2019年高考数学考试大纲解读专题06平面解析几何(含解析)文
- 格式:docx
- 大小:2.01 MB
- 文档页数:7
2019年平面解析几何真题汇编(含详解)1.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3 C .4D .8【答案】D 【解析】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .2.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是( )A .2B .1CD .2【答案】C 【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 3.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒【答案】D 【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 4.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为 ABC .2D【答案】A 【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为A .32 B .52 C .72 D .92【答案】B 【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△,7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D 【解析】∵双曲线的离心率ce a==,c=12a =, 8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A B C .2 D【答案】D 【解析】抛物线24y x =的准线l 的方程为1x =-,双曲线的渐近线方程为b y x a =±, 则有(1,),(1,)b b A B a a---,∴2b AB a =,24b a =,2b a =, ∴c e a ===9.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.10.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】( 【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.11.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y = 【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.12.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ .【答案】4 【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x'=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,13.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===14.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得3,22P ⎛⎫- ⎪ ⎪⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛-⎝⎭,所以212PF k ==.15.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B 且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO.由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .16.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围. 【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF ,于是1221)a PF PF c =+=,故C 的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P .所以4b =,a 的取值范围为)+∞.17.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点;(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.18.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【解析】(1)由题意得,b 2=1,c =1.所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2),则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t kt k k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).19.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点).(1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【解析】(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得222a c ⎫=+⎪⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫⎪⎝⎭.由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程;(2)求点E 的坐标.【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1.又因为DF 1=52,AF 2⊥x 轴,所以DF 232==, 因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=. (2)解法一:由(1)知,椭圆C :22143x y +=,a =2, 因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4).又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-. 由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-.将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1. 因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB ,从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B ,所以∠A =∠BF 1E ,从而EF 1∥F 2A .因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±. 又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S .(1)求p 的值及抛物线的准线方程;(2)求12S S 的最小值及此时点G 的坐标.【解析】(1)由题意得12p =,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t ---=,故24B ty =-,即2B y t =-,所以212,B t t ⎛⎫- ⎪⎝⎭. 又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t -+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t -=-,得()21,0Q t -.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,122122213434S m S m m m m =-=-=++++…当m =时,12S S取得最小值1+G (2,0).。
专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2)41717. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =.从而点C 到平面1C DE 的距离为41717.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)连接BD ,易知AC BD H =I ,BH DH =. 又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =, 所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =I , 所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =. 又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33.【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0),1(3,3,23)B ,33(,,23)22F ,C (0,2,0). 因此,33(,,23)22EF =u u u r ,(3,1,0)BC =-u u u r .由0EF BC ⋅=u u u r u u u r得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC AC --u u u r u u u r ,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u rn n ,得3030x y y z ⎧-+=⎪⎨-=⎪⎩, 取n (131)=,,,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u ru u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)455. 【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23. 连结OB .因为AB =BC =22AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°. 所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455.所以点C 到平面POM 的距离为455. 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧»CD所在平面垂直,M 是»CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DM =22=13AD AM +.因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN =22=13AD AN +.在等腰三角形DMN 中,MN =1,可得1132cos 26MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为1326. (3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM =3.又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =22AC AD +=4.在Rt △CMD 中,3sin 4CM CDM CD ∠==. 所以,直线CD 与平面ABD 所成角的正弦值为34.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)39 13.【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB===⊥⊥得11122AB A B==,所以2221111A B AB AA+=.故111AB A B⊥.由2BC=,112,1,BB CC==11,BB BC CC BC⊥⊥得115B C=,由2,120AB BC ABC==∠=︒得23AC=,由1CC AC⊥,得113AC=,所以2221111AB B C AC+=,故111AB B C⊥.因此1AB⊥平面111A B C.(2)如图,过点1C作111C D A B⊥,交直线11A B于点D,连结AD.由1AB⊥平面111A B C得平面111A B C⊥平面1ABB,由111C D A B⊥得1C D⊥平面1ABB,所以1C AD∠是1AC与平面1ABB所成的角.由1111115,22,21BC A B AC===得11111161cos,sin77C A B C A B∠=∠=,所以13C D=,故11139sin13C DC ADAC∠==.因此,直线1AC 与平面1ABB所成的角的正弦值是3913. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz .由题意知各点坐标如下:111(0,3,0),(1,0,0),(0,3,4),(1,0,2),(0,3,1),A B A B C --因此11111(1,3,2),(1,3,2),(0,23,3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n 即30,20,x y z ⎧+=⎪⎨=⎪⎩可取(3,1,0)=-n . 所以111|39sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB 所成的角的正弦值是3913. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==,22PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+. 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由AB AP ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)43.【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=2x,PM=3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以142PN x=.因为△PCD的面积为27,所以114227 22x x⨯⨯=,解得x=−2(舍去),x=2,于是AB=BC=2,AD=4,PM=23,所以四棱锥P−ABCD的体积()22412343 32V⨯+=⨯⨯=.【名师点睛】解答本题时,(1)先由平面几何知识得BC∥AD,再利用线面平行的判定定理证得结论;(2)取AD的中点M,利用线面垂直的判定定理证明PM⊥底面ABCD,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)见解析;(2)1:1【解析】(1)取AC的中点O,连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC I 平面BDE DE =, 所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,2BD DC ==. 由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)55;(2)见解析;(3)55. 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos 5AD DAP AP ∠==. 所以,异面直线AP 与BC 所成角的余弦值为55.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得2225DF CD CF =+=, 在Rt △DPF 中,可得5sin 5PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角的正弦值为55. 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥又1,A E EM ⊂平面1A EM ,1A E EM E =I , 所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.21.【2017年高考江苏卷】如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析;(2)见解析.【解析】(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥, 所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD I 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥, 所以BC ⊥平面ABD . 因为AD ⊂平面ABD , 所以BC ⊥AD .又AB ⊥AD ,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC , 又因为AC ⊂平面ABC , 所以AD ⊥AC .【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型: (1)证明线面、面面平行,需转化为证明线线平行; (2)证明线面垂直,需转化为证明线线垂直; (3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC AD ∥,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2)28. 【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD⊥平面PBN,由BC//AD得BC⊥平面PBN,那么平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=2得CE=2,在△PBN中,由PN=BN=1,PB=3得QH=14,在Rt△MQH中,QH=14,MQ=2,所以sin∠QMH=28,所以直线CE与平面PBC所成角的正弦值是28.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。
2019年重庆高考数学大纲1.平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.2.集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词"或"、"且"、"非"的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.3.函数考试内容:映射.函数.函数的单调性、奇偶性.反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数.函数的应用.考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.(4)理解分数指数幂的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图象和性质.(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.4.不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│.5.三角函数(第一个大题所在)考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式:sin2α+ cos2α=1,sinα/cosα=tanα,tanαcotα=1.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求:(1)了解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.(2)理解任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用"五点法"画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A,ω,φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。
平面解析几何专题1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是A B .1C D .2【答案】C【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离心率ce a==故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.【2019年高考全国Ⅰ卷文数】双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C的离心率为 A .2sin40° B .2cos40° C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒, 故选D .【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a ==对于椭圆()222210x y a b a b +=>>,有c e a ==3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=【答案】B【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1AF B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得2n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4422cos 9n n AF F n n n BF F n⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得n =.22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.4.【2019年高考全国Ⅱ卷文数】若抛物线y 2=2px (p >0)的焦点是椭圆2213x y p p+=的一个焦点,则p = A .2 B .3C .4D .8【答案】D【解析】因为抛物线22(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以23()2p p p -=,解得8p =,故选D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .5.【2019年高考全国Ⅱ卷文数】设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为A BC .2D 【答案】A【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴, 又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,∴||2c OA =,,22c c P ⎛⎫∴ ⎪⎝⎭, 又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a =∴==.e ∴=A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.6.【2019年高考全国Ⅲ卷文数】已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为 A .32B .52C .72D .92【答案】B【解析】设点()00,P x y ,则2200145x y -=①.又3OP OF ===,22009x y ∴+=②.由①②得20259y =,即053y =, 0115532232OPF S OF y ∴=⋅=⨯⨯=△, 故选B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设()00,P x y ,由=O P O F ,再结合双曲线方程可解出0y ,利用三角形面积公式可求出结果.7.【2019年高考北京卷文数】已知双曲线2221x y a-=(a >0a =AB .4C .2D .12【答案】D【解析】∵双曲线的离心率ce a==,c∴a=12a =,故选D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.8.【2019年高考天津卷文数】已知抛物线24y x =的焦点为F ,准线为l .若l 与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为A BC .2D 【答案】D【解析】抛物线24y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为by x a=±, 则有(1,),(1,)b b A B a a ---,∴2b AB a =,24ba=,2b a =,∴c e a ===故选D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率.9.【2019年高考北京卷文数】设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】22(1)4x y -+=【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =−1,以F 为圆心,且与l 相切的圆的方程为(x −1)2+y 2=22,即为22(1)4x y -+=.【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.10.【2019年高考全国Ⅲ卷文数】设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.【答案】(【解析】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===,∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又1201442MF F S y =⨯=∴=△0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标.11.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2221(0)y x b b-=>经过点(3,4),则该双曲线的渐近线方程是 ▲ .【答案】y =【解析】由已知得222431b-=,解得b =b =因为0b >,所以b =因为1a =,所以双曲线的渐近线方程为y =.【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 12.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4【解析】当直线x +y =0平移到与曲线4y x x=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小. 由2411y x'=-=-,得)x x ==,y =Q , 则切点Q 到直线x +y =04=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.13.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m =___________,r =___________. 【答案】2-【解析】由题意可知11:1(2)22AC k AC y x =-⇒+=-+,把(0,)m 代入直线AC 的方程得2m =-,此时||r AC ===【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.14.【2019年高考浙江卷】已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22(2)16x y -+=,与方程22195x y +=联立,可解得321,22x x =-=(舍), 又点P 在椭圆上且在x轴的上方,求得32P ⎛- ⎝⎭,所以212PFk ==.方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即342p p a ex x -=⇒=-,从而可求得32P ⎛- ⎝⎭,所以212PFk ==.【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 15.【2019年高考全国Ⅰ卷文数】已知点A ,B 关于坐标原点O 对称,│AB │ =4,⊙M 过点A ,B且与直线x +2=0相切.(1)若A 在直线x +y =0上,求⊙M 的半径;(2)是否存在定点P ,使得当A 运动时,│MA │−│MP │为定值?并说明理由. 【答案】(1)M 的半径=2r 或=6r ;(2)存在,理由见解析.【解析】(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B 关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a .因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .【名师点睛】本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,验证定值符合所有情况,使得问题得解.16.【2019年高考全国Ⅱ卷文数】已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的两个焦点,P 为C 上一点,O 为坐标原点.(1)若2POF △为等边三角形,求C 的离心率;(2)如果存在点P ,使得12PF PF ⊥,且12F PF △的面积等于16,求b 的值和a 的取值范围.【答案】(11;(2)4b =,a 的取值范围为)+∞.【解析】(1)连结1PF ,由2POF △为等边三角形可知在12F PF △中,1290F PF ∠=︒,2PF c =,1PF,于是1221)a PF PF c =+=,故C的离心率是1ce a==. (2)由题意可知,满足条件的点(,)P x y 存在.当且仅当1||2162y c ⋅=,1y y x c x c ⋅=-+-,22221x y a b+=,即||16c y =,①222x y c +=,②22221x y a b+=,③ 由②③及222a b c =+得422b y c =,又由①知22216y c=,故4b =.由②③得()22222a x c b c=-,所以22c b ≥,从而2222232,a b c b =+≥=故a ≥.当4b =,a ≥P . 所以4b =,a的取值范围为)+∞.【名师点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.17.【2019年高考全国Ⅲ卷文数】已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点; (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求该圆的方程. 【答案】(1)见详解;(2)22542x y ⎛⎫+-= ⎪⎝⎭或22522x y ⎛⎫+-= ⎪⎝⎭. 【解析】(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=-.整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()21212122,121x x t y y t x x t +=+=++=+.设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭. 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,||EM =2,所求圆的方程为22542x y ⎛⎫+-= ⎪⎝⎭;当1t =±时,||2EM =,所求圆的方程为22522x y ⎛⎫+-= ⎪⎝⎭.【名师点睛】此题第一问是圆锥曲线中的定点问题和第二问是求圆的方程,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.18.【2019年高考北京卷文数】已知椭圆2222:1x y C a b+=的右焦点为(1,0),且经过点(0,1)A .(1)求椭圆C 的方程;(2)设O 为原点,直线:(1)l y kx t t =+≠±与椭圆C 交于两个不同点P ,Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N ,若|OM |·|ON |=2,求证:直线l 经过定点.【答案】(1)2212x y +=;(2)见解析. 【解析】(1)由题意得,b 2=1,c =1. 所以a 2=b 2+c 2=2.所以椭圆C 的方程为2212x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 则直线AP 的方程为1111y y x x -=+. 令y =0,得点M 的横坐标111M x x y =--. 又11y kx t =+,从而11||||1M x OM x kx t ==+-.同理,22||||1x ON kx t =+-.由22,12y kx t x y =+⎧⎪⎨+=⎪⎩得222(12)4220k x ktx t +++-=. 则122412kt x x k +=-+,21222212t x x k-=+. 所以1212||||||||11x x OM ON kx t kx t ⋅=⋅+-+-()12221212||(1)(1)x x k x x k t x x t =+-++-22222222212||224(1)()(1)1212t k t ktk k t t k k-+=-⋅+-⋅-+-++12||1t t+=-. 又||||2OM ON ⋅=,所以12||21tt+=-. 解得t =0,所以直线l 经过定点(0,0).【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.19.【2019年高考天津卷文数】设椭圆22221(0)x y a b a b+=>>的左焦点为F ,左顶点为A ,上顶点为B .已|2||OA OB =(O 为原点). (1)求椭圆的离心率; (2)设经过点F 且斜率为34的直线l 与椭圆在x 轴上方的交点为P ,圆C 同时与x 轴和直线l 相切,圆心C 在直线x =4上,且OC AP ∥,求椭圆的方程.【答案】(1)12;(2)2211612x y +=.【解析】(1)设椭圆的半焦距为c ,2b =,又由222a b c =+,消去b得2222a a c ⎛⎫=+ ⎪ ⎪⎝⎭,解得12c a =. 所以,椭圆的离心率为12. (2)由(1)知,2,a c b ==,故椭圆方程为2222143x y c c+=.由题意,(, 0)F c -,则直线l 的方程为3()4y x c =+, 点P 的坐标满足22221,433(),4x y c cy x c ⎧+=⎪⎪⎨⎪=+⎪⎩消去y 并化简,得到2276130x cx c +-=,解得1213,7c x c x ==-. 代入到l 的方程,解得1239,214y c y c ==-. 因为点P 在x 轴上方,所以3,2P c c ⎛⎫ ⎪⎝⎭. 由圆心C 在直线4x =上,可设(4, )C t .因为OC AP ∥,且由(1)知( 2 , 0)A c -,故3242ct c c=+,解得2t =.因为圆C 与x 轴相切,所以圆的半径长为2,又由圆C 与l2=,可得=2c .所以,椭圆的方程为2211612x y +=.【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程、圆等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想、数形结合思想解决问题的能力.20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.【答案】(1)22143x y +=;(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .因为F 1(−1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴, 所以DF 232==,因此2a =DF 1+DF 2=4,从而a =2.由b 2=a 2−c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x −1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(−1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-. 因此3(1,)2E --.解法二:由(1)知,椭圆C :22143x y +=.如图,连结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(−1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --.【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标.【答案】(1)p =2,准线方程为x =−1;(2)最小值为1+G (2,0). 【解析】(1)由题意得12p=,即p =2. 所以,抛物线的准线方程为x =−1.(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A ct t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-.令22m t =-,则m >0,122122213434S m S m m m m =-=-=++++…当m =时,12S S取得最小值1+G (2,0).【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.。
2019年高考数学考试大纲《考试说明》解读2019考试大纲与2018相比基本没有变化。
核心考点仍然是函数与导数、三角函数、解三角形、数列、立体几何、解析几何、概率与统计、选考内容等.不过考纲对基础性、综合性、应用性、创新性的要求是对能力要求的强调,也是一种从教材习题出发兼顾综合的体现应用,进行微创新是2019年高考命题的基本方向.1.基础性和综合性:综合性主要是核心考点基本知识的综合.2.应用性:体现在数学的应用功能,在函数、数列、概率统计、解三角形、不等式等知识背景下命制应用性试题,考生应重点关注.3.创新性:2018年高考试题中,出现一些立意新、情境新、设问新的试题。
此类试题新颖、灵活,难度不大,广泛而又有科学尺度,考查考生的数学创新意识和创新能力,把此类题称为创新试题.高考数学答题策略1.函数或方程或不等式的题目,先直接思考后建立三者的联系.首先考虑定义域,其次使用“三合一定理”;2.选择题与填空题中出现不等式的题目时,优选特殊值法;3.求参数的取值范围时,应该建立关于参数的等式或不等式,用函数的定义域或值域或解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;4.恒成立问题或它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复、不遗漏;5.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择根与系数的关系求解,使用根与系数的关系时必须先考虑是否为二次方程及根的判别式;6.求椭圆或双曲线的离心率,建立关于a、b、c之间的关系等式即可;7.求三角函数的周期、单调区间或最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;8.数列的题目与和有关,优选作差的方法;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;9.导数的常规题目一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或者前一问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;10.概率与统计的解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略.。
2 B .1专题 07 平面解析几何(选择题、填空题)1.【2019 年高考浙江卷】渐近线方程为 x ±y =0 的双曲线的离心率是A . 2C . 2D .22.【2019 年高考全国Ⅰ卷文数】双曲线 C : 的离心率为 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 的一条渐近线的倾斜角为 130°,则 C A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒3.【2019 年高考全国Ⅰ卷文数】已知椭圆 C 的焦点为 F 1( - 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B两点.若 | AF 2 |= 2 | F 2 B | , | AB |=| BF 1 | ,则 C 的方程为x 2A . + y 2 = 12x 2 y 2 C . + = 14 3x 2 y 2B . + = 13 2x 2 y 2D . + = 15 44.【2019 年高考全国Ⅱ卷文数】若抛物线 y 2=2p x (p >0)的焦点是椭圆x 2 y 2+ = 1的一个焦点,则 p = 3 p pA .2C .4B .3D .85.【2019 年高考全国Ⅱ卷文数】设 F 为双曲线 C : x 2 y 2 -a 2b 2= 1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆 x 2+y 2=a 2 交于 P ,Q 两点.若|PQ|=|OF|,则 C 的离心率为A . 2C .2B . 3D . 5x 2 y 26.【2019 年高考全国Ⅲ卷文数】已知 F 是双曲线 C : - = 1 的一个焦点,点 P 在 C 上,O 为坐标原4 5点,若 OP = OF ,则 △OPF 的面积为12B.52D.9+=1的一个焦点为(2,0),则C的离心率为22B.2-32D.3-1A.32C.727.【2019年高考北京卷文数】已知双曲线A.6C.2x2a2-y2=1(a>0)的离心率是5,则a= B.4D.128.【2019年高考天津卷文数】已知抛物线y2=4x的焦点为F,准线为l.若l与双曲线x2y2-a2b2=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为A.2C.29.【2018年高考全国Ⅰ卷文数】已知椭圆C:A.13B.3D.5x2y2a4B.12 2C.D.222 310.【2018年高考全国Ⅱ卷文数】已知F,F是椭圆C的两个焦点,P是C上的一点,若PF⊥PF,且1212∠PF F=60︒,则C的离心率为21A.1-3C.3-111.【2018年高考全国Ⅱ卷文数】双曲线x2y2-a2b2=1(a>0,b>0)的离心率为3,则其渐近线方程为22D . y = ± ⎦⎦【 【A . y = ± 2 xB . y = ± 3xC . y = ± 2x3 2x12 .【 2018 年高考全国 Ⅲ 卷文数】直线 x + y + 2 = 0 分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆( x - 2)2 + y 2 = 2 上,则 △ABP 面积的取值范围是A . [2 ,6]C . ⎡⎣ 2 ,3 2 ⎤B . [4 ,8]D . ⎡⎣2 2 ,3 2 ⎤13. 2018 年高考全国Ⅲ卷文数】已知双曲线 C :的渐近线的距离为A . 2x 2 y 2 - a 2 b 2B . 2= 1(a > 0, b > 0) 的离心率为 2 ,则点 (4,0) 到 CC .3 2 2D . 2 2x 214.【2018 年高考浙江卷】双曲线 - y 2 = 1的焦点坐标是3A .(− 2 ,0),( 2 ,0)B .(−2,0),(2,0)C .(0,− 2 ),(0, 2 )D .(0,−2),(0,2)15. 2018 年高考天津卷文数】已知双曲线 x 2 y 2- a 2 b 2= 1( a > 0, b > 0) 的离心率为 2 ,过右焦点且垂直于 x 轴的直线与双曲线交于 A ,B 两点.设 A ,B 到双曲线同一条渐近线的距离分别为 d 1 和 d 2 ,且 d 1 + d 2 = 6 ,则双曲线的方程为x 2 y 2A . - = 13 9x 2 y 2 C . - = 14 12x 2 y 2B . - = 19 3x 2 y 2D . - = 112 43C.D.1y216.【2017年高考全国Ⅰ卷文数】已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x3轴垂直,点A的坐标是(1,3)△,则APF的面积为A.C.1323B.D.1232x2y217.【2017年高考全国Ⅰ卷文数】设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足3m∠AMB=120°,则m的取值范围是A.(0,1][9,+∞) C.(0,1][4,+∞)B.(0,3][9,+∞) D.(0,3][4,+∞)18.【2017年高考全国Ⅱ卷文数】若a>1,则双曲线x2a2-y2=1的离心率的取值范围是A.(2,+∞) C.(1,2)B.(2,2) D.(1,2)19.【2017年高考全国Ⅱ卷文数】过抛物线C:y2=4x的焦点F,且斜率为3的直线交C于点M(M 在x的轴上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为A.5 C.23B.22 D.3320.【2017年高考全国Ⅲ卷文数】已知椭圆C:x2y2+a2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx-ay+2ab=0相切,则C的离心率为A.63B.3323343B .3D . 524.【2019 年高考全国Ⅲ卷文数】设 F ,F 为椭圆 C: + = 1 的两个焦点,M 为 C 上一点且在第一象36 20+ = 1 的左焦点为 F ,点 P 在椭圆上且在 x 轴的上方,若线段 PF21.【2017 年高考天津卷文数】已知双曲线 x 2 y 2 - a 2 b 2= 1(a > 0, b > 0) 的右焦点为 F ,点 A 在双曲线的渐近线上, △OAF 是边长为 2 的等边三角形( O 为原点),则双曲线的方程为x 2 y 2 A . - = 14 12x 2C . - y 2 = 13x 2 y 2B . - = 112 4y 2D . x 2 - = 13x 2 y 222.【2017 年高考浙江卷】椭圆 + = 1 的离心率是9 4A . 135 3C .2923.【2019 年高考北京卷文数】设抛物线 y 2=4x 的焦点为 F ,准线为 l .则以 F 为圆心,且与 l 相切的圆的方程为__________.x 2 y 21 2限.若 △MF 1F 2 为等腰三角形,则 M 的坐标为___________.25.【2019 年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线 x 2 -双曲线的渐近线方程是 ▲ .y 2 b 2= 1(b > 0) 经过点(3,4),则该26.【2019 年高考江苏卷】在平面直角坐标系 xOy 中,P 是曲线 y = x +4 x( x > 0) 上的一个动点,则点 P到直线 x +y =0 的距离的最小值是 ▲.27.【2019 年高考浙江卷】已知圆 C 的圆心坐标是 (0, m ) ,半径长是 r .若直线 2 x - y + 3 = 0 与圆 C 相切于点 A(-2, -1) ,则 m =___________, r =___________.28.【2019 年高考浙江卷】已知椭圆x 2 y 29 5的中点在以原点 O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是___________.5【【0,1,0x2y25【29.2018年高考全国I卷文数】直线y=x+1与圆x2+y2+2y-3=0交于A,B两点,则AB=________.30.2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,)(1,)(2,)的圆的方程为__________.31.【2018年高考浙江卷】已知点P(0,1),椭圆m=___________时,点B横坐标的绝对值最大.x24+y2=m(m>1)上两点A,B满足AP=2PB,则当32.【2018年高考北京卷文数】若双曲线a242-=1(a>0)的离心率为,则a=________________.33.【2018年高考北京卷文数】已知直线l过点(1,0)且垂直于轴,若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为_________.34.2018年高考江苏卷】在平面直角坐标系xOy中,若双曲线x2y2-a2b2=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为3c,则其离心率的值是________________.235.【2018年高考江苏卷】在平面直角坐标系x Oy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若AB⋅C D=0,则点A的横坐标为________.36.【2017年高考全国Ⅲ卷文数】双曲线x2y23-=1(a>0)的一条渐近线方程为y=x,则a=.a295y237.【2017年高考北京卷文数】若双曲线x2-=1的离心率为3,则实数m=_________.m38.【2017年高考天津卷文数】设抛物线y2=4x的焦点为F,准线为l.已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A.若∠FAC=120︒,则圆的方程为___________.39.【2017年高考山东卷文数】在平面直角坐标系xOy中,双曲线x2y2-a2b2=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点.若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.x23交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是_______________.6 40.【2017年高考江苏卷】在平面直角坐标系x Oy中,双曲线-y2=1的右准线与它的两条渐近线分别7。
2019届高考数学总复习分类试卷平面解析几何(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l的斜率为k(k≠0),它在x轴,y轴上的截距分别为k,2k,则直线l的方程为( )A.2x-y-4=0B.2x-y+4=0C.2x+y-4=0D.2x+y+4=02.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,√5为半径的圆的方程为( )A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x-4y=0D.x2+y2-2x-4y=03.已知双曲线C:x 2a2-y2b2=1(a>0,b>0)的离心率e=54,且其右焦点为F(5,0),则双曲线C的方程为( )A.x 24-y23=1 B.x29-y216=1 C.x216-y29=1 D.x23-y24=14.若直线y=kx与圆(x-2)2+y2=1的两个交点关于直线2x+y+b=0对称,则k,b的值分别为( )A.k=12,b=-4 B.k=-12,b=4 C.k=12,b=4 D.k=-12,b=-45.已知直线x+y-2=0经过椭圆C:x 2a2+y2b2=1(a>b>0)的右焦点F和上顶点B,则椭圆C的离心率为( )A.12B.√2-1 C.√22D.√2-126.若双曲线x 2a2-y2b2=1(a>0,b>0)的离心率为√52,则其渐近线方程为( )A.y=±2xB.y=±4xC.y=±12x D.y=±14x7.过抛物线y2=4x的焦点F且倾斜角为60°的直线l与抛物线在第一象限交于点A,则|AF|=( )A.5B.4C.3D.28.设F是双曲线x 24-y212=1的左焦点,A(1,4),P是双曲线右支上的一动点,则|PF|+|PA|的最小值为( )A.5B.5+4√3C.7D.99.设椭圆x 24+y 23=1的左、右焦点分别为F 1、F 2,P 是椭圆上的一点,若△PF 1F 2是直角三角形,则△PF 1F 2的面积为( ) A.3B.3或32C.32D.6或310.已知抛物线C:y 2=8x,过点P(2,0)的直线与抛物线交于A,B 两点,O 为坐标原点,则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ 的值为( )A.-16B.-12C.4D.211.点F 为椭圆x 2a2+y 2b2=1(a>b>0)的一个焦点,若椭圆上存在点A 使△AOF 为正三角形,那么椭圆的离心率为( ) A.√22B.√32C.√3-12D.√3-112.已知双曲线C:x 2a2-y 2b2=1(a>0,b>0)的右焦点为F,过F 作双曲线C 的一条渐近线的垂线,垂足为H,若FH 的中点M 在双曲线C 上,则双曲线C 的离心率为( ) A.√62B.2C.√3D.√21 2 3 4 5 6 7 8 9 10 11 12 得分二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.若圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,则该圆的标准方程为 .14.已知双曲线x 2a2-y 2b2=1(a>0,b>0)与椭圆x 215+y 26=1有共同的焦点,且一条渐近线方程为√3x+y=0,则双曲线的顶点坐标为 .15.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是线段F 1P 的中点,|OM|=3(O 为坐标原点),则|PF 1|= .16.已知抛物线C:y 2=2px(p>0)的焦点为F,M 为抛物线C 上一点,若△OFM 的外接圆与抛物线C 的准线相切(O 为坐标原点),且外接圆的面积为9π,则p= .三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4√3,半径小于5.(1)求直线PQ与圆C的方程;(2)若直线l∥PQ,l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.18.(本小题满分12分)已知椭圆C:x2+2y2=4.(1)求椭圆C的离心率;(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.19.(本小题满分12分)已知椭圆C:x 2a2+y2b2=1(a>b>0),e=12,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A,B,点A,B的中点横坐标为14,且AF⃗⃗⃗⃗⃗ =λFB⃗⃗⃗⃗⃗ (其中λ>1).(1)求椭圆C的标准方程;(2)求实数λ的值.20.(本小题满分12分)已知椭圆C:x 2a2+y 2b2=1(a>b>0)的顶点到直线l 1:y=x 的距离分别为√2,√22.(1)求C 的标准方程;(2)设平行于l 1的直线l 交C 于A,B 两点,若以AB 为直径的圆恰过坐标原点,求直线l 的方程.21.(本小题满分12分)已知抛物线C 的方程为y 2=2px(p>0),点R(1,2)在抛物线C 上. (1)求抛物线C 的方程;(2)过点Q(1,1)作直线交抛物线C 于不同于R 的两点A,B,若直线AR,BR 分别交直线l:y=2x+2于M,N 两点,求|MN|最小时直线AB 的方程.22.(本小题满分12分)椭圆x 2a2+y 2b2=1(a>b>0)的左,右焦点分别为F 1,F 2,且离心率为12,点P 为椭圆上一动点,△F 1PF 2面积的最大值为√3. (1)求椭圆的方程;(2)设椭圆的左顶点为A 1,过右焦点F 2的直线l 与椭圆相交于A,B 两点,连接A 1A,A 1B 并延长分别交直线x=4于R,Q 两点,问F 2R ⃗⃗⃗⃗⃗⃗⃗ ·F 2Q ⃗⃗⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,请说明理由.平面解析几何一、选择题1.D 依题意得直线l 过点(k,0)和(0,2k),所以其斜率k=2k -00−k=-2,由点斜式得直线l 的方程为y=-2(x+2),化为一般式是2x+y+4=0.2.C 由(a-1)x-y+a+1=0得(x+1)a-(x+y-1)=0,由x+1=0且x+y-1=0,解得x=-1,y=2,即该直线恒过点 (-1,2),∴所求圆的方程为(x+1)2+(y-2)2=5,即x 2+y 2+2x-4y=0. 3.C ∵e=c a =54,F(5,0), ∴c=5,a=4,则b 2=c 2-a 2=9, ∴双曲线C 的方程为x 216-y 29=1.4.A 因为直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,所以直线y=kx 与直线2x+y+b=0垂直,且直线2x+y+b=0过圆心,所以{k =12,2×2+0+b =0.即k=12,b=-4.5.C 由已知可得F(c,0),B(0,b),因为直线x+y-2=0经过点F 和点B,所以b=c=2.又a 2=b 2+c 2,故a=2√2,所以椭圆C 的离心率为e=c a =√22,选C. 6.C 因为e=ca =√1+b 2a 2=√52,所以b a =12,所以双曲线的渐近线方程为y=±12x.故选C.7.B 由题意知,F(1,0),因为直线l 过焦点F 且倾斜角为60°,所以直线l 的方程为y=√3(x-1),与抛物线方程联立,可得直线l 与抛物线交点的坐标为(13,-2√33),(3,2√3),又点A 在第一象限,故A(3,2√3),所以|AF|=√(3-1)2+(2√3-0)2=4.8.D 因为F 是双曲线x 24-y 212=1的左焦点,所以F(-4,0),设其右焦点为H(4,0),则由双曲线的定义可得|PF|+|PA|=2a+|PH|+|PA|≥2a+|AH|=4+√(4-1)2+(0−4)2=4+5=9.故选D.9.C 由题意可得该椭圆短轴端点与两焦点的连线的夹角是60°,所以点P 不可能是直角顶点,只能是焦点为直角顶点,则P (±c,b 2a ),故△PF 1F 2的面积为12×2c×b 2a =32.10.B 当直线AB 的斜率不存在时,直线方程为x=2,不妨设A(2,4),B(2,-4),则OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =4-16=-12;当直线AB 的斜率存在时,设直线方程为y=k(x-2),代入抛物线方程得k 2(x-2)2=8x,即k 2x 2-(4k 2+8)x+4k 2=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4k 2+8k 2,x 1x 2=4,故OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=x 1x 2+k 2[x 1x 2-2(x 1+x 2)+4]=(1+k 2)x 1x 2-2k 2(x 1+x 2)+4k 2=(1+k 2)×4-2k 2×4k 2+8k 2+4k 2=-12,综上,OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =-12,故选B. 11.D 不妨设F 为椭圆的右焦点,A 在第一象限,则点A 的坐标为(12c,√32c),代入椭圆方程得c 24a 2+3c 24b 2=1,即b 2c 2+3a 2c 2=4a 2b 2,再将b 2=a 2-c 2代入上式得c 4-8a 2c 2+4a 4=0,又e=ca ,得e 4-8e 2+4=0,解得e 2=4±2√3=(1±√3)2,注意到椭圆的离心率范围为(0,1),故e=√3-1.故选D. 12.D 由题意可知,双曲线C 的一条渐近线的方程为y=ba x,则FH 的方程为y-0=-ab (x-c),即y=-ab(x-c),联立{y =bax,y =−a b (x -c),可得点H 的坐标为(a 2c ,ab c ),故FH 的中点M 的坐标为(c 2+a 22c,ab 2c ),又点M 在双曲线C 上,所以(c 2+a 2)24a 2c 2-a 2b 24b 2c 2=1,整理得c 2a 2=2,故e=ca =√2.故选D.二、填空题13.答案 (x-2)2+(y-1)2=1解析 ∵圆C 的半径为1,圆心在第一象限,且与直线4x-3y=0和x 轴都相切,∴圆心的纵坐标是1,设圆心坐标为(a,1)(a>0),则1=|4a -3|5,∴a=2(舍负),故该圆的标准方程为(x-2)2+(y-1)2=1.14.答案 (±32,0)解析 因为椭圆x 215+y 26=1的焦点为(±3,0),所以双曲线x 2a 2-y 2b 2=1中,c=3,a 2+b 2=9,又双曲线的一条渐近线方程为√3x+y=0,所以ba =√3,所以a=32,所以双曲线的顶点坐标为(±32,0).15.答案 4解析 因为椭圆方程为x 225+y 216=1,所以a 2=25,故2a=10.又P 为椭圆上一点,M 是线段F 1P 的中点,|OM|=3,所以|PF 2|=6,故|PF 1|=4. 16.答案 4解析 因为△OFM 的外接圆与抛物线C 的准线相切,所以△OFM 的外接圆的圆心到准线的距离等于圆的半径,由外接圆的面积为9π,得外接圆半径为3,又圆心在线段OF 的垂直平分线上,|OF|=p2,所以p 2+p4=3,解得p=4.三、解答题17.解析 (1)设圆心C(a,b),半径为r.易知直线PQ 的方程为x+y-2=0, 则线段PQ 的垂直平分线的方程是y-12=x-32,即y=x-1, 易知圆心在线段PQ 的垂直平分线上, 所以b=a-1.①由圆C 在y 轴上截得的线段长为4√3, 知(a+1)2+(b-3)2=12+a 2.② 由①②得a=1,b=0或a=5,b=4. 当a=1,b=0时,r 2=13,满足题意, 当a=5,b=4时,r 2=37,不满足题意, 故圆C 的方程为(x-1)2+y 2=13. (2)设直线l 的方程为y=-x+m(m ≠2), A(x 1,m-x 1),B(x 2,m-x 2), 将y=-x+m 代入(x-1)2+y 2=13, 可得2x 2-2(m+1)x+m 2-12=0,∴x 1+x 2=1+m,x 1x 2=m 2-122,Δ=-4(m 2-2m-25)>0,由题意可知OA ⊥OB,即OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0, 所以x 1x 2+(m-x 1)(m-x 2)=0, 整理得m 2-m(x 1+x 2)+2x 1x 2=0, 即m 2-m ·(1+m)+m 2-12=0, ∴m=4或m=-3,满足Δ>0,∴直线l 的方程为y=-x+4或y=-x-3.18.解析 (1)由题意可得,椭圆C 的标准方程为x 24+y 22=1,所以a 2=4,b 2=2,从而c 2=a 2-b 2=4-2=2,故a=2,c=√2, 故椭圆C 的离心率为√22.(2)设点A,B 的坐标分别为(t,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB,所以OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即tx 0+2y 0=0,则t=-2y 0x 0. 又x 02+2y 02=4,所以|AB|2=(x 0-t)2+(y 0-2)2=(x 0+2y 0x 0)2+(y 0-2)2=x 02+y 02+4y 02x 02+4 =x 02+4−x 022+2(4−x 02)x 02+4=x 022+8x 02+4(0<x 02≤4).因为x 022+8x 02≥4(0<x 02≤4),当且仅当x 02=4时等号成立,所以|AB|2≥8.故线段AB 长度的最小值为2√2.19.解析 (1)由条件可知c=1,a=2,故b 2=a 2-c 2=3, 则椭圆C 的标准方程是x 24+y 23=1.(2)由AF ⃗⃗⃗⃗⃗ =λFB ⃗⃗⃗⃗ ,可知A,B,F 三点共线,设点A(x 1,y 1),B(x 2,y 2). 若直线AB ⊥x 轴,则λ=1,不合题意.当直线l 的斜率k 存在时,设其方程为y=k(x-1). 由{y =k(x -1),x 24+y 23=1消去y 得(3+4k 2)x 2-8k 2x+4k 2-12=0.①Δ=(-8k 2)2-4(4k 2+3)(4k 2-12)=144(k 2+1)>0, x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,因为点A 、B 的中点横坐标为14,所以x 1+x 2=8k 24k 2+3=12,所以k 2=14.将k 2=14代入方程①,得4x 2-2x-11=0, 解得x=1±3√54. 又因为AF ⃗⃗⃗⃗⃗ =(1-x 1,-y 1),FB ⃗⃗⃗⃗ =(x 2-1,y 2),AF ⃗⃗⃗⃗⃗ =λFB ⃗⃗⃗⃗ (其中λ>1),所以λ=1−x 1x 2-1=3+√52(λ=3−√52舍去). 综上,λ=3+√52.20.解析 (1)由直线l 1的方程知,直线l 1与两坐标轴的夹角均为45°, 故长轴端点到直线l 1的距离为√2a 2,短轴端点到直线l 1的距离为√2b2, 可求得a=2,b=1.所以C 的标准方程为x 24+y 2=1.(2)依题意设直线l:y=x+t(t ≠0). 由{y =x +t,x 24+y 2=1得5x 2+8tx+4t 2-4=0, 由Δ=64t 2-80(t 2-1)>0,解得-√5<t<√5. 设A(x 1,y 1),B(x 2,y 2), 则{x 1+x 2=−8t5,x 1x 2=4t 2-45,故y 1y 2=(x 1+t)(x 2+t)=x 1x 2+(x 1+x 2)t+t 2=t 2-45.因为以AB 为直径的圆恰过坐标原点,故OA ⊥OB, 所以OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,即x 1x 2+y 1y 2=4t 2-45+t 2-45=0, 解得t=±2√105,满足-√5<t<√5且t ≠0,故所求直线l 的方程为y=x+2√105或y=x-2√105. 21.解析 (1)∵点R(1,2)在抛物线C:y 2=2px(p>0)上, ∴4=2p,解得p=2,∴抛物线C 的方程为y 2=4x.(2)设A(x 1,y 1),B(x 2,y 2),直线AB 的方程为x=m(y-1)+1,m ≠0,且易知m ≠1,由{x =m(y -1)+1,y 2=4x 消去x 并整理得y 2-4my+4(m-1)=0, ∴y 1+y 2=4m,y 1·y 2=4(m-1), 设直线AR 的方程为y=k 1(x-1)+2,由{y =k 1(x -1)+2,y =2x +2解得点M 的横坐标x M =k 1k 1-2,又k 1=y 1-2x 1-1=y 1-2y 124-1=4y1+2,∴x M =k 1k 1-2=-2y1,同理,点N 的横坐标x N =-2y 2,|y 2-y 1|=√(y 2+y 1)2-4y 1y 2=4√m 2-m +1,∴|MN|=√5·|x M -x N |=√5·|-2y 1+2y 2|=2√5·|y 2-y 1y 1y2|=8√5·√m 2-m+14|m -1|=2√5·√m 2-m+1|m -1|,令m-1=t,t ≠0,则m=t+1,∴|MN|=2√5·√(1t +12)2+34≥√15,当t=-2,即m=-1时,|MN|取得最小值√15,此时直线AB 的方程为x+y-2=0.22.解析 (1)已知椭圆的离心率为12,不妨设c=t,a=2t,则b=√3t,其中t>0,当△F 1PF 2面积取最大值√3时,点P 为短轴端点,因此12·2t ·√3t=√3,解得t=1(舍负),则椭圆的方程为x 24+y 23=1.第 11 页 共 11 页 (2)是.设直线AB 的方程为x=my+1,A(x 1,y 1),B(x 2,y 2),联立{x =my +1,x 24+y 23=1可得(3m 2+4)y 2+6my-9=0, 则y 1+y 2=-6m 4+3m 2,y 1y 2=-94+3m 2,直线AA 1的方程为y=y 1x 1+2(x+2),直线BA 1的方程为y=y 2x 2+2(x+2),则R (4,6y 1x 1+2),Q (4,6y 2x 2+2),所以F 2R ⃗⃗⃗⃗⃗⃗⃗ =(3,6y 1x 1+2),F 2Q ⃗⃗⃗⃗⃗⃗⃗ =(3,6y 2x 2+2),则F 2R ⃗⃗⃗⃗⃗⃗⃗ ·F 2Q ⃗⃗⃗⃗⃗⃗⃗=9+6y 1x 1+2·6y 2x 2+2=36y 1y 2m 2y 1y 2+3m(y 1+y 2)+9+9=0,即F 2R ⃗⃗⃗⃗⃗⃗⃗ ·F 2Q ⃗⃗⃗⃗⃗⃗⃗ 为定值0.。
一、单选题1.过点(1,0)-,且与直线1153x y ++=-有相同方向向量的直线的方程为 A .3530x y +-= B .3530x y ++= C .3510x y +-= D .5350x y -+=【答案】B【解析】由1153x y ++=-可得,3x +5y +8=0,即直线的斜率35-, 由题意可知所求直线的斜率k 35=-,故所求的直线方程为y 35=-即3x +5y +3=0.故选:B .2.以抛物线24y x =的焦点为右焦点,且长轴为4的椭圆的标准方程为A .2211615x y +=B .221164x y +=C .22143x y +=D .2214x y +=【答案】C【解析】有已知抛物线24y x =的焦点为(1,0),设椭圆方程为22221x y a b+=,则221a b -=,又由已知2a =,所以23b =,故椭圆方程为22143x y +=,故选:C.3.明代数学家程大位所著《算法统宗》中有这样一个问题:“旷野之地有个桩,桩上系着一腔羊,团团踏破三亩二。
试问羊绳几丈长”意思是“一条绳索系着一只羊,羊踏坏一块面积为3.2亩的圆形庄稼,试求绳的长度” . A .6丈 B .8丈 C .12丈D .16丈【答案】B【解析】由题得面积为3.2亩,即3.2240768⨯=平方步,由圆的面积设半径r 步,则2768r π=, 取3π=则2256r =,16r =步,又1丈=10尺, 1步=5尺,故1丈=2步,故16r =步8=丈, 故选:B4.若圆221:1C x y +=和圆222:680C x y x y k +---=没有公共点,则实数k 的取值范围是 A .(9,11)-B .(25,9)--C .(,9)(11,)-∞-+∞UD .(25,9)(11,)--+∞U【答案】D【解析】化圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0为2+2=25+k , 则k >﹣25, 圆C 1:x 2+y 2=1的圆心坐标为,半径为1.要使圆C 1:x 2+y 2=1和圆C 2:x 2+y 2﹣6x ﹣8y ﹣k =0没有公共点, 则|C 1C 2|1或|C 1C 2|1, 即51或51,解得﹣25<k <﹣9或k >11.∴实数k 的取值范围是∪.故选:D .5.已知22(2)9x y -+=的圆心为C .过点(2,0)M -且与x 轴不重合的直线l 交圆C 于A 、B 两点,点A 在点M 与点B 之间.过点M 作直线AC 的平行线交直线BC 于点P ,则点P 的轨迹为. A .圆的一部分 B .椭圆的一部分 C .双曲线的一部分 D .抛物线的一部分【答案】C【解析】可得圆2+y 2=9的圆心为C ,半径为R =3. 如图,∵CB =CA =R =3,∴∠CBA =∠CAB , ∵AC ∥MP ,∴,∴∠CBA =∠CAB =∠PMA , ∴PM =PB =PC +BC⇒PM ﹣PC =BC =3,且3<MC . ∴点P 的轨迹是双曲线的一部分,故选C .6.设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x →∞-=-A .1-B .12-C .1D .2【答案】A 【解析】由题意得:因为21x y -=与圆222x y +=在第一象限的交点为1,1(),所以lim =1lim =1n n n n x y →∞→∞,,1limlim 1n n n n n n y y x x →∞→∞'-='∴-,又由222n n x y +=得220n n n nn n n ny xx x y y x y +=⇒=-''''lim 1lim lim lim() 1.1lim n n n nn n n n n nn n n x y y x x x y y →∞→∞→∞→∞→∞-∴='=-=-=--'选A. 7.抛物线24y x =的焦点为F ,点(),P x y 为该抛物线上的动点,点A 是抛物线的准线与坐标轴的交点,则PF PA的最小值是A .12B.2C.2D.3【答案】B 【解析】由题意可知,抛物线的准线方程为x=﹣1,A , 过P 作PN 垂直直线x=﹣1于N ,由抛物线的定义可知PF=PN ,连结PA ,当PA 是抛物线的切线时,PF PA有最小值,则∠APN 最大,即∠PAF 最大,就是直线PA 的斜率最大,设在PA 的方程为:y=k ,所以214y k x y x ()=+⎧⎨=⎩,解得:k 2x 2+x+k 2=0,所以△=2﹣4k 4=0,解得k=±1,所以∠NPA=45°,PF PA=cos ∠NPA=2.故选B . 8.已知1x 、2x 是关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,则经过两点()211,A x x 、()222,B x x 的直线与双曲线2214x y -=的交点个数为A .0B .1C .2D .根据m 的值来确定【答案】B【解析】关于x 的方程()()22210x x m m Z -+-=∈的两个不同实数根,所以44(21)8(2)0,2m m m ∆=--=->∴<,1212221212112,2AB x x x x k x x x x -+=∴===-+ 双曲线2214x y -=渐近线方程曲线12y x =±,∴直线AB 与双曲线的渐近线平行或重合,若()211,A x x 或()222,B x x 在直线12y x =得1x ,2x 的值为0或2,此时1210,2m m -==, m Z ∈Q ,不合题意,直线AB 不与双曲线重合,∴直线AB 与双曲线一定平行,所以有一个交点.故选:B9.如图,平面直角坐标系中,曲线的方程可以是.A .()()22110x y x y--⋅-+=B()2210x y -+=C .()10x y --= D0=【答案】C【解析】因为曲线表示折线段的一部分和双曲线,A 选项等价于10x y --=或2210x y -+=,表示折线y 1x =-的全部和双曲线, 故错误;B 选项,等价于221010x y x y ⎧--≥⎨-+=⎩或10x y --=,又10x y --=表示折线y 1x =-的全部,故错误;C 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或2210x y -+=,∴221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分,2210x y -+=表示双曲线2x -21y =,符合题中的图象,故C 正确.D 选项,等价于221010x y x y ⎧--=⎨-+≥⎩或221010x y x y ⎧--≥⎨-+=⎩, 221010x y x y ⎧--=⎨-+≥⎩表示折线y 1x =-在双曲线外部的部分, 和221010x y x y ⎧--≥⎨-+=⎩表示双曲线在x 轴下方的部分,故错误. 故选C.10.已知双曲线22221(00)x y b a a b-=>>,的两条渐近线与抛物线y 2=2px 的准线分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB p = A .1 B .32C .2D .3【答案】C 【解析】∵双曲线的方程为22221(00)x y b a a b-=>>,∴双曲线的渐近线的方程为b y x a =±∵抛物线22(0)y px p =>的准线方程是2px =-∴双曲线的渐近线与抛物线准线相交的A ,B 两点的纵坐标分别是2pby a=±∵双曲线的离心率为2∴2c a =∴b a ===∴A ,B 两点的纵坐标分别是2y p =±又∵AOB ∆x 轴是AOB ∠的平分线∴122p⨯=2p =故选C.11.已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且4PF =,则椭圆C 的方程为A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B【解析】由题意可得c=F′,由|OP|=|OF|=|OF′|知, ∠PFF′=∠FPO ,∠OF′P=∠OPF′, 所以∠PFF′+∠OF′P=∠FPO+∠OPF′, 由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知, ∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得8==,由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36, 于是 b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=.故选B .12.若点A 的坐标为()3,2,F 是抛物线22y x =的焦点,点M 在抛物线上移动时,使||||MA MF +取得最小值的M 的坐标为A .()0,0B .1,12⎛⎫ ⎪⎝⎭C .(D .()2,2【答案】D【解析】如图所示,过M 作准线的垂线,垂足为B .MF MA MB MA +=+,当M 、B 、A 三点共线时,MB MA +最小,即M 运动到'M 时,即()2,2M ,故选D13.已知数列{}n a 的通项公式为()()*11n a n N n n =∈+,其前n 项和910n S =,则双曲线2211x y n n-=+的渐近线方程为A .3y x =±B .4y x =±C .10y x =±D .3y x =±【答案】C 【解析】 由()11111n a n n n n ==-++得1111111 (11223111)n n S n n n n =-+-++-=-=+++.又910n S =即9110n n =+,故9n =,故双曲线221109x y -=渐近线为10y x ==±故选:C 14.已知点P 为椭圆221916x y +=上的任意一点,点12,F F 分别为该椭圆的上下焦点,设1221,PF F PF F αβ=∠=∠,则sin sin αβ+的最大值为A B C .98D .32【答案】D【解析】设|1PF |=m ,|2 PF |=n ,|12F F |=2c ,A ,B 为短轴两个端点, 由正弦定理可得()2m n csin sin sin βααβ==+,即有()2m n csin sin sin αβαβ+=++,由椭圆定义可得e ()22sin c a sin sin αβαβ+===+,∴()sin sin αβαβ+=+. 在三角形21F PF 中,由m+n=2a,cos222222221242444122224m n c m n mn c b b F PF m n mn mn mn+-+--∠===-≥+⨯()()-1=22412b a-,当且仅当m=n 时,即P 为短轴端点时,cos 21F PF ∠最小,21F PF ∠最大, ∴()21sin sin F AF αβ+≤∠=8,∴3sin sin 82αβ+≤=,故选:D . 15.设点M 、N 均在双曲线22:143x y C -=上运动,1F 、2F 是双曲线C 的左、右焦点,则122MF MF MN +-uuu r uuu u r uuu r 的最小值为 A.B .4C.D .以上都不对【答案】B【解析】由题意,设O 为12,F F 的中点,根据向量的运算,可得122222MF MF MN MO MN NO +-=-=uuu r uuu u r uuu r uuu r uuu r uuu r, 又由N 为双曲线22:143x y C -=上的动点,可得NO a ≥uuu r , 所以122224MF MF MN NO a +-=≥=uuu r uuu u r uuu r uuu r, 即122MF MF MN +-uuu r uuu u r uuu r的最小值为4.故选:B.16.在圆锥PO 中,已知高2PO =,底面圆的半径为4,M 为母线PB 的中点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为①圆的面积为4π;;③双曲线两渐近线的夹角正切值为34-④抛物线中焦点到准线的距离为5. A .1个 B .2个C .3个D .4个【答案】B 【解析】①Q 点M 是母线的中点, ∴截面的半径2r =,因此面积224ππ=⨯=,故①正确;②由勾股定理可得椭圆的长轴为==,故②正确;③在与底面、平面PAB 的垂直且过点M 的平面内建立直角坐标系,不妨设双曲线的标准方程为()22221,0x y a b a b-=>,则()1,0M ,即1a =,把点(2,代入可得21241b -=,解得2,2b b a =∴=,设双曲线两渐近线的夹角为2θ,2224tan 2123θ⨯∴==--,4sin 25θ∴=,因比双曲线两渐近线的夹角为4arcsin 5,③不正确;④建立直角坐标系,不彷设抛物线的标准方程为22y px =,把点)4代入可得242p =,解得p =∴抛物线中焦点到准线的距离p ,④不正确,故选B .17.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若V OMN 为直角三角形,则|MN |=A .32B .3C .D .4【答案】B【解析】根据题意,可知其渐近线的斜率为3±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和y =联立,求得3(,2M N ,所以3MN ==,故选B. 18.数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一.给出下列三个结论:①曲线C 恰好经过6个整点;②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .②C .①②D .①②③【答案】C【解析】由221x y x y +=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔,所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过,,,, ,六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到原点的距离都不超. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.19.在平面直角坐标系xOy 中,已知两圆221:12C x y +=和222:14C x y +=,又点A 坐标为()3,1,M -、N 是1C 上的动点,Q 为2C 上的动点,则四边形AMQN 能构成矩形的个数为A .0个B .2个C .4个D .无数个【答案】D【解析】如图所示,任取圆2C 上一点Q ,以AQ 为直径画圆,交圆1C 与,M N 两点,设(),Q m n ,则AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭, 有2214m n +=,以AQ 为直径的圆的方程为()(3)()(1)0x m x y n y --+-+=, 即22(3)(1)3x m x y n y n m -++--=-,用1C 的方程减去以AQ 为直径的圆的方程,可得公共弦MN 所在的直线方程, 即(3)(1)123m x n y n m ++-=-+,将AQ 中点坐标31,22m n +-⎛⎫⎪⎝⎭代入上式得: 左边=22316921(3)(1)222m n m m n n m n +-+++-+⎛⎫++-⋅= ⎪⎝⎭62243122m n m n -+==-+=右边,所以公共弦MN 也是以AQ 为直径的圆的直径, 则MN AQ =,根据对角线互相平分且相等的四边形是矩形即可得出四边形AMQN 是矩形, 由Q 的任意性知,四边形AMQN 能构成无数个矩形, 故选:D 。
专题06 立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求点C 到平面C 1DE 的距离. 【答案】(1)见解析;(2)41717. 【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =. 又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥, 因此四边形MNDE 为平行四边形,MN ED ∥. 又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离, 由已知可得CE =1,C 1C =4,所以117C E =,故41717CH =.从而点C 到平面1C DE 的距离为41717.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积. 【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1, 故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C . (2)由(1)知∠BEB 1=90°. 由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==. 所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD , 所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点, 所以AE ⊥CD . 所以AB ⊥AE . 所以AE ⊥平面PAB . 所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG . 则FG ∥AB ,且FG =12AB . 因为底面ABCD 为菱形,且E 为CD 的中点, 所以CE ∥AB ,且CE =12AB . 所以FG ∥CE ,且FG =CE . 所以四边形CEGF 为平行四边形. 所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE , 所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值. 【答案】(1)见解析;(2)见解析;(3)33. 【解析】(1)连接BD ,易知AC BD H =,BH DH =.又由BG=PG ,故GH PD ∥.又因为GH ⊄平面P AD ,PD ⊂平面P AD , 所以GH ∥平面P AD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC , 又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面P AC ,又PA ⊂平面P AC ,故DN PA ⊥. 又已知PA CD ⊥,CD DN D =,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC 的中点, 所以3DN =. 又DN AN ⊥,在Rt AND △中,3sin 3DN DAN AD ∠==. 所以,直线AD 与平面P AC 所成角的正弦值为33.【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF . 因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角). 不妨设AC =4,则在Rt △A 1EG 中,A 1E =23,EG =3. 由于O 为A 1G 的中点,故11522A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,23),B (3,1,0),1(3,3,23)B ,33(,,23)22F ,C (0,2,0). 因此,33(,,23)22EF =,(3,1,0)BC =-. 由0EF BC ⋅=得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC AC --,,,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,得3030x y y z ⎧-+=⎪⎨-=⎪⎩, 取n (131)=,,,故||4sin |cos |=5|||EF EF EF θ⋅==⋅,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥. 又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC , 所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =32.又23BP DQ DA ==,所以22BP =. 作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q ABP -的体积为1111322sin 451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积. 9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P A B C -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)455. 【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23. 连结OB .因为AB =BC =22AC,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由222OP OB PB +=知,OP ⊥OB . 由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离. 由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°. 所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=455.所以点C 到平面POM 的距离为455. 【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P −ABCD 中,底面ABCD 为矩形,平面P AD ⊥平面ABCD ,P A ⊥PD ,P A =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面P AB ⊥平面PCD ; (3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥. ∵底面ABCD 为矩形,∴BC AD ∥, ∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥. ∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD . ∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD . (3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =. ∵四边形ABCD 为矩形,且E 为AD 的中点, ∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形, ∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD , ∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法. 证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =23,∠BAD =90°. (1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值; (3)求直线CD 与平面ABD 所成角的正弦值.【答案】(1)见解析;(2)1326;(3)34. 【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角. 在Rt △DAM 中,AM =1,故DM =22=13AD AM +.因为AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN =22=13AD AN +.在等腰三角形DMN 中,MN =1,可得1132cos 26MNDMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为1326. (3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM =3.又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =22AC AD +=4.在Rt △CMD 中,3sin 4CM CDM CD ∠==. 所以,直线CD 与平面ABD 所成角的正弦值为34.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC . 【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)3913. 【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得11122AB A B ==, 所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得115B C =, 由2,120AB BC ABC ==∠=︒得23AC =,由1CC AC ⊥,得113AC =,所以2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB , 由111C D A B ⊥得1C D ⊥平面1ABB , 所以1C AD ∠是1AC 与平面1ABB 所成的角.由1111115,22,21BC A B AC ===得11111161cos ,sin 77C A B C A B ∠=∠=, 所以13C D =, 故11139sin 13C D C AD AC ∠==.因此,直线1AC 与平面1ABB 所成的角的正弦值是3913. 方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,3,0),(1,0,0),(0,3,4),(1,0,2),(0,3,1),A B A B C --因此11111(1,3,2),(1,3,2),(0,23,3),AB A B AC ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r得111AB A B ⊥. 由1110AB AC ⋅=uuu r uuu u r 得111AB AC ⊥. 所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,23,1),(1,3,0),(0,0,2),AC AB BB ===uuu r uu u r uuu r设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n 即30,20,x y z ⎧+=⎪⎨=⎪⎩可取(3,1,0)=-n . 所以111|39sin |cos ,|13|||AC AC AC θ⋅===⋅uuu ruuu r uuu rn |n n |. 因此,直线1AC 与平面1ABB 所成的角的正弦值是3913. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P −ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P −ABCD 的体积为83,求该四棱锥的侧面积. 【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥. 由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD . 设AB x =,则由已知可得2AD x =,22PE x =. 故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=. 由题设得31833x =,故2x =. 从而2PA PD ==,22AD BC ==,22PB PC ==. 可得四棱锥P ABCD -的侧面积为21111sin 606232222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+. 【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由A B A P ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒ (1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)43.【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD . 又BC PAD ⊄平面,AD PAD ⊂平面, 故BC ∥平面P AD .(2)取AD 的中点M ,连结PM ,CM , 由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面P AD 为等边三角形且垂直于底面ABCD ,平面P AD ∩平面ABCD =AD , 所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD⊂底面,所以PM⊥CM.设BC=x,则CM=x,CD=2x,PM=3x,PC=PD=2x.取CD的中点N,连结PN,则PN⊥CD,所以142PN x=.因为△PCD的面积为27,所以114227 22x x⨯⨯=,解得x=−2(舍去),x=2,于是AB=BC=2,AD=4,PM=23,所以四棱锥P−ABCD的体积()22412343 32V⨯+=⨯⨯=.【名师点睛】解答本题时,(1)先由平面几何知识得BC∥AD,再利用线面平行的判定定理证得结论;(2)取AD的中点M,利用线面垂直的判定定理证明PM⊥底面ABCD,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD中,△ABC是正三角形,AD=CD.(1)证明:AC⊥BD;(2)已知△ACD是直角三角形,AB=BD.若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.【答案】(1)见解析;(2)1:1【解析】(1)取AC的中点O,连结DO,BO.因为AD=CD,所以AC⊥DO.又由于△ABC是正三角形,所以AC ⊥BO . 从而AC ⊥平面DOB , 故AC ⊥BD . (2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO . 在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==, 故∠DOB =90°. 由题设知△AEC 为直角三角形,所以12EO AC =. 又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积. 【答案】(1)见解析;(2)见解析;(3)13. 【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC , 又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥, 由(1)知,PA BD ⊥,所以BD ⊥平面PAC , 所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,2BD DC ==. 由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC . 所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=. 【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值; (2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)55;(2)见解析;(3)55. 【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角. 因为AD ⊥平面PDC ,所以AD ⊥PD . 在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos 5AD DAP AP ∠==. 所以,异面直线AP 与BC 所成角的余弦值为55.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD . 又因为BC //AD ,所以PD ⊥BC , 又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF , 则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角. 因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影, 所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2. 又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得2225DF CD CF =+=, 在Rt △DPF 中,可得5sin 5PD DFP DF ∠==. 所以,直线AB 与平面PBC 所成角的正弦值为55. 【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos ADDAP AP∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD . (1)证明:1A O ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO AO ,由于1111ABCD A B C D -是四棱柱, 所以1111,AO OC AO OC =∥, 因此四边形11AOCO 为平行四边形, 所以11A O O C ∥,又1O C ⊂平面11B CD ,1AO ⊄平面11B CD , 所以1A O ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD , 所以1,A E BD ⊥ 因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥ 又1,A E EM ⊂平面1A EM ,1A E EM E =,所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD , 所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.-中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,21.【2017年高考江苏卷】如图,在三棱锥A BCDF(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.【答案】(1)见解析;(2)见解析.⊥,【解析】(1)在平面ABD内,因为AB⊥AD,EF AD∥.所以EF AB又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.⊥,(2)因为平面ABD⊥平面BCD,平面ABD平面BCD=BD,BC⊂平面BCD,BC BD所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.=,AB⊂平面ABC,BC⊂平面ABC,又AB⊥AD,BC AB B所以AD⊥平面ABC,又因为AC⊂平面ABC,所以AD⊥AC.【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P–ABCD,△PAD是以AD为斜边的等腰直角三角形,BC AD∥,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值. 【答案】(1)见解析;(2)28. 【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设P A 中点为F ,连接EF ,FB . 因为E ,F 分别为PD ,P A 中点,所以EF AD ∥且12EF AD =, 又因为BC AD ∥,12BC AD =,所以 EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面P AB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ . 因为E ,F ,N 分别是PD ,P A ,AD 的中点,所以Q 为EF 中点, 在平行四边形BCEF 中,MQ//CE .由△P AD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .PABCDE所以AD⊥平面PBN,由BC//AD得BC⊥平面PBN,那么平面PBC⊥平面PBN.过点Q作PB的垂线,垂足为H,连接MH.MH是MQ在平面PBC上的射影,所以∠QMH是直线CE与平面PBC所成的角.设CD=1.在△PCD中,由PC=2,CD=1,PD=2得CE=2,在△PBN中,由PN=BN=1,PB=3得QH=14,在Rt△MQH中,QH=14,MQ=2,所以sin∠QMH=28,所以直线CE与平面PBC所成角的正弦值是28.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.。
2019年高考数学考试大纲解读6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度.2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.与《2018年高考文科数学考试大纲》相比,《2019年高考文科数学考试大纲》在考核目标、考试范围与要求等方面都没有变动.无论是知识内容及其要求的三个层次(了解、理解、掌握),还是能力(空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、应用意识和创新意识)要求、个性品质要求和考查要求都没有变化.这说明2018年高考数学学科的命题仍然保持相对的稳定.下面对2018年考纲进行综合解读:一、核心考点不变2019年的高考中,核心考点仍然是函数与导数、三角函数、解三角形、数列、立体几何、解析几何、概率与统计、选考内容等.在选择题或填空题中,集合、复数、程序框图、三视图、三角函数的图象和性质、线性规划、平面向量、数列的概念与性质、圆锥曲线的简单几何性质、解三角形、导数与不等式的结合、函数的性质仍然是高频考点.在解答题中,除数列和三角函数轮流命题外,立体几何、概率与统计、解析几何、函数导数与不等式、选考内容仍然是必考内容.【备考策略】1.函数或方程或不等式的题目,先直接思考后建立三者的联系.首先考虑定义域,其次使用“三合一定理”;2.选择题与填空题中出现不等式的题目时,优选特殊值法;3.求参数的取值范围时,应该建立关于参数的等式或不等式,用函数的定义域或值域或解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;4.恒成立问题或它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复、不遗漏;5.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择根与系数的关系求解,使用根与系数的关系时必须先考虑是否为二次方程及根的判别式;6.求椭圆或双曲线的离心率,建立关于a、b、c之间的关系等式即可;7.求三角函数的周期、单调区间或最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;8.数列的题目与和有关,优选作差的方法;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;9.导数的常规题目一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或者前一问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;10.概率与统计的解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略.二、提升综合能力考纲对基础性、综合性、应用性、创新性的要求是对能力要求的强调,也是一种加强从教材习题出发,兼顾综合,体现应用,进行微创新是2018年高考命题的基本方向.1.基础性和综合性.综合性主要是核心考点基本知识的综合.2.应用性:体现在数学的应用功能,在函数、数列、概率统计、解三角形、不等式等知识背景下命制应用性试题,考生应重点关注.3.创新性:今年高考试题中,出现一些立意新、情境新、设问新的试题.此类试题新颖、灵活,难度不大,广泛而又有科学尺度,考查考生的数学创新意识和创新能力,把此类题称为创新试题.高考的特点是以学生解题能力的高低为标准的一次性选拔,这就使得临场发挥显得尤为重要,研究和总结临场解题策略,进行应试训练和心理辅导,已成为高考数学的重要内容之一,正确运用数学高考临场解题策略,不仅可以预防各种心理障碍造成的不合理丢分和计算失误及笔误,而且能挖掘思维和知识的潜能,考出最佳成绩.一、“内紧外松”,集中注意力,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松.二、一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败.应该说,审题要慢,解答要快.审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据.而思路一旦形成,则可尽量快速完成.三、确保运算准确,立足一次成功时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功.解题速度是建立在解题准确度基础上的,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答.所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤.四、讲求规范书写,力争既对又全考试的又一个特点是以卷面为唯一依据.这就要求不但会而且要对,对且全,全而规范.会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学非智力因素失分的一大方面.字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬,“感情分”也就相应低了,此所谓心理学上的“光环效应”.“书写要工整,卷面能得分”讲的也正是这个道理.五、执果索因,逆向思考,正难则反对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就反证.如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件.六、面对难题,讲究策略,争取得分会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分,下面有两种常用方法:1.缺步解答.对一个疑难问题,确实啃不动时,一个明智的解题策略是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数.2.跳步解答.当解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即改变方向,寻找其他途径;如能得到预期结论,就再回头集中力量攻克这一过渡环节.若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答.。
立体几何与空间向量06 平面与平面的平行、垂直的判定与性质【考点讲解】一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.面面平行的判定与性质a⊂β,b⊂β,a∩b=P,α∥β,α∩γ=a,(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:a⊂α,b⊂α,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,b⊂α,a′∩b′=M′,a′,b′⊂β,a∥a′,b∥b′⇒α∥β.3.两个平面平行的性质定理(1)α∥β,a⊂α⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.3.平面与平面垂直的判定与性质(1)平面与平面垂直的判定方法①定义法.②利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直.(2)平面与平面垂直的性质:如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.4.定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.5.定理:⎭⎪⎬⎪⎫AB βAB ⊥α⇒β⊥α⎭⎪⎬⎪⎫α⊥βα∩β=MNAB βAB ⊥MN⇒AB ⊥α1.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】本题考查了空间两个平面的判定与性质及充要条件.由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B . 【答案】B2.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【解析】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 【真题分析】在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【变式1】【2018年高考浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则( )A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D. 【答案】D【变式2】【2017年高考浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CR QC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则( )A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B . 【答案】B3.【2018优选题】空间中,设,m n 表示不同的直线, ,,αβγ表示不同的平面,则下列命题正确的是( )A. 若,αγβγ⊥⊥,则//αβB. 若,m m αβ⊥⊥,则//αβC. 若,m βαβ⊥⊥,则//m αD. 若,n m n α⊥⊥,则//m α 【解析】本题考点是面面平行,线面平行的判定.A 项,若,αγβγ⊥⊥,过正方体同一顶点的三个平面分别为,,αβγ,则αβ⊥,故A 项不合题意;B 项,若,m m αβ⊥⊥,根据垂直于同一条直线的两个平面平行,则//αβ,故B 项符合题意;C 项,若,m βαβ⊥⊥,由同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故C 项不合题意;D 项,若,n m n α⊥⊥,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行可知,直线m 在平面α内或平行,故D 项不合题意. 故选B. 【答案】B4.【2019优选题】在正四面体P -ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,则下面四个结论中不成立的是( ) A .BC ∥平面PDF B .DF ⊥平面P AE C .平面PDF ⊥平面ABCD .平面P AE ⊥平面ABC【解析】画出图形,如图所示,则BC ∥DF ,又DF ⊂平面PDF ,BC ⊄平面PDF ,∴BC ∥平面PDF ,故A 成立;由题意可得AE ⊥BC ,PE ⊥BC ,BC ∥DF ,则DF ⊥AE ,DF ⊥PE ,∴DF ⊥平面P AE ,故B 成立; 又DF ⊂平面ABC ,∴平面ABC ⊥平面P AE ,故D 成立.本题的考点是平面与平面垂直的判定.【答案】C5.【2016全国新课标2】α,β是两个平面,m ,n 是两条直线,有下列四个命题:①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ⊂α,那么m ∥β.④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面α相交于直线c ,则//n c ,因为,,m m c m n α⊥⊥⊥所以所以,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确的命题有②③④.本题考点是空间中的线面关系. 【答案】②③④6.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值.【解析】(1)连结B 1C ,ME .因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D .由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED .又MN ⊄平面EDC 1,所以MN ∥平面C 1DE .(2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r ,1(12)A M =--u u u u r ,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r .设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rm m ,所以2040x z z ⎧--=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n.于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --的正弦值为5. 7.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EHH 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG uuu r =(1,0),AC uuu r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,.又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.8.【2019年高考北京卷文数】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底部ABCD 为菱形,E 为CD 的中点.(1)求证:BD ⊥平面PAC ;(2)若∠ABC =60°,求证:平面PAB ⊥平面PAE ;(3)棱PB 上是否存在点F ,使得CF ∥平面PAE ?说明理由.【解析】本题主要考查线面垂直的判定定理,面面垂直的判定.(1)因为PA ⊥平面ABCD ,所以PA BD ⊥.又因为底面ABCD 为菱形,所以BD AC ⊥. 所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连结CF,FG,EG.则FG∥AB,且FG=12 AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.9.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】本题从多面体折叠开始,考查考生在折叠过程中掌握哪些量的大小与位置关系是不变与变化的,折叠后的多面体的性质解决题中的要求.(1)由已知得AD P BE,CG P BE,所以AD P CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM DM=2.所以四边形ACGD的面积为4.10.【2019年高考北京卷理数】如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD .又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0), P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=u u u ru u u r u u u r.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以3cos ,||3⋅〈〉==-‖n p n p n p . 由题知,二面角F −AE −P .(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--u u ur ,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=u u u r n .所以直线AG 在平面AEF 内.11.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ; (2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【解析】(1)连接BD ,易知AC BD H =I ,BH DH =.又由BG=PG ,故GH PD ∥. 又因为GH ⊄平面P AD ,PD ⊂平面P AD ,所以GH ∥平面P AD . (2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC I 平面PCD PC =,所以DN ⊥平面P AC , 又PA ⊂平面P AC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D =I ,所以PA ⊥平面PCD . (3)连接AN ,由(2)中DN ⊥平面P AC ,可知DAN ∠为直线AD 与平面P AC 所成的角, 因为PCD △为等边三角形,CD =2且N 为PC的中点,所以DN =又DN AN ⊥, 在Rt AND △中,3sinDN DAN AD ∠==.所以,直线AD 与平面P AC 所成角的正弦值为3.12.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,AD AB ⊥1,2AB AD AE BC ====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【解析】依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r ,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE . (2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u ru u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =,可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49.(3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=- ⎪⎝⎭m.由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意. 所以,线段CF的长为87.【模拟考场】1.设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【解析】本题考点是线面平行与面面平行与充要条件的综合应用.因为α,β是两个不同的平面,m 是直线且m α⊂.若“m β∥”,则平面、αβ可能相交也可能平行,不能推出//αβ,反过来若//αβ,m α⊂,则有m β∥,则“m β∥”是“αβ∥”的必要而不充分条件,故选B. 【答案】B2.设,a b 是空间中不同的直线, ,αβ是不同的平面,则下列说法正确的是( )A. //,a b b α⊂,则//a αB. ,,//a b αβαβ⊂⊂,则//a bC. ,,//,//a b b αααββ⊂⊂,则//αβD. //,a αβα⊂,则//a β【解析】本题考点是线面平行,面面平行的判定。
06 平面解析几何
考纲原文
(四)平面解析几何初步
1.直线与方程
(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.
(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.
(3)能根据两条直线的斜率判定这两条直线平行或垂直.
(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.
(5)能用解方程组的方法求两条相交直线的交点坐标.
(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.
3.空间直角坐标系
(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.
(2)会推导空间两点间的距离公式.
(十五)圆锥曲线与方程
(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.
(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.
(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.
(4)理解数形结合的思想.
(5)了解圆锥曲线的简单应用.
预计2019年的高考中,对平面解析几何部分的考查总体保持稳定,其考查情况的预测如下:
直线和圆的方程问题单独考查的几率很小,多作为条件和圆锥曲线结合起来进行命题;直线与圆的位置关系是命题的热点,需给予重视,试题多以选择题或填空题的形式命制,难度中等及偏下.
样题4 (2018浙江)已知点P (0,1),椭圆24
x +y 2
=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________
时,点B 横坐标的绝对值最大. 【答案】5
【解析】设11(,)A x y ,22(,)B x y , 由2AP PB =得122x x -=,,
所以
,
因为A ,B 在椭圆上,所以
,
,
所以,
所以2
24
x +
,
与
对应相减得234
m
y +=
,,
当且仅当5m =时取最大值.
【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.
样题5 (2018新课标全国Ⅱ文科)双曲线
A .y =
B .y =
C .y x =
D .y x = 【答案】A
样题6 (2018新课标全国Ⅲ文科)已知双曲线
则点(4,0)到
C 的渐近线的距离为
A B .2
C .
2
D .【答案】D 【解析】
,1b
a
∴
=,所以双曲线C 的渐近线方程为0x y ±=,所以点(4,0)到渐近线的距离,故选D .
考向三 直线与圆锥曲线
样题7 (2017新课标全国II 文科)过抛物线2:4C y x =的焦点F ,C 于点M (M
在x 轴的上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为
A B .
C .
D .【答案】C
样题8 (2018新课标全国Ⅱ文科)设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =. (1)求l 的方程;
(2)求过点A ,B 且与C 的准线相切的圆的方程.
【答案】(1)y =x –1;(2)或.
【解析】(1)由题意得F (1,0),l 的方程为y =k (x –1)(k >0). 设A (x 1,y 1),B (x 2,y 2). 由2(1)4y k x y x =-⎧⎨=⎩
得
.
,故.
所以.
由题设知22
448k k +=,解得k =–1(舍去)
,k =1. 因此l 的方程为y =x –1.
(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为
,即5y x =-+.
设所求圆的圆心坐标为(x 0,y 0),则
解得0032x y =⎧⎨=⎩,或00
116.x y =⎧⎨=-⎩,
因此所求圆的方程为或.
样题9 (2017新课标全国Ⅰ文科)设A ,B 为曲线C :y =2
4
x 上两点,A 与B 的横坐标之和为4.
(1)求直线AB 的斜率;
(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.
【解析】(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114x y =,2
224
x y =,x 1+x 2=4,
于是直线AB 的斜率.
【名师点睛】本题主要考查直线与圆锥曲线的位置关系,主要利用根与系数的关系:因为直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用根与系数的关系及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题、弦长问题,可用根与系数的关系直接解决,但应注意不要忽视判别式的作用.
考向四 圆锥曲线的其他综合问题
样题10 (2018新课标全国Ⅲ文科)已知斜率为k 的直线l 与椭圆
交于A ,B 两点.线
段AB 的中点为.
(1)证明:12
k <-
; (2)设F 为C 的右焦点,P 为C 上一点,且.证明:
.
【答案】(1)见解析;(2)见解析.
(2)由题意得F (1,0).设33()P x y ,,
则
.
由(1)及题设得,
.
又点P 在C 上,所以3
4
m =
, 从而3
(1)2
P -,
,3||=2FP uu r . 于是
,
同理2||=22
x
FB -uu r ,
所以,
故
.
样题11 设椭圆
的右焦点为1F ,离心率为
2
1F 且与x 轴垂直的直线被
(1)求椭圆C 的方程;
(2)若24y x =上存在两点M N 、,椭圆C 上存在两个点P Q 、满足: 1P Q F 、、三点共线,
1M N F 、、三点共线且PQ MN ⊥,求四边形PMQN 的面积的最小值.
(2)当直线MN 的斜率不存在时,直线PQ 的斜率为0,此时;
当直线MN 的斜率存在时,设直线MN 的方程为
,联立24y x =,得
,
设,M N 的横坐标分别为,M N x x ,
则
,∴MN =
,
由PQ MN ⊥可得直线PQ 的方程为
,联立椭圆C 的方程,消去y ,得
,
设,P Q 的横坐标分别为,P Q x x ,则
P Q x x ∴,
,令,则
,
综上,
.。