一次函数与一次方程、一元一次不等式、二元一次方程组
- 格式:doc
- 大小:111.50 KB
- 文档页数:3
一次函数与方程(组)、不等式及二次函数与二元一次方程、二元一次不等式的关系1、一次函数与一元一次方程从“数”的角度看,解方程kx+b=0相当于一次函数y=kx+b 的函数值为0时,求自变量的取值;从“形”的角度看,解方程kx+b=0,相当于确定直线y=kx+b 与x 轴交点横坐标的值 一次函数与一元一次不等式从“数”的角度看,解不等于式kx+b 〉0(<0)相当于一次函数y=kx+b 的函数值>0(<0)时,求自变量x 的取值范围;从“形”的角度看,求不等于式kx+b>0(<0)的解集,相当于确定直线y=kx+b 在x 轴上(下)方部分所对应的自变量x 取值范围 从“数”的角度看,解不等于式11b x k +〉22b x k +相当于一次函数111b x k y +=与222b x k y +=函数值y 1>y 2时,求自变量的取值范围;从“形”的角度看,解不等于式11b x k +〉22b x k +,相当于确定直线111b x k y +=在直线222b x k y +=上(下)方部分所对应的自变量x 取值范围 一次函数与二元一次方程组从“数”的角度看,解二元一次方程组{y =k 1x +b 1y =k 2x +b 2相当于求自变量x 为何值时相应的两个函数y =k 1x +b 1与y =k 2x +b 2的函数值相等,从“形”的角度看,解二元一次方程组,相当于确定直线y =k 1x +b 1与y =k 2x +b 2交点的坐标类比可得出二次函数与二元一次方程、二元一次不等式的关系:1、从数的角度看,解方程02=c bx ax ++相当于二次函数c bx ax y ++=2的函数值y=0时自变量x 的值,从形的角度看,解方程02=++c bx ax 相当于确定二次函数c bx ax y ++=2与x 轴的交点模坐标的值2、从数的角度看,解方程)0(02<>++c bx ax 相当于二次函数c bx ax y ++=2的函数值y>0(<0)时自变量x 的取值范围,从形的角度看,解方程)0(02<>++c bx ax 相当于确定二次函数c bx ax y ++=2与在x 轴上(下)方部分所对应的自变量x 取值范围。
一、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
求直线y bkx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x b k =-,直线y b kx =+交x 轴于(,0)b k -,bk-就是直线y b kx =+与x 轴交点的横坐标。
二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
三、一次函数与二元一次方程(组)的关系一次函数的解析式y b k 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。
一、一次函数与一元一次方程综合【例1】 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( ) A.3 B.2 C.1 D.0【例2】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0【巩固】已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______.例题精讲知识点睛一次函数与方程、不等式综合二、一次函数与一元一次不等式综合【例3】已知一次函数25y x=-+.(1)画出它的图象;(2)求出当32x=时,y的值;(3)求出当3y=-时,x的值;(4)观察图象,求出当x为何值时,0y>,0y=,0y<【例4】当自变量x满足什么条件时,函数23y x=-+的图象在:(1)x轴下方;(2)y轴左侧;(3)第一象限.【巩固】当自变量x满足什么条件时,函数41y x=-+的图象在:(1)x轴上方;(2)y轴左侧;(3)第一象限.【例5】 如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( ) A.4x >- B .0x > C.4x <- D .0x <【巩固】一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【例6】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值; (2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围; (4)当21y -<<时,x 的值范围.【巩固】已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?【例7】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x <-D .0x <【巩固】如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.【例8】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.【巩固】直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.三、一次函数与二元一次方程(组)综合【例9】把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组()A.无解B.有唯一解C.有无数个解D.以上都有可能【例10】已知直线3y x=-与22y x=+的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.【巩固】如图所示的是函数y kx b=+与y mx n=+的图象,求方程组kx b ymx n y+=⎧⎨+=⎩的解关于原点对称的点的坐标是________.【例11】已知方程组y ax cy kx b-=⎧⎨-=⎩(a b c k,,,为常数,0ak≠)的解为23xy=-⎧⎨=⎩,则直线y ax c=+和直线y kx b=+的交点坐标为________.【巩固】已知24xy=⎧⎨=⎩,是方程组73228x yx y-=⎧⎨+=⎩的解,那么一次函数y=________和y=________的交点是________.【例12】阅读:我们知道,在数轴上,1x=表示一个点,而在平面直角坐标系中,1x=表示一条直线;我们还知道,以二元一次方程210x y-+=的所有解为坐标的点组成的图形就是一次函数21y x=+的图象,它也是一条直线,如图①.观察图①可以得出:直线1x=与直线21y x=+的交点P的坐标(1,3)就是方程组1210xx y=⎧⎨-+=⎩的解,所以这个方程组的解为13xy=⎧⎨=⎩;在直角坐标系中,1x≤表示一个平面区域,即直线1x=以及它左侧的部分,如图②;21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.(1)y=2x+1x=1x=1(2)(3)回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组122x y x =-⎧⎨=-+⎩的解;2y 1=2x+1(4)⑵在上面的直角坐标系中,用阴影表示220y x y ⎪≤-+⎨⎪≥⎩所围成的区域.⑶如图⑷,表示阴影区域的不等式组为: .1. 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.2. 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.3.已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( ) A .20y -<< B .40y -<< C .2y <- D .4y <-课后作业4.已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x < C .6x <- D .6x >-5.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( ) A .0 B .1 C .2 D .36. b 取什么整数值时,直线32y x b =++与直线2y x b =-+的交点在第二象限?7.已知一次函数6y kx b =++与一次函数2y kx b =-++的图象的交点坐标为A (2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.。
一元一次方程一元一次不等式一次函数之间的关系随着数学的学习深入,我们会发现一元一次方程、一元一次不等式和一次函数之间有着紧密的联系。
在本文中,我将对这三者之间的关系进行探讨。
一元一次方程一元一次方程是数学中非常基础的概念,它表达的是一个未知数的值需要满足的条件。
一元一次方程的一般形式为ax+b=0(其中a和b为已知数,x为未知数)。
它有且只有一个解,解为x=-b/a。
我们可以通过将未知数表示出来,来解决各种各样的问题。
比如:“丽丽现在的年龄是小明的三倍,而小明现在的年龄是5岁,那么请问丽丽现在的年龄是多少岁?”这个问题可以表示成x=3*5,即x=15岁。
一元一次不等式一元一次不等式也可以表示为类似于ax+b≥0或者ax+b<0的形式,它要求未知数满足一定的条件。
比如:“一个小卖部卖饮料,每一瓶饮料的成本是1元,销售价格是3元,如果要利润不少于4元,那么至少需要卖出几瓶饮料?”这个问题可以表示成x*2≥4,即x≥2瓶。
一次函数一次函数是以一次方程(即y=kx+b)为基础,表示为y=f(x)的函数。
事实上,一次函数可以通过一元一次方程的解析式来表示出来。
(y-y1)=k(x-x1)对应解析式为y=kx+(y1-kx1)。
因为一次函数中的k的值表示的是斜率,所以通过一次函数可以得到许多信息。
比如:两点之间的距离公式(d=√(x1-x2)²+(y1-y2)²)就可以表示为一次函数的形式。
如果我们要获得两个点的连线的斜率,那么只需要除以偏移量(即两个点在x轴上的距离)即可。
三者之间的关系可以看到,这三个数学概念之间有着紧密的联系。
具体而言,一元一次不等式可以看成在直线上面的点构成的区域,这个区域里面的点都是满足不等式的,而不在这个区域内的点则不满足这个不等式。
一元一次方程和一次函数则可以在二维坐标系上表示。
其中,一元一次方程对应的是一条直线,而一次函数则对应的是一条斜率为k,截距为b的直线。
一次函数、一次方程和一元一次不等式(基础)责编:杜少波【学习目标】1.能用函数的观点认识一次函数、一次方程与一元一次不等式之间的联系,能直观地用图形(在平面直角坐标系中)来表示方程的解及不等式的解,建立数形结合的思想及转化的思想.2.能运用一次函数的性质解决简单的不等式问题及实际问题.【要点梳理】要点一、一次函数与一元一次方程一次函数y kx b =+(k ≠0,b 为常数).当函数y =0时,就得到了一元一次方程0kx b +=,此时自变量x 的值就是方程kx b +=0的解.所以解一元一次方程就可以转化为:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,这相当于已知直线y kx b =+(k ≠0,b 为常数),确定它与x 轴交点的横坐标的值.要点二、一次函数与一元一次不等式由于任何一个一元一次不等式都可以转化为ax b +>0或ax b +<0或ax b +≥0或ax b +≤0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数y ax b =+的值大于0(或小于0或大于等于0或小于等于0)时求相应的自变量的取值范围.要点诠释:求关于x 的一元一次不等式ax b +>0(a ≠0)的解集,从“数”的角度看,就是x 为何值时,函数y ax b =+的值大于0?从“形”的角度看,确定直线y ax b =+在x 轴(即直线y =0)上方部分的所有点的横坐标的范围.要点三、一元一次方程与一元一次不等式我们已经学过,利用不等式的性质可以解得一个一元一次不等式的解集,这个不等式的解集的端点值就是我们把不等式中的不等号变为等号时对应方程的解.要点四、如何确定两个不等式的大小关系ax b cx d +>+(a ≠c ,且0ac ≠)的解集⇔y ax b =+的函数值大于y cx d =+的函数值时的自变量x 取值范围⇔直线y ax b =+在直线y cx d =+的上方对应的点的横坐标范围.【典型例题】类型一、一次函数与一元一次方程1、若直线y kx b =+与x 轴交于(5,0)点,那么关于x 的方程0kx b +=的解为______.【答案】5x =【解析】kx b +=0的解是直线y kx b =+与x 轴交点横坐标.【总结升华】当函数0y =时,就得到了一元一次方程kx b +=0,此时自变量x 的值就是方程kx b +=0的解.举一反三:【变式1】如图,已知直线y ax b =-,则关于x 的方程1ax b -=的解x =_________.【答案】4;提示:根据图形知,当y =1时,x =4,即1ax b -=时,x =4.∴方程1ax b -=的解x =4.【变式2】如图,直线y kx b =+分别交x 轴和y 轴于点A 、B ,则关于x 的方程kx b +=0的解为_______.【答案】2x =-;提示:方程kx b +=0的解其实就是当0y =时一次函数y kx b =+与x 轴的交点横坐标.由图知:直线y kx b =+与x 轴交于点(-2,0),即当x =-2时,y kx b =+=0.类型二、一次函数与一元一次不等式2、(2015•乐山模拟)如图,直线y=kx+b 交坐标轴于A (﹣3,0)、B (0,1)两点,则不等式﹣kx ﹣b <0的解集为( )A .x >﹣3B .x <﹣3C .x >3D .x <3【思路点拨】求﹣kx ﹣b <0的解集,即为kx+b >0,就是求函数值大于0时,x 的取值范围.【答案】A ;【解析】解:∵要求﹣kx ﹣b <0的解集,即为求kx+b >0的解集,∴从图象上可以看出等y >0时,x >﹣3.故选:A .【总结升华】本题考查了一次函数与不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.举一反三:【高清课堂:393614 一次函数与一元一次不等式,例2】【变式】如图,直线y kx b =+与坐标轴的两个交点分别为A (2,0)和B (0,-3),则不等式kx b ++3≥0的解集是( )A .x ≥0B .x ≤0C .x ≥2D .x ≤2【答案】A ;提示:从图象上知,直线y kx b =+的函数值y 随x 的增大而增大,与y 轴的交点为B (0,-3),即当x =0时,y =-3,所以当x ≥0时,函数值kx b +≥-3.3、直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为( ).A .1->xB .1-<xC .2-<xD .无法确定y=k 2-1-2y x y=k 1x+b O【答案】B ;【解析】从图象上看x k b x k 21>+的解,就是找到1l 在2l 的上方的部分图象,看这部分图象自变量的取值范围.当1-<x 时,x k b x k 21>+,故选B.【总结升华】本题考察了用数形结合的方法求解不等式的大小关系,解题的关键是找出表示两条直线的交点的横坐标,再根据在上方的图象表示的函数值大,下方的图象表示的函数值小来解题.举一反三:【变式】直线1l :1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的图象如图所示,则关于x 的不等式1k x b +<2k x c +的解集为( )A .x >1B .x <1C .x >-2D .x <-2【答案】B ;提示:1y k x b =+与直线2l :2y k x c =+在同一平面直角坐标系中的交点是(1,-2),根据图象得到x <1时不等式1k x b +<2k x c +成立.4、画出函数21y x =+的图象,并利用图象求:(1)方程2x +1=0的解;(2)不等式2x +1≥0的解集;(3)当y ≤3时,x 的取值范围;(4)当-3≤y ≤3时,x 的取值范围.【思路点拨】可用两点法先画出函数21y x =+的图象,方程2x +1=0的解从“数”看就是自变量x 取何值时,函数值是0,从“形”看方程2x +1=0的解就相当于确定直线21y x =+与x 轴的交点,故图象与x 轴交点的横坐标就是方程2x +1=0的解.同理:图象在x 轴上方所有点的横坐标的集合就构成不等式2x +1>0的解集.【答案与解析】解:列表: x 012- y 1 0在坐标系内描点(0,1)和1,02⎛⎫-⎪⎝⎭,并过这两点画直线,即得函数21y x =+的图象.如图所示.(1)由图象可知:直线21y x =+与x 轴交点1,02⎛⎫-⎪⎝⎭, ∴ 方程2x +1=0的解为12x =-; (2)由图象可知:直线21y x =+被x 轴在1,02⎛⎫-⎪⎝⎭点分成两部分,在点1,02⎛⎫- ⎪⎝⎭右侧,图象在x 轴的上方.故不等式2x +1≥0的解集为12x ≥-; (3)过点(0,3)作平行于x 轴的直线交直线21y x =+于点M ,过M 点作x 轴的垂线,垂足为N .则N 点坐标为(1,0);从图象上观察,在点(1,0)的左侧,函数值y ≤3,则当y ≤3时,自变量x 的取值范围是x ≤1;(4)过(0,-3)作x 轴的平行线交直线21y x =+于点P ,过P 作x 轴的垂线,垂足为H ,则点H 的坐标为(-2,0).观察图象,在(-2,0)的右侧,在(1,0)的左侧,函数值-3≤y ≤3.∴ 当-3≤y ≤3时,自变量的取值范围是-2≤x ≤1.【总结升华】仔细体会一次函数与一元一次方程及一元一次不等式之间的内在联系:(1)一元一次方程0kx b y +=(0y 是已知数)的解就是直线y kx b =+上0y y =这点的横坐标;(2)一元一次不等式1y ≤kx b +≤2y (1y ,2y 是已知数,且1y <2y )的解集就是直线y kx b =+上满足1y ≤y ≤2y 那条线段所对应的自变量的取值范围;(3)一元一次不等式kx b +≤0y (或kx b +≥0y )(0y 是已知数)的解集就是直线y kx b =+上满足y ≤0y (或y ≥0y )那条射线所对应的自变量的取值范围.举一反三:【变式】(2015秋•蒙城县校级月考)画出函数y=2x+6的图象,利用图象:(1)求方程2x+6=0的解;(2)求不等式2x+6>0的解;(3)若﹣2≤y≤2,求x 的取值范围.【答案】解:图象为:(1)观察图象知:该函数图象经过点(﹣3,0),故方程2x+6=0的解为x=﹣3;(2)观察图象知:当x >﹣3时,y >0,故不等式2x+6>0的解为x >﹣3;(3)当﹣2≤y≤2时,﹣4≤x≤﹣2.类型三、用一次函数的性质解决不等式的实际问题5、(1)如图,是函数y kx b =+的图象,它与x 轴的交点坐标是(-3,0),则方程kx b +=0的解是_________;不等式kx b +>0的解集是__________.(2)如图:OC ,AB 分别表示甲、乙两人在一次赛跑中.各自的路程S (米)和时间t (秒)的函数图象,根据图象写出一个正确的结论___________.【答案】(1)3x =-;3x <-;(2)根据图象的性质可以得到,两个两个函数的交点意义是当x =9秒时,两个人跑的路程相等,即两个人相遇;或者从图象上看出乙的速度比甲的速度快.【解析】(1)从图象上得到函数的增减性及与x 轴的交点的横坐标,即能求得方程kx b +=0的解和不等式kx b +>0的解集.(2)根据图象的性质可以得到,两个两个函数的交点意义是当x =9秒时,两个人跑的路程相等,即两个人相遇;或者从图象上看出乙的速度比甲的速度快.【总结升华】认真体会一次函数与一元一次方程及一元一次不等式之间的内在联系.理解数形结合思想的应用.。
数学高一下册知识点归纳
本文将对高一下册数学知识点进行归纳总结,包括代数、几何、概率统计等方面的内容。
一、代数部分
1. 数与式
1.1 数的分类与性质
1.2 数的四则运算
1.3 带有字母的式子
2. 一元一次方程与不等式
2.1 一元一次方程及其解的性质
2.2 一次不等式及其解的性质
3. 二元一次方程组与二元一次不等式组
3.1 二元一次方程组及其解的性质
3.2 二元一次不等式组及其解的性质
4. 根与系数的关系
5. 因式分解
6. 分式与分式方程
二、几何部分
1. 平面直角坐标系及一次函数
1.1 平面直角坐标系及其性质
1.2 一次函数及其性质
2. 平面图形的性质与判定
2.1 三角形的性质与判定
2.2 四边形、多边形的性质与判定
3. 圆的性质与判定
4. 相交线与平行线
5. 三视图与几何体
三、概率与统计部分
1. 抽样与调查
2. 随机事件及概率
3. 条件概率与事件独立性
4. 排列与组合
5. 统计量与统计分布
以上就是高一下册数学知识点的简要归纳,希望对你的学习有所帮助。
通过对这些知识点的理解和掌握,相信你能够在数学学科中取得更好的成绩!。
19.2.3 一次函数与方程、不等式【知识与技能】1.理解一次函数与方程、不等式的关系.2.会根据一次函数的图象解决一元一次方程、不等式、二元一次方程组的求解问题.【过程与方法】学习用函数的观点看待方程、不等式,初步感受用全面的观点处理局部问题的思想.【情感态度】经历方程、不等式与函数关系的探究,学习用联系的观点看待数学问题.【教学重点】一次函数与方程、不等式关系的应用.【教学难点】一次函数与方程、不等式关系的理解.一、情境导入,初步认识探究:1.解方程2x+20=0.2.在平面直角坐标系中画出一次函数y=2x+20的图象.问题1 直线y=2x+20与x轴交点横坐标是方程2x+20=0的解吗?为什么?问题2 这两个问题是同一个问题么?由学生完成以上任务的画图与思考,教师走入每个学习小组,指导交流与总结,适时对学生的发言进行评判.【归纳总结】从“数”的角度看,方程2x+20=0的解是x=-10;从“形”的角度看,直线y=2x+20与x轴交点的坐标是(-10,0),这也说明,方程2x+20=0的解是x=-10.由于任何一个一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应自变量的值,从图象上看,这相当于已知直线y=ax+b,确定它与x轴交点的横坐标的值.二、思考探究,获取新知问题1 一个物体现在的速度是5m/s,其速度每秒增加2m/s,再过几秒它的速度为17m/s?思考:(1)本题的相等关系是什么?(2)设再过x 秒物体速度为17m/s ,能否列出方程?(3)如果速度用y 表示,那么能否列出函数关系式?(4)上面不同的解法各有何特点?解法1 设再过x 秒物体速度为17m/s.由题意可知:2x+5=17,解得x=6.解法2 速度y (m/s )是时间x (s )的函数,关系式为y=2x+5.当函数值为17时,对应的自变量x 值可得2x+5=17.求得x=6.解法3 由2x+5=17可变形得到2x-12=0.从图象上看,直线y=2x-12与x 轴的交点为(6,0).故x=6.问题2 1.解不等式5x+6>3x+10.【思考】不等式5x+6>3x+10可以转化为ax+b >0的形式吗?所有的不等式是否都可以转化成这种形式呢?2.当自变量x 为何值时函数y=2x-4的值大于0?【思考】上述两个问题是同一个问题吗?3.问题2能用一次函数图象说明吗?【教学说明】引导学生解不等式后思考问题,并师生共同归纳:(1)在问题1中,不等式5x+6>3x+10可以转化为2x-4>0,解这个不等式得x >2.(2)解问题2就是要不等式2x-4>0,得出x >2时函数y=2x-4的值大于0.因此它们是同一问题.(3)如图,函数y=2x-4与x 轴的交点为(2,0),且这个函数的y 随着x 的增大而增大,故要求当函数y=2x-4的值大于0时的自变量的值,只需在图中找出当函数图象在x 轴上方时的x 的值即可,由图可知,当x >2时,函数y=2x-4的值大于0.问题3 试用一次函数图象法求解35821x y x y +=⎧⎨-=⎩,,从中总结你的体会. 【归纳总结】上面的方程组可以转化为385521y x y x ⎧=-+⎪⎨⎪=-⎩,其本质是求当x 为何值时,两个一次函数的y值相等,它反映在图象上,就是求直线3855y x=-+与y=2x-1的交点坐标.三、典例精析,掌握新知例1 若直线y=kx+6与两坐标轴所围成的三角形面积是24,求常数k的值是多少?【分析】(1)一次函数的图象与两坐标轴围成的图形是直角三角形,两条直角边的长分别是图象与x轴的交点的横坐标的绝对值和与y轴的交点的纵坐标的绝对值.(2)确定图象与两条坐标轴的交点坐标可以通过令x=0和y=0解方程求得.解:设直线y=kx+6与x轴和y轴分别交于点A、B.令y=0,得x=-6k;令x=0,得y=6.∴A(-6k,0),B(0,6),∴|OA|=|-6k|,|OB|=6.∴S=12OA·OB=12|-6k|×6=24.|k|=34.∴k=±34.【教学说明】教学中引导学生利用一次函数解析式和方程的关系先得出直线与两个坐标轴的交点,再借助直线y=kx+6与两坐标轴所围成的三角形面积是24来构造方程.例2 已知一次函数y=kx+b的图象如图所示,求(1)当x为何值时,kx+b>0;(2)当x为何值时,kx+b=0;(3)当x为何值时,kx+b<0.解:(1)当x<3时,kx+b>0;(2)当x=3时,kx+b=0;(3)当x>3时,kx+b<0.【教学说明】寻找kx+b>0的解集,实际上就是寻找当x为何值时,一次函数y=kx+b 的图象在x轴的上方;寻找kx+b<0的解集,实际上就是寻找x为何值时,一次函数y=kx+b的图象在x轴的下方.例3 用作图象的方法解方程组3 3 5. x yx y+=⎧⎨-=⎩,【分析】首先将两个方程分别写成一次函数的形式,然后在直角坐标系中作出它们的图象,观察得出两直线的交点坐标,从而得出方程组的解.解:由x+y=3,可得y=3-x.由3x-y=5,可得y=3x-5.在同一直角坐标系内作出一次函数y=3-x的图象l1和y=3x-5的图象l2,如图所示,观察图象得l1、l2的交点坐标为P(2,1).所以,方程组335x yx y+=⎧⎨-=⎩的解是21.xy=⎧⎨=⎩,四、运用新知,深化理解1.如图,已知直线y=kx-3经过点M,求此直线与x轴、y轴交点坐标.【分析】要求此直线与x轴、y轴的交点坐标,就需确定这条直线对应的函数解析式,即确定直线y=kx-3中的k,这由直线过点M(-2,1)求得.2.用画函数图象的方法解不等式3x+2>2x+1.【分析】本题可以把原不等式的两边分别看作一次函数,也可以先化简将其看作一个一次函数,然后画出函数图象求解.3.已知如图所示,直线l1:y=2x-4与x轴交于点A,直线l2:y=-3x+1与x轴交于点B,且直线l1与l2相交于点P,求△APB的面积.【分析】显然本题易求A点与B点的坐标,这样很容易求出线段AB的长度,则本题的关键就是求出点P的坐标,进而把点P的坐标转化为点P到线段AB的距离,求点P的坐标的方法就是联立l1和l2所表示的方程,建立成二元一次方程组,求解即可.【教学说明】下列问题有一定综合性,教师提示思路,由学生分组讨论求解.【答案】1.解:由图象可知,点M(-2,1)在直线y=kx-3上,∴-2k-3=1,解得k=-2.∴此直线的解析式为y=-2x-3.当y=0时,可得x=-32,∴直线与x轴交于(-32,0).当x=0时,可得y=-3,∴直线与y轴交于(0,-3).2.解法一:将原不等式的两边分别看作两个一次函数,画出直线y=3x+2和直线y=2x+1的图象,如图1,由图象可以看出它们的交点的横坐标为-1,当x>-1时,直线y=3x+2在直线y=2x+1的上方,即不等式3x+2>2x+1的解集为x>-1.图1 图2解法二:原不等式也可以化为x+1>0,画出y=x+1的图象,如图2,可以看出当x >-1时这条直线上的点在x轴的上方,即y=x+1>0,所以不等式的解集为x>-1.3.解:l1:y=2x-4,令y=0,x=2,则A(2,0)l2:y=-3x+1,令y=0,x=13,则B(13,0),则AB=53,2431y xy x=-⎧⎨=-+⎩解得12xy=⎧⎨=-⎩∴P(1,-2),则点P到直线AB的距离为2. ∴S△APB =12×53×2=53.五、师生互动,课堂小结结合下表总结一次函数与一元一次方程的关系:从数的角度看:从形的角度看:反思如何由一次函数图象求得一元一次不等式的解集.理解一次函数图象与二元一次方程组间的关系.掌握图象法解二元一次方程组的步骤.1.布置作业:从教材“习题19.2”中选取.2.完成练习册中本课时练习.用函数的观点看方程和不等式,是学生应该学会的一种数学思想方法,本课时教学应考虑到学生形成一种教学观点的需要,考虑学生对函数、方程、不等式之间关系的理解.应从不同角度(如练习,讨论交流)帮助学生认识知识间关系的本质,形成函数、方程、不等式知识间相互转化的能力.。
第三节一次函数与方程(组)及一元一次不等式二、核心纲要直线:y = kx+b(k≠0)与x轴交点的横坐标,就是一元一次方程kx+b = 0 (k≠0)的解.求直线y = kx+b与x轴交点时,可令y = 0,得到方程k + B = 0,解方程得x=bk-,直线y=kx+b交x轴于点(bk-,0),bk-就是直线y =kx+b与x轴交点的横坐标,可令y轴交点的横坐标.注:(1)从“数”看:kx+b=0(k≠0)的解⇔在一次函数y=kx+b(k≠0)中,令y=0时,x的值.(2)从“形”看:kx+b=0(k≠0)的解⇔一次函数y=kx+b(k≠0)的图像与x轴交点的横坐标.2.—次函数与一元一次不等式的关系(1) 任何一次一次不等式都可以转化为ax+b>0或ax + b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围.(2) 函数图像的位置决定两个函数值的大小关系①函数y1的图像在函数y2的图像的上方⇔y1>y2,如下图所示;②函数y1的图像在函数y2的下方⇔y1<y2,如下图所示;③特别说明:函数y 的图像在x 轴上方⇔y >0;函数y 的图像在X 轴下方y <0.3.一次函数与二元一次方程(组)的关系(1)一次函数的解析式:y =kx +b (k ≠0)本身就是一个二元一次方程,直线y =kx +b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y =kx +b (k ≠0),因此二元一次方程的解也就有无数个. (2) —次函数:y = kx +b (k ≠0)① 从“数”看,它是一个二元一次方程; ② 从“形”看,它是一条直线。
4.两条直线的位置关系与二元一次方程组的解 (1) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有唯一的解⇔直线y =k 1x +b 1不平行于直线y =k 2x +b 2⇔k 1≠k 2.(2) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩无解⇔直线y =k 1x +b 1平行于直线y =k 2x +b 2⇔k 1=k 2,b 1≠b 2. (3) 二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩有无数多个解⇔直线y =k 1x +b 1与y =k 2x +b 2重合⇔k 1=k 2,b 1=b 2.5.比较两个函数值大小的方法 (1) 画图像,求交点.(2) 过交点作平行于y 轴的直线. (3) 谁高谁大.6.数学思想数形结合和转化思想.本节重点讲解:一个定理,一个证明,两个思想.三、全能突破1.若直线y =(m -3)x +6与x 轴交于点(3,0),则m 的值为( ) A. 1 B. 2 C. 3 D. 42.如图19-3-1所示,一次函数y =kx +b 的图像经过A 、B 两点,则kx +b ≥0的解集是( ) A. x >0 B. x ≥—3 C. x >2 D. -3≤x ≤23.已知ax +b =0的解是2,则直线y =ax +b 与x 轴的交点坐标是______。
《13.3一次函数与一次方程、一次不等式》(第一课时)安徽省合肥市庐阳中学陈光宇
4.不解方程:你能说出方程3x+6=6解吗?
2.函数y=ax+b的图象如图,则方程ax+b=0的解为。
活动二:探究一次函数与一元一次不等式之间的联系
图1 图2
2.函数y=ax+的图象如图2
应不等式ax+b>0的解集为_______
附 板书设计:
一次函数与一元一次方程和一元一次不等式的关系
一元一次方程 一次函数 一元一次不等式 例题:利用图像 75x-300=0 y=75x-300 75x-300>300 求: 不等式363≥+-x 的解集 3x+6=0 x=-2 y=3x+6 (-2,0) 3x+6>0 x>-2 (1)先画出y=-3x+6的图像。
y=kx+b 与x 轴交点的横坐标就是方程kx+b=0的解。
(2) 找到纵坐标是3的点。
解不等式kx+b >0或<0(k 、b 常数,k ≠0) (3) 观察3≥y (y=3) 的图 就是求图象x 轴上方(或下方)的点 像部分对应的x 的范围
对应的自变量取值范围。
(4) 得出不等式的解集。
3x+6=6 x=-0 y=3x+6 (0,6)
kx+b=n x=m y=kx+b (m.n) n b kx >+。
一次函数与一元一次方程,一元一次不等式及方程组目标:1.理解一次函数与一元一次方程,一元一次不等式及方程组之间的关系,会根据一次函数的图像解决一元一次方程,一元一次不等式及方程组求解问题。
2.学习用函数的观点看待方程,不等式及方程组的方法,初步感受用全面的观点处理局部问题的思想。
学习重点:用一次函数解一元一次方程,一元一次不等式及方程组。
学习难点:理解一次函数与一元一次方程,一元一次不等式及方程组之间的关系一.温故知新1.已知直线经过(2,4)和点(0,-2),那么这条直线的解析式是()A.y=-2x+3B.y=3x-2C.y=-3x+2D.y=2x-32.解下列一元一次方程。
(1)2x+1=3 (2) 2x+1=0 (3) 2x+1=-1解(1) 2x+1=3 (2) 2x+1=0 (3) 2x+1=-1X=1 x=-1/2 x=-1二.合作探究1.下面3个方程有什么共同点和不同点?你能从函数的角度对解这三个方程进行解释吗?(1)2x+1=3 (2) 2x+1=0(3) 2x+1=-1共同点:都是一元一次方程.都可以化成ax+b=0的形式.左边都是2x+1.不同点:等号右边分别是3, 0,-1.从函数的角度看:解这三个方程实际上是求一次函数y=2x+1的函数值分别为3,0,-1时的自变量的值.当y=3时2x+1=3,当y=3时x=1所以2x+1=3的解x=1当y=0时2x+1=0,当y=0时x =-1/2所以2x+1=0的解为X=-1/2当y=-1时2x+1=-1,当y=-1时x=-1所以2x+1=-1的解为x=-12.利用函数图像解方程2x+3=4x-1解:原方程化为2x-4=0过(1,-2),(0,-4)两点做出y=2x-4函数的图像与x轴交于A(2,0)所以方程2x+3=4x-1的解为x=2.A3.归纳总结:任何一个一元一次方程都可以变形为ax+b=0(a≠0)的形式,所以一元一次方程的解就是一次函数y=ax+b的函数值为0时的自变量的值.即函数y=ax+b 与X轴交点的横坐标就是方程ax+b=0(a≠0)的解.4.下面3个不等式有什么共同点什么不同点?你能从函数的角度对解这三个不等式进行解释吗?(1)3x+2>2 (2)3x+2<0 (3)3x+2<-1共同点:都是一元一次不等式.都可以化成ax+b>0或ax+b<0的形式.左边都是3x+2. 不同点:不等号及不等号右边不同.从函数的角度看:解这三个不等式实际上是求一次函数y=3x+2的函数值分别大于2,小于0,小于-1时的自变量的取值范围值.在平面直角坐标系中做出y=3x+2函数的图像,分别求出y大于2,小于0,小于-1的自变量的范围.当y>2时,x>0.即3x+2>2的解集为x>0.当y<0时,x< -2/3,即3x+2<0的解集为x<-2/3当y<-1时,x< -1,即3x+2<0的解集为x< -15.用函数图像解不等式-x+3<3x-4解:在同一直角坐标系做出y1=-x+3, y2 =3x-4的图像 .两图像的交点坐标为P(7/4,5/4)由图像知:当x>7/4时,y1<y2 ,即不等式-x+3<3x-4的解集为x>7/4y2 =3x-4Py1=-x+35.归纳总结:任何一个不等式都可以变形为ax+b>o或ax+b<o的形式,所以解一元一次不等式相当于求一次函数y=ax+b的函数值大于0或小于0时,自变量x的取值范围。
一次函数与方程、不等式的关系考点·方法·破译 1. 一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数,k ≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y =kx +b 中,当y =0时则为一元一次方程.2. 一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数,且a ≠0,b ≠0)都可以化为y =a c x b b-+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3. 一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 【解法指导】由图象可知l 1与l 2的交点坐标为(-1,-2),即当x =-1时,两函数的函数值相等;当x >-1时,l 2的位置比l 1高,因而k 2x >k 1x +b ;当当x <-1时,l 1的位置比l 2高,因而k 2x <k 1x +b .因此选A .【变式题组】01.(浙江金华)一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .302.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5),则根据图像可得不等式2x +b >ax -3的解集是________. 03. (武汉)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式12x >kx +b >-2的解集为_________.第1题图 第2题图 第3题图【例2】若直线l 1:y =x -2与直线l 2:y =3-mx 在同一平面直角坐标系的交点在第一象限,求m 的取值范围. 【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x mm y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∴00x y >⎧⎨>⎩,∴5013201m m m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求∴ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∴l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∴y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0). ∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S ∴ABC =12×2×3=3.【变式题组】01. 已知一次函数y =ax +b 与y =bx +a 的图象相交于A (m ,4),且这两个函数的图象分别与y 轴交于B 、C 两点(B 上C 下),∴ABC 的面积为1,求这两个一次函数的解析式. 02. 如图,直线OC 、BC 的函数关系式为y =x 与y =-2x +6.点P (t ,0)是线段OB 上一动点,过P 作直线l 与x 轴垂直.⑴求点C 坐标; ⑵设∴BOC 中位于直线l 左侧部分面积为S ,求S 与t 之间的函数关系式;⑶当t 为何值时,直线l 平分∴COB 面积. 演练巩固·反馈提高 01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么∴ABC 的面积是( ) A .2 B .3 C .4 D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________.08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S ∴ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________.10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________. 11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________. 13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积; ⑶x 取何值时l 1的函数值大于l 2的函数值?14.(河北)如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32-). ⑴求直线l 2的解析式; ⑵求S ∴ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S ∴ADP =S ∴ADC ,求P 点坐标.第14题图15.已知一次函数图象过点(4,1)和点(-2,4).求函数的关系式并画出图象.⑴当x 为何值时,y <0,y =0,y >0? ⑵当-1<x ≤4时,求y 的取值范围; ⑶当-1≤y <4时,求x 的取值范围.16.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h时血液中含药量最高,达每毫升6μg (1μg =10-3mg ),接着就逐步衰减,10h 后血液中含药量为每毫升3μg ,每毫升血液中含药量y (μg )随时间x (h )的变化如图所示,当成人按规定剂量服药后, ⑴分别求x ≤2和x ≥2时,y 与x 之间的函数关系式;⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的,那么这个有效时间是多长?第16题图l 2。
19.2.3一次函数与方程、不等式(1)学习目标:1、认识一次函数与一元一次方程、一元一次不等式之间的联系.会用函数观点解释方程和不等式及其解(解集)的意义;2、经历用函数图象表示方程、不等式解的过程,进一步体会“以形表示数,以数解释形”的数形结合思想.重点:理解一次函数与二元一次方程的联系。
难点:利用一次函数的性质,得出一元一次不等式的解集过程:一、自主学习:学习教材P96-98页解答下列问题:1、直线y=2x+1与x轴交点的横坐标是,方程2x+1=0的解是。
从图象上看,一元一次方程ax+b=0相当于已知直线y=ax+b,确定它与轴焦点的坐标的值。
2、直线y=3x+2与x轴的交点的横坐标是,不等式3x+2﹤0的解集是,不等式3x+2﹥0的解集是。
从图象上看,一元一次不等式ax+b﹤0可以看做一次函数y=ax+b的值小于0时,求量相应的取值范围。
3、因为任何一个以x为未知数的一元一次方程都可以变形为ax+b=0(a≠0)的形式,所以解一元一次方程相当于在某个一次函数y=ax+b的函数值为时,求自变量x 的。
4、因为任何一个以x为未知数的一元一次不等式都可以变形为ax+b﹥0或(a ≠0)的形式,所以解一元一次不等式相当于在某个一次函数y= 的值或者时,求自变量x的。
二、合作探究1、若方程ax+b=0的解是x=-2则图中不一定是直线y=ax+b的是()A B C D2、已知关于x 的不等式ax+1﹥0 (a ≠0)的解集是x ﹤1,则直线y=ax+1与x 轴的交点是( )A 、 (0,1)B 、(-1,0)C 、(0,-1)D 、(1,0)三、巩固练习:1、直线y=-3x -3与x 轴的交点坐标是 ,不等式-3x+9﹥12的解集是 。
2、当x 时,直线y=-x+2上的点在x 轴下方。
3、函数y=mx+n 的图象如图所示,则方程mx+n=0的解是 ,不等式mx+n ﹤0的解集是 , 不等式mx+n ﹥-0.5的解集是4、画出函数y=2x+1的图象,根据图像解答下列问题(1)求在x 轴上方的图象对应的自变量x 的取值范围;(2)求直线y=1与图象的交点A 的坐标。
一次函数与一元一次方程、一元一次不等式( 组 )知识要点基础练知识点1一次函数与一元一次方程1.( 合肥包河区期中 )已知一次函数y=ax+b( a,b是常数,且a≠0 ),x与y 的部分对应值如下表:那么方程ax+b=0的解是( D )A.x=-1B.x=0C.x=1D.x=22.已知一次函数y=mx-n( m≠0 )与x轴的交点为( 4,0 ),则方程mx-n=0( m≠0 )的解是x=4.知识点2一次函数与一元一次不等式( 组 )3.( 合肥长丰期末 )如图,直线y=kx+b与x轴交于点( 3,0 ),则当y>0时,x 的取值范围是( D )A.x<0B.x>0C.x>3D.x<34.( 合肥庐阳区期末 )函数y=2x和y=ax+4的图象相交于点A( m,2 ),则不等式2x-4≤ax的解集是x≤1.x+3的图象,根据图象回答下列问题:5.画出函数y=-37x+3=0的解.( 1 )求方程-37x+3<0的解集.( 2 )求不等式-37( 3 )当x取何值时,y≥0?解:图略,易知图象与x轴的交点的坐标为( 7,0 ).x+3=0的解为x=7.( 1 )观察图象可知,方程-37x+3<0的解集为x>7.( 2 )观察图象可知,不等式-37( 3 )观察图象可知,当x≤7时,y≥0.综合能力提升练6.利用函数y=ax+b的图象解得ax+b<0的解集是x<-2,则y=ax+b的图象可能是( C )7.一次函数y=mx+n在x轴下方部分点的横坐标的范围是x<3,则不等式mx+n<0的解集为( B )A.x>3B.x<3C.x>-3D.x<-3【变式拓展】一次函数y=kx+b在x轴上方部分点的横坐标范围是x>-1,则不等式kx+b<0的解集为( C )A.x>-1B.x>1C.x<-1D.x<18.( 蚌埠期末 )如图,已知函数y1=3x+b和y2=ax-3的图象相交于点P( -2,-5 ),则不等式3x+b>ax-3的解集为( A )A.x>-2B.x<-2C.x>-5D.x<-59.( 滁州期末 )如图,一次函数y=kx+b( k≠0 )的图象与x轴的交点坐标为( -2,0 ),则下列说法:①y随x的增大而减小;②关于x的方程kx+b=0的解为x=-2;③kx+b>0的解集是x>-2;④b<0.其中正确的说法( C )A.1个B.2个C.3个D.4个10.在平面直角坐标系中,一次函数y=kx+b( k,b为常数,k≠0 )的图象如图所示,根据图象中的信息,可求得关于x的方程kx+b=3的解为x=-2.11.如图,经过点B( -2,0 )的直线y=kx+b与直线y=4x+2相交于点A( -1,-2 ),则关于x的不等式组4x+2<kx+b<0的解集为-2<x<-1.12.如图,直线l1:y=2x-2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2相交于点C( m,2 ).( 1 )求m的值;( 2 )求直线l2的表达式;( 3 )根据图象,直接写出1<kx+b<2x-2的解集.解:( 1 )把C( m,2 )代入y=2x-2,得2m-2=2,解得m=2.( 2 )把C( 2,2 ),B( 3,1 )代入y=kx+b,得{2k +b =2,3k +b =1,解得{k =−1,b =4, 所以直线l 2的表达式为y=-x+4. ( 3 )2<x<3.13.( 安庆期末 )如图,正比例函数y 1的图象和一次函数y 2的图象相交于点A ( -1,2 ),点B 为一次函数y 2的图象与x 轴负半轴的交点,且△ABO 的面积为3.( 1 )求这两个函数的表达式;( 2 )根据图象,直接写出当0<y 1<y 2时,自变量x 的取值范围.解:( 1 )因为点A ( -1,2 ),△ABO 的面积为 3, 所以OB=3,即点B 的坐标为( -3,0 ), 所以正比例函数y 1=-2x.设一次函数的表达式为y 2=kx+b ,把点A ( -1,2 ),点B ( -3,0 )代入,得{-k +b =2,-3k +b =0,解得{k =1,b =3, 所以一次函数y 2=x+3.( 2 )根据图象得x 的取值范围是-1<x<0.14.定义运算min{a ,b }:当a ≥b 时,min{a ,b }=b ;当a<b 时,min{a ,b }=a.如:min{4,0}=0;min{2,2}=2;min{-3,-1}=-3.根据该定义运算完成下列问题: ( 1 )min{-3,2}= -3 ,当x ≤2时,min{x ,2}= x ; ( 2 )若min{3x-1,-x+3}=3x-1,求x 的取值范围;( 3 )如图,已知直线y 1=x+m 与y 2=kx-2相交于点P ( -2,1 ).若min{x+m ,kx-2}=kx-2,结合图象,直接写出x 的取值范围是 x ≥-2 .解:( 2 )由题意,得3x-1≤-x+3,解得x ≤1.拓展探究突破练15.画出函数y=|x|-2的图象,利用图象回答下列问题: ( 1 )写出函数图象上最低点的坐标,并求出函数y 的最小值;( 2 )利用图象直接写出不等式|x|-2>0的解集;( 3 )若直线y=kx+b( k,b为常数,且k≠0 )与y=|x|-2的图象有两个交点A( m,1 ),B(12,-32),直接写出关于x的方程|x|-2=kx+b的解.解:图略.( 1 )最低点坐标是( 0,-2 ),函数y的最小值是-2. ( 2 )x>2或x<-2.( 3 )当y=1时,|x|-2=1,解得x=-3或x=3( 舍去 ),所以交点A的坐标为( -3,1 ),而交点B的坐标为(12,-3 2 ),所以关于x的方程|x|-2=kx+b的解为x=-3或x=12.。
一、一次函数与一元一次方程的关系直线y b k 0kx =+≠()与x 轴交点的横坐标,就是一元一次方程b 0(0)kx k +=≠的解。
求直线y b kx =+与x 轴交点时,可令0y =,得到方程b 0kx +=,解方程得x bk=-,直线y b kx =+交x 轴于(,0)b k -,bk -就是直线y b kx =+与x 轴交点的横坐标。
二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为a b 0x +>或a b 0x +<(b a 、为常数,0a ≠)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。
三、一次函数与二元一次方程(组)的关系一次函数的解析式y bk 0kx =+≠()本身就是一个二元一次方程,直线y b k 0kx =+≠()上有无数个点,每个点的横纵坐标都满足二元一次方程y b k 0kx =+≠(),因此二元一次方程的解也就有无数个。
一、一次函数与一元一次方程综合【例1】 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( ) A .2- B .2 C .1- D .0【例2】 已知一次函数y x a =-+与y x b =+的图象相交于点()8m ,,则a b +=______. 【例3】 已知一次函数y kx b =+的图象经过点()20,,()13,,则不求k b ,的值,可直接得到方程3kx b +=的解是x =______.二、一次函数与一元一次不等式综合【例4】 已知一次函数25y x =-+.(1)画出它的图象;(2)求出当32x =时,y 的值; (3)求出当3y =-时,x 的值;(4)观察图象,求出当x 为何值时,0y >,0y =,0y <【例5】 当自变量x 满足什么条件时,函数41y x =-+的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限.【例6】 已知15y x =-,221y x =+.当12y y >时,x 的取值范围是( )A .5x >B .12x < C .6x <- D .6x >-【例7】 已知一次函数23y x =-+(1)当x 取何值时,函数y 的值在1-与2之间变化?(2)当x 从2-到3变化时,函数y 的最小值和最大值各是多少?【例8】 直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为______.【例9】 若解方程232x x +=-得2x =,则当x _________时直线2y x =+上的点在直线32y x =-上相应点的上方.【例10】 如图,直线y kx b =+经过()21A ,,()12B --,两点,则不等式122x kx b >+>-的解集为______.【例11】 已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当2x =时,y 的值; (2)x 为何值时,0y <?(3)当21x -≤≤时,y 的值范围; (4)当21y -<<时,x 的值范围.三、一次函数与二元一次方程(组)综合【例12】 已知直线3y x =-与22y x =+的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.【例13】 已知方程组y ax c y kx b -=⎧⎨-=⎩(a b c k ,,,为常数,0ak ≠)的解为23x y =-⎧⎨=⎩,则直线y ax c =+和直线y kx b =+的交点坐标为________.【例14】 已知24x y =⎧⎨=⎩,是方程组73228x y x y -=⎧⎨+=⎩的解,那么一次函数y =________和y =________的交点是________.【例15】 一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )A .0B .1C .2D .3【例16】 已知一次函数y 6kx b =++与一次函数2y kx b =-++的图象的交点坐标为A(2,0),求这两个一次函数的解析式及两直线与y 轴围成的三角形的面积.【例17】 阅读:我们知道,在数轴上,1x =表示一个点,而在平面直角坐标系中,1x =表示一条直线;我们还知道,以二元一次方程210x y -+=的所有解为坐标的点组成的图形就是一次函数21y x =+的图象,它也是一条直线,如图①. 观察图①可以得出:直线1x =与直线21y x =+的交点P 的坐标(1,3)就是方程组1210x x y =⎧⎨-+=⎩的解,所以这个方程组的解为13x y =⎧⎨=⎩; 在直角坐标系中,1x ≤表示一个平面区域,即直线1x =以及它左侧的部分,如图②;21y x ≤+也表示一个平面区域,即直线21y x =+以及它下方的部分,如图③.(1)y=2x+1x=1x=1(2)(3)回答下列问题.⑴在下面的直角坐标系中,用作图象的方法求出方程组122x y x =-⎧⎨=-+⎩的解;2y 1=2x+1(4)⑵在上面的直角坐标系中,用阴影表示2220x y x y ≥-⎧⎪≤-+⎨⎪≥⎩所围成的区域.⑶如图⑷,表示阴影区域的不等式组为: .【例18】 若直线(2)6y m x =--与x 轴交于点()60,,则m 的值为( ) A.3 B.2 C.1 D.0【例19】 如图,直线y kx b =+与x 轴交于点()40-,,则0y >时,x 的取值范围是( ) A.4x >-B .0x >C.4x <-D .0x <【例20】 当自变量x 满足什么条件时,函数23y x =-+的图象在:(1)x 轴下方; (2)y 轴左侧; (3)第一象限.【例21】 一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <【例22】 已知一次函数y kx b =+的图象如图所示,当1x <时,y 的取值范围是( )A .20y -<<B .40y -<<C .2y <-D .4y <-【例23】 线32y x b =++与直线2y x b =-+的交点在第二象限?【例24】 如图所示的是函数y kx b =+与y mx n =+的图象,求方程组kx b ymx n y +=⎧⎨+=⎩的解关于原点对称的点的坐标是________.【例25】 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>C .2x <-D .0x <【例26】 如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是________.【例27】 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( )A.无解B.有唯一解C.有无数个解D.以上都有可能【例28】 b 取什么整数值时,直直线32y x b =++与直线2y x b =-+的交点在第二象限?练习1.直线y=kx+3与x 轴的交点是(1,0),则k 的值是 。
一次函数与一元一次方程、一元一次不等式、二元一次方程组1、某单位急需用车,但又不准备买车,他们和一个体车主或一国营出租车公司其中的一家签订月租车合同,设汽车每月行驶兀千米,应付给个体车主的月费用为)5元,应付给出租公司的月费用是『2元,)5、y 2分别与X之间的函数关系图象(两条射线)如图2-3-25所示,观察图象回答下列问题:(1)每月行驶的路程在什么范围时,租国营公司的车合算?(2)每月的行驶路程等于多少时,租两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300 km,那么这个单位租哪家车合算?图2-3-252、已知加是整数,且一次函数y =(加+ 4)兀+加+ 2的图象不过笫二象限,则加为 __________ .3、己知直线y = 4x-2与直线y = 3m-x的交点在第三象限内,则加的取值范围是_____________ .b +c o + c a + b4、、已知匚_^ == = + b + c = 那么y = kx + b的图彖一定不经过()a b cA.第一象限B.第二象限C.第三象限D.第四象限5、、已知关于兀的一次函数y = mx + 2m-7在一15兀55上的函数值总是正数,则加的取值范围是()A. m > 7B. m > 1C. 1 < m < 7D.都不对6、、如图6,两直线y x = kx + b和旳=加+ £在同一坐标系内图象的位置可能是()图67、火车站有甲种货物1530 t,乙种货物1150t,安排用一列火车运往广州,这列火车可拉A、B两种不同规格的车厢50节。
己知一节A型车厢的运费是0.5万元,一节B型车厢的运费是0.8万元。
(1)设这批货物的总运费是y (万元),用A型车厢兀节,写岀y与兀Z间的函数关系式;(2)已知35 t甲种货物与15 t乙种货物可装满一节A型车厢,25 I甲种货物和35 t乙种货物可装满一节B型车厢,按此要求安排A、B两种车厢的节数,有哪几种装运方案;(3)利用一次函数的性质,研究在这些方案屮,哪种方案运费最少?最少运费是多少?8、“5・12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨, B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)设A、B两个蔬菜基地的总运费为w元,写出w与x之问的函数关系式,并求总运费最小的调运方案;9、(2011年江苏盐都中考模拟)A、B两座城市之间有一条高速公路,甲、乙两辆汽车同吋分别从这条路两端的入口处驶入,并始终在高速公路上正常行驶.甲车驶往B城,乙车驶往A城,甲车在行驶过程中速度始终不变.甲车距3城高速公路入口处的距离y (千米)与行驶时间兀(时)之间的关系如图.(1)求y关于兀的表达式;(2)已知乙车以60千米/时的速度匀速行驶,设在相遇前的行驶过程中,两车相距的路程为$ (千• • •米).请直接写出S关于兀的表达式;(3)当乙车按(2)中的状态行驶与甲车相遇后,速度随即改为d (千米/时)并保持匀速行驶,结果比甲车晚40分蚀到达终点,求乙车变化后的速度Q.并在下图中画出乙车离开B城高速公路入口处的距离y (千米)与行驶时I'可x (时)之I'可的函数图彖.10.(河北省中考模拟试卷)(本小题满分8分)某块实验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克, 在第40天后每天的需水量比前一天增加100千克.(1)分别求出xW40和x$40时y与x之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时需要进行人工灌溉,那么应从第儿天开始进行人工灌溉?11、小颖和小亮上山游玩,小颖乘会缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50加加才乘上缆车,缆车的平均速度为180 m/min.设小亮出发兀min后行走的路程为y加.图中的折线表示小亮在整个行走过程中y与x 的函数关系.⑴小亮行走的总路程是____________ cm,他途中休息了 ________ min.⑵①当5O0W8O时,求y与兀的函数关系式;②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?12、(2010-茂名)张师傅驾车运送荔枝到某地出售,汽车出发前邮箱有油50升,行驶若干小时后,图中在加油站加油若干升,邮箱屮剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.(1)汽车行驶3小时候加油,中途加油31升;(2)求加油前邮箱剩余油量y与行驶时间t的函数关系式;(3)己知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问邮箱中的油是否够用?请说明理由.13、(本题满分12分)因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过4()h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图屮的折线表示甲水库蓄水量Q (万n?)与时间/(h)之间的函数关系.求:(1)线段BC的函数表达式;(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;(3)乙水库停止供水后,经过多长时间甲水库蓄水量乂降到了正常水位的最低值?14、(本题满分12分)如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽屮有一圆柱形铁块立放其屮(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽的水匀速注入乙槽,甲、乙两个水槽屮水的深度y (厘米)与注水时间X (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示 _______ 槽屮水的深度与注水时间的关系,线段DE 表示 _________ 槽屮水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点3的纵坐标表示的实际意义是甲槽乙槽图1(2)注水多长时间时,甲、乙两个水槽中水的深度相同?(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写出结果)15、甲、乙两名自行车爱好者准备在一段长为3 500米的笔直公路上进行比赛,比赛开始时乙在起点, 甲在乙的前面.他们同时出发,匀速前进,己知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为只秒),图屮的折线表示从两人出发至其屮一人先到达终点的过程屮s(米)与"秒)的函数关系.根据图中信息,回答下列问题:(1) ______________ 乙的速度为米/秒;(2)当乙追上甲时,求乙距起点多少米.(3)求线段"C所在直线的甫数关系式.16、(2011福建龙岩,23, 12分)周六上午8: 00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小吋后,因家里有急事,他立即按原路以4千米/吋的平均速度步行返回.同吋爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。
一次函数与方程、不等式、方程组复习讲学稿
知识点
1.解关于x 的方程kx+b=0,从数量上看:已知函数y=kx+b 的 为0,•求相应的 的值.从图象上看,相当于已知直线y=kx+b ,确定它与 •轴的交点的 .
2、解关于x 的不等式kx+b>mx+n 从图象上看:(1)当自变量x 取何值时,直线y=(k-m )x+b-n 上的点在x 轴的上方.或(2)当x 取何值时,直线y=kx+b 上的点在直线y=mx+n 上相应的点的上方.(不等号为“<”时是同样的道理) 3求两直线的交点坐标方法是:联立两直线的解析式组成方程组,方程组的解
就是交点的纵横坐标。
当两直线平行时,K 相等,且方程组无解。
练习1.直线y=kx+3与x 轴的交点是(1,0),则k 的值是 。
2.已知直线y=kx+b 与直线y=3x-1交于y 轴同一点,则b 的值是 。
3.直线y=3x+6与x 轴的交点的横坐标x 的值是方程2x+a=0的解,则a•的值是______.
4.已知直线y=2x+8与x 轴和y 轴的交点的坐标分别是_______、_______.•与两条坐标轴围成的三角形的面积是__________.
5.已知mx+n=0的解是x=-2,则直线y=mx+n 与x•轴的交点坐标是________. 6.方程3x+2=8的解是__________,则函数y=3x+2在自变量x 等于_________•
时的函数值是 .
7、如图,是直线y=kx+b 的图象,当x ______时,0=y ;当
x ______时,0y >;当x _________时,0<y 。
当x ______时,kx+b 2<,当x ______时,kx+b 2>则它的解析式是_______________;
8、(1)当___________时,1y =2y 的值;(2)当___________时,1y ≤2y 的值;(3)当___________时,1y >2y 的值;
9、已知直线y=-2x+1与y=kx 交于点(-2,a ),则a= ,k= 10、直线l 1:b x k y +=11与直线l 2:x k y 22=在同一平面直角
坐标系中,图象如图所示,则关于x 的不等式b x k x k +>12的解集为
11、若直线31y x =-与y x k =-的交点在第四象限,则k 的取值范围是( ) 12.如图1,一次函数y =kx +b 的图象经过A 、B 两点,则不等式b kx +>0的解集为:
13.已知直线y 1=-x +1与y 2=ax +b ,当x >-2时,y 1>y 2,当
x <-2时,y 1<y 2,则直线y 1=-x +1与y 2=ax +b 的交点坐标为: 14、一次函数y=4x-3与y= - 4x-3的图象的交点坐标是 15、函数3y ax =-的图象与4y bx =+的图象交于x 轴上一点,那么a ∶b 等于 。
16、一次函数b kx y +=2与a x y +=1的图象如图2所示,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2.其中正确的有: 17、求直线y=2x+4和y=-3x+9与x 轴所围成的面积.
18、如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;
(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得
ADP △与ADC △的面积相等,请直接..
写出点P 的坐标.
19、如图,直线L :22
1
+-=x y 与x 轴、y 轴分别交于A 、B 两点,在y 轴上有
一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动。
(1)求A 、B 两点的坐标;
(2)求△COM 的面积S 与M 的移动时间t 之间的函数关系式; (3)当t 何值时△COM ≌△AOB ,并求此时M 点的坐标。