设置专门的启动旁路系统来排除这些不合格的工质。
•配置汽水分离器和疏水回收系统超临界机组运行在正常范围内,锅炉给水靠给水泵压头直接流过省煤器、水冷壁和过热器,直流运行状态的负荷从锅炉满负荷到直流最小负荷,直流最小负荷一般为25%~45%。
低于该直流最小负荷,给水流量要保持恒定。
例如在20%负荷时,最小流量为30%意味着在水冷壁出口有20%的饱和蒸汽和10%的饱和水,这种汽水混合物必须在水冷壁出口处分离,干饱和蒸汽被送入过热器,因而在低负荷时超临界锅炉需要汽水分离器和疏水回收系统,疏水回收系统是超临界锅炉在低负荷工作时必需的另一个系统,它的作用是使锅炉安全可靠的启动及其热损失最小。
超临界锅炉的基本结构及技术特点下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!以下是一篇关于超临界锅炉的基本结构及技术特点的中文演示性文章:超临界锅炉的基本结构及技术特点。
超临界锅炉启动系统分析部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑摘要介绍了国产600MW超临界机组锅炉启动系统结构及运行特性,阐述了启动系统的结构,启动系统的流程以及运行特性,分析了各种启动系统之间的不同<包括安全性,经济性等)以及不同设备运行对于启动系统运行的影响等。
关键词:超临界机组启动系统结构特性运行特性AbstractIntroduced domestic 600MW Supercritical Boiler Start System structure and operating characteristics, described the structure of the boot system, boot the system processes, and operational characteristics of the different promoters, the difference between the systems (including security, economy, etc.> and start the system running for different devices running on and soon.b5E2RGbCAPKeywords:Supercritical units;StartSystem ;operational characteristics;operating characteristicsp1EanqFDPw目录第一章前言3第二章600MW超临界锅炉主要系统5第三章超临界锅炉启动系统9第一节超临界锅炉启动系统的结构9第二节超临界锅炉启动系统的分类12第三节锅炉启动系统的比较15第四章超临界锅炉启动系统运行特性分析17第五章结束语20参考文献21附录22第一章前言一、超临界机组发展背景火电机组的发展已历经百年,发达国家超临界机组运用已有40多年的历史,1963年,前苏联第一台30万千瓦超临界机组投入运行,机组参数为23.5Mpa/580℃/565℃。
超临界机组锅炉启动系统特点及分析(2) 内置式分离器启动系统内置式启动系统指在机组启动、正常运⾏、停运过程中,启动分离器均投⼊运⾏,所不同的是在锅炉启停及低负荷运⾏期间,启动分离器湿态运⾏,起汽⽔分离作⽤;⽽在锅炉正常运⾏期间(负荷⾼于最低直流负荷时,通常为30%BMCR或35%BMCR),从⽔冷壁出来的微过热蒸汽经过分离器,进⼊过热器,此时分离器仅起⼀连接通道作⽤。
内置式启动系统的启动分离器设在蒸发区段和过热区段之间,启动分离器与蒸发段和过热器之间没有任何阀门,系统简单,操作⽅便,不需要外置式启动系统所涉及的分离器解列或投运操作,从根本上消除了分离器解列或投运操作所带来的汽温波动问题,但分离器要承受锅炉全压,对其强度和热应⼒要求较⾼。
内置式分离器启动系统适⽤于变压运⾏锅炉。
⽬前,在世界各国超(超)临界锅炉上,内置式启动系统得到⼴泛应⽤。
内置式的启动系统可分为扩容式(⼤⽓式、⾮⼤⽓式两种)、启动疏⽔热交换器和循环泵(并联和串联两种)⽅式。
⼏种内置式分离器启动系统的简单⽐较见表1。
表1 内置式启动系统的分类由表1可知,启动疏⽔热交换式和带再循环泵的启动系统具有良好的极低负荷运⾏和频繁启动特性,适⽤于带中间负荷和两班制运⾏。
扩容式(⼤⽓式和⾮⼤⽓式)低负荷和频繁启停特性较差,但初投资较前者少,适⽤于带基本负荷的电⼚。
① 简单疏⽔扩容式启动系统在机组启动过程中,启动分离器中的疏⽔经⼤⽓式扩容器扩容,⼆次汽排⼊⼤⽓,⼆次⽔经集⽔箱、疏⽔泵排⾄凝汽器。
启动系统主要由除氧器、给⽔泵、⼤⽓式扩容器、集⽔箱、AN阀、ANB阀及启动分离器等组成。
图2 简单疏⽔扩容器的启动系统在锅炉启动时,分离器⽔位容器建⽴⽔位,此时压⼒为0,点⽕后,炉⽔被加热并逐渐开始蒸发产汽,分离器内开始建⽴压⼒,此时汽压通过汽机旁路门开度来维持和控制,⽔位由分离器排⽔阀控制。
⽴式内置式分离器(或⽔位容器)的⾼度很⾼,主要是由于满⾜⽔位的较⼤波动和便于控制,因为⽴式容器横断⾯积很⼩,单位长度储⽔量不⼤,所以⽔位波动往往很⼤,有时波动量达±5m,甚⾄更⼤⼀些,特别是在炉⽔开始蒸发的阶段,由于⽔冷壁系统产⽣汽⽔膨胀现象,瞬间有⼤⼤多于给⽔流量的⽔涌往分离器,使其⽔位产⽣剧烈波动。
超临界直流锅炉启动特点及启动系统1.直流锅炉与汽包锅炉的启动区别汽包锅炉有自然循环锅炉和强制循环锅炉。
自然循环锅炉蒸发受热面内的工质流动依靠下降管中的水和上升管(水冷壁)中的汽水混合物之间的密度差产生的压力差进行循环流动。
强制循环锅炉蒸发受热面内的工质除了依靠水和汽水混合物的密度差以外,主要依靠炉水循环泵的压头进行汽水循环流动。
自然循环锅炉和强制循环锅炉均带有一个很大的汽包对汽水进行分离,汽包作为分界点将锅炉受热面分为加热蒸发受热面和过热受热面两部分。
直流锅炉是靠给水泵的压力,使锅炉中的工质,水、汽水混合物和蒸汽一次通过全部受热面。
它只有互相连接的受热面,而没有汽包。
自然循环锅炉在点火前锅炉上水至汽包低水位,此时水冷壁中的水处于静止状态,锅炉点火后,水冷壁吸收炉膛辐射热,水温升高,水循环开始建立。
随着燃料量的增加,蒸发量增大,水循环加快,受热强的水冷壁管内工质流速增加。
因此,启动过程水冷壁冷却充分,运行安全。
强制循环锅炉在锅炉上水后点火前,循环泵就开始工作,水冷壁系统建立了循环流动,从而保证了水冷壁在启动过程中的安全。
直流锅炉在启动前必须由锅炉给水泵建立一定的启动流量和启动压力,强迫工质流经受热面。
只有这样才能在启动过程中使受热面得到冷却。
但是,直流锅炉不像汽包锅炉那样有汽包作为汽水固定的分界点,水在锅炉管中加热、蒸发千口过热后直接向汽轮机供汽,而在启停或低负荷运行过程中有可能提供的不是合格蒸汽,可能是汽水混合物,甚至是水。
因此,直流锅炉必须配套一个特有的启动系统,以保证锅炉启停和低负荷运行期间水冷壁的安全和正常供汽。
2.直流锅炉启动特点启动压力启动压力一般指启动前在锅炉水冷壁系统中建立的初始压力。
它的选择除与锅炉型式有关,还与下列因素有关:1)受热面内的水动力特性直流炉蒸发受热面内的水动力特性与其工作压力有关,随着压力的提高,能改善或避免水动力不稳定性,减轻或消除管间脉动。
2)工质膨胀现象启动压力越高,汽水比容差越小,工质膨胀量越小,这样启动分离器的容量可以相对选择的小一些。
超临界锅炉的启停的概述及特性一. 单元机组锅炉启停概述锅炉由静止状态变成运行状态的过程称为启动。
停运是启动的反过程,即由负荷状态变成静止状态。
锅炉启停的实质就是冷热态的转变过程。
锅炉的启动分为冷态启动、温态启动、热态启动和极热态启动。
所谓冷态启动是指锅炉的初始状态为常温和无压的启动,这种启动通常是新锅炉、锅炉经过检修或者经过较长时间停炉备用后的启动。
温态启动、热态启动和极热态启动则是指锅炉还保持有一定的压力和温度,启动时的工作内容与冷态启动大致相同,它们是以冷态启动过程中的某一阶段作为启动的起始点,而启始点以前的某些工作内容在这里可以省略或简化,因而它们的启动时间可以较短。
对单元制机组而言,锅炉的启动时间是指从点火到机组带到额定负荷所花的全部时间。
锅炉的启动时间,除了与启动前锅炉的状态有关外,还与锅炉机组的型式、容量、结构、燃料种类、电厂热力系统的型式及气候条件等有关。
与国产600MW超临界机组配套的超临界直流锅炉,冷态启动时间为5~6h左右,温态启动时间为2~3h,热态启动时间为1~1.5h,极热态启动时间小于lh。
锅炉启动时间的长短,除了上面提到的条件之外,尚应考虑以下两个因素:1)使锅炉机组的各部件逐步和均匀的得到加热,使之不致产生过大的热应力而威胁设备的安全。
2)在保证设备安全的前提下,尽量缩短启动时间,减少启动过程的工质损失及能量损失。
锅炉的启动也可以根据机组中锅炉和汽轮机的启动顺序,或启动时的蒸汽参数,把机组的启动分为定压启动(又称顺序启动)和滑参数启动(又称联合启动)。
一般单元制机组都采用滑参数联合启动。
单元制机组锅炉停运有滑参数停运、定参数停运、事故停运三种类型。
前两种有时也合称为正常停运。
锅炉的启停过程是一个不稳定的状态变化过程,过程中锅炉工况的变化很复杂。
如在启动过程中:各部件的工作压力和温度随时在变化,启动时各部件的加热不可能完全均匀,金属体中存在着温度差,会产生热应力。
启动初期炉膛的温度低,在点火后的一段时间内,燃料投入量少,燃烧不容易控制,易出现燃烧不完全、不稳定、炉膛热负荷不均匀,还可能出现灭火和爆炸事故;在启动过程中,各受热面内部工质流动尚不正常,易引起局部超温。
某电厂超临界塔式锅炉启动系统的技术特点[摘要]本文主要介绍了某电厂塔式锅炉启动系统的主要技术特点。
【关键词】锅炉;启动系统;技术特点
1、锅炉特点
某电厂2台670MW锅炉为一次中间再热、超临界压力变压运行带内置式再循环泵启动系统的直流锅炉、单炉膛、平衡通风、固态排渣、全钢架、全悬吊结构、紧身封闭布置的塔式锅炉。
采用低NOx燃烧器系统,40只燃烧器采用八角切圆布置,8台MB3600/1000/490风扇磨煤机直吹式制粉系统,6运1备1检修。
锅炉以最大连续出力工况(BMCR)为设计参数。
在任何6台风扇磨煤机运行时,锅炉能长期带BMCR负荷运行。
2、启动系统技术特点
启动系统为内置式带再循环泵系统。
启动系统是为了锅炉在启动过程中和低负荷运行时,锅炉水冷壁管内工质流量维持在高于最小流量的水平,避免管子过热超温。
启动系统的回路设置是:水从省煤器入口集箱进入,经过省煤器、炉膛到汽水分离器,分离下来的水通过分离器下部的贮水箱由再循环泵再次送入省煤器,分离出来的蒸汽进入过热器吊挂管,然后依次流经一级过热器、二级过热器和末级过热器,最后由主汽管道引出。
当机组负荷达到本生点以上(30%B-MCR 负荷)时,启动系统将被关闭进入热备用状态,锅炉处于直流运行状态。
此时进入锅炉的给水量与进入汽机的蒸汽量相等。
在点火之前,给水品质应符合标准所推荐的要求。
如果给水品质不符合要求,比如在长时间停炉之后,可以用锅炉的给水泵将水经省煤器、炉膛水冷壁送入汽水分离器,再由分离器引至疏水扩容器。
此处不合格的水可以根据水质不同经冷凝器送入精处理设备,或者直接排入地沟。
一旦给水品质满足要求,就可以通过锅炉给水泵给锅炉上水。
在此期间省煤器上的放气阀要打开,以便排除省煤器中的空气。
省煤器中空气排除完后,关闭省煤器放气阀,并打开过冷水阀以确保再循环泵吸入口保持净正压,同时再循环泵启动来维持炉膛的最小质量流量。
此时流经给水泵的给水大约为最大流量的5%左右。
由于贮水箱的液面要维持在一定的高度,所以这5%的流量需要由贮水箱排放到冷凝器以维持贮水箱中的液面高度。
如果所有的联锁保护就绪,锅炉就可以点火。
在过热器和再热器建立足够的蒸汽流量之前,燃料的投放量一定要控制,以避免出现超温现象。
当过热器和再热器内的流量大约为最大流量的20%时,减温器可以投入运行来控制蒸汽温度。
随蒸汽流量的增加,给水泵逐渐加大负荷以维持锅炉负荷增加的需要。
当汽机主汽阀前的蒸汽压力和温度达到汽机冲转所需的最低值,汽机进行冲转。
随着燃烧率的增加和锅炉负荷的提高,进入汽水分离器内的工质干度逐渐增加,冷凝水量逐渐减少,贮水箱内的水位逐渐降低,布置于再循环泵出口的流量调节阀随之关小,再循环流量相应减少。
当锅炉负荷提高到本生点以上时,进入汽水分离器内的工质全部转换为干蒸汽,贮水箱水位下降到循环泵控制水位范围的最低值,循环泵出口调节阀关闭,锅炉转为干态直流运行。
此时,循环泵并不是马上关闭,而是通过最小流量管路维持运行,当锅炉负荷上升到约33~35%BMCR时,循环泵关闭,同时启动系统开启暖管管路,对循环泵、溢流阀及管路进行暖管,保证这些设备处于可随时投运的热备用状态。
锅炉停炉过程与启动过程相类似,当锅炉负荷降低到约33~35%BMCR时,首先开启再循环泵,通过泵的最小流量管路维持其运行。
随着锅炉负荷继续降低,进入分离器的工质的过热度越来越小,当锅炉负荷降低到本生负荷及以下时,随锅炉燃烧率的降低,进入分离器的工质逐步由微过热蒸汽降到饱和蒸汽及湿蒸汽,锅炉由直流运行方式转为再循环运行方式。
此时,省煤器及水冷壁内的工质流量维持约30%BMCR不变,从水冷壁出来的汽水混合物在分离器内进行汽水分离,分离出来的饱和蒸汽进入到过热器系统继续被加热,而分离下来的饱和水则进入到贮水箱,经循环泵打回到给水管道进行再循环,与系统给水混合后满足30%BMCR左右的锅炉水冷壁最低工质流量要求,同时保持贮水箱中液面的高度要求。
再循环流量的大小是由布置在循环泵下游的水位调节阀根据贮水箱的水位进行控制。
由于存在暖管流量,在再循环泵启动前贮水箱可能存在一定的水位,可通过暖管管路及减温水旁路管路上的阀门相互配合来控制启泵前的贮水箱水位,以保证循环泵能够顺利启动。
随着锅炉负荷的下降,由分离器分离下来的水量越来越多,而锅炉供汽量越来越小,此时,需要增加再循环泵的出力满足再循环流量越来越大的情况,同时应逐渐降低给水泵的出力使给水流量越来越小。
随着供汽量的逐渐减少及参数变化,在满足汽机达到最小负荷时,锅炉就可以停运。
启动系统由如下设备和管路组成:1)启动分离器及进出口连接管;2)贮水箱;3)溢流管及溢流阀;4)疏水扩容器;5)再循环泵及再循环管路;6)最小流量管路;7)过冷管;8)循环泵暖管管路;9)溢流管暖管管路;10)压力平衡管路。
启动分离器为立式筒体,共4只,布置在锅炉前部的上方,距前水冷壁的中心线距离为7.88635m,分离器间的距离为5.528m。
分离器外径为φ762mm,最小壁厚为120mm,筒身总有效高度约为4.058m,材料为SA-335P12。
从水冷壁出口集箱出来的介质经6根下倾30°的切向引入管在分离器的顶端引入,在本生负荷下汽水混合物在分离器内高速旋转,并靠离心作用和重力作用进行汽水分离。
在分离器内的中部偏上位置布置有脱水装置,其作用是消除介质旋转和向下
的动能,使分离器及与之相连的贮水箱中的水位稳定。
在分离器的底端布置有水消旋器并连接一根出口导管,将分离出来的水引至贮水箱;在分离器的上端布置有蒸汽消旋装置并也连接1根出口导管,将蒸汽引至一级过热器入口集箱。
每只分离器通过两根吊杆悬吊在锅炉顶板上。
贮水箱数量为1只,也是立式筒体,外径为φ762mm,最小壁厚为120mm,筒身有效高度约为20.946m,材料为SA-335P12,在其下部共有4根来自分离器的径向连接管分两层引入分离器的疏水。