函数不等式三角向量数列算法等大综合问题三轮复习考前保温专题练习(四)带答案人教版高中数学真题总结提升
- 格式:doc
- 大小:393.00 KB
- 文档页数:7
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.设定义域为为R的函数()l g 1,10,1x x f x x ⎧-≠⎪=⎨=⎪⎩,则关于x 的方程()()20f x b f x c++=有7个不同的实数解得充要条件是( ) (A)0b <且0c > (B)0b >且0c < (C)0b <且0c = (D)0b ≥且0c =(汇编上海理)2.函数()cos f x x x =-在[0,)+∞内 ( )(A )没有零点 (B )有且仅有一个零点 (C )有且仅有两个零点 (D )有无穷多个零点(汇编陕西理6)第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题3.已知集合P ={(x ,y )|y =}k ,Q ={(x ,y )|y =a x+}1,且P ∩Q =∅,那么k 的取值范围是___________________ 4.若将函数()y f x =的图象按向量(,1)6a π=平移后得到函数52sin()16y x π=-+的图象,则函数()y f x =单调递增区间是5. 已知A 、B 、C 是△ABC 的三个内角,向量1(sin ,sin ),(cos ,sin ),222A B C A B +==⋅=a b a b ,则tan tan A B ⋅= ▲ .6.给出下列命题:(1)在△ABC 中,“A <B ”是”sinA <sinB ”的充要条件;(2)在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;(3)在△ABC 中, 若AB=2,AC=3,∠ABC=3π,则△ABC 必为锐角三角形; ( 4 )将函数)32sin(π+=x y 的图象向右平移3π个单位,得到函数y=sin2x 的图象,其中真命题的序号是 (1)(3) (写出所有正确命题的序号) 评卷人得分三、解答题7.若函数()432f x x axbx cx d =++++. (1)当1a d ==-,0b c ==时,若函数()f x 的图象与x 轴所有交点的横坐标的和与积分别为m ,n .(i)求证:()f x 的图象与x 轴恰有两个交点; (ii)求证:23m n n =-.(2)当a c =,1d =时,设函数()f x 有零点,求22a b +的最小值.8.(cos ,(1)sin ),(cos ,sin ),(0,0)2a b παλαββλαβ=-=><<<设是平面上的两个向量,若向量a b +与a b -相互垂直。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编全国1理)若直线1x ya b+=通过点(cossin )M αα,,则( ) A .221a b +≤B .221a b+≥C .22111a b +≤D .22111a b+≥ D .由题意知直线1x ya b+=与圆221x y +=有交点,则2222111111a ba b ++≤1,≥. 另2.(汇编北京文数)⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是(A )一次函数且是奇函数 (B )一次函数但不是奇函数 (C )二次函数且是偶函数 (D )二次函数但不是偶函数第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.已知函数321,,1,12()111,0,.362x x x f x x x ⎧⎛⎤∈⎪⎥+⎪⎝⎦=⎨⎡⎤⎪-+∈⎢⎥⎪⎣⎦⎩ ,函数()sin()22(0)6g x a x a a π=-+>,若存在[]12,0,1x x ∈,使得12()()f x g x =成立,则实数a 的取值范围是 .4.设函数()f x a b =∙,其中向量(2cos ,1),(cos ,3sin 2)a x b x x ==,则函数f(x)的最小正周期是 .5. 设a >0,集合A ={(x ,y )|3,40,20x x y x y a ⎧⎪+-⎨⎪-+⎩≤≤≥},B ={(x ,y )|222(1)(1)x y a -+-≤}.若点P (x ,y )∈A 是点P (x ,y )∈B 的必要不充分条件,则a 的取值范围是 .6.设,[,]44x y ππ∈-,且33sin 20,4sin cos 0x x a y y y a +-=++=,其中a R ∈,则(2)cos x y += ▲评卷人得分三、解答题7.如图所示,ABCD 是一块边长为7米的正方形铁皮,其中ATN 是一半径为6米的扇形,已经被腐蚀不能使用,其余部分完好可利用.工人师傅想在未被腐蚀部分截下一个有边落在BC 与CD 上的长方形铁皮PQCR ,其中P 是TN 上一点.设TAP θ∠=,长方形PQCR 的面积为S 平方米.(1)求S 关于θ的函数解析式;(2)设sin cos t θθ+=,求S 关于t 的表达式以及S 的最大值.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.8.在△ABC 中,a ,b ,c 分别是角A 、B 、C 所对的边,且b 2=ac ,向量()c o s ()1A C =-,m 和(1cos )B =,n 满足32⋅=m n .(1)求s i n s i n A C 的值;(2)求证:三角形ABC 为等边三角形.9.已知关于x 的不等式2)1(2)1(22-≤+-a a x ,0)13(2)1(32≤+++-a x a x 的解集依次为A 、B ,且φ=⋂B A 。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.将函数y=3sin (x-θ)的图象F 按向量(3π,3)平移得到图象F ′,若F ′的一条对称轴是直线x=4π,则θ的一个可能取值是( ) A.π125 B. π125- C. π1211 D. π1211(汇编湖北理)2.(汇编江西理7)E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )D 1C 1B 1A 1DCBA(第13题)A. 1627B. 23C. 33D. 34第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.若正四棱柱ABCD -A 1B 1C 1D 1内接于半径为R 的半球,上底面顶点A 1、B 1、C 1、D 1在半球球面上, 下底面ABCD 在半球的底面上,则该正四棱柱体积的最大值为 ▲ .4.设O ON OM ),1,0(),21,1(==为坐标原点,动点),(y x p 满足01,01OP OM OP ON ≤⋅≤≤⋅≤,则z y x =-的最小值是 .5.已知二次函数f (x )=x 2-2x +6,设向量a =(sin x ,2),b =(2sin x ,21),c =(cos2x ,1),d =(1,2).当x ∈[0,π]时,不等式f (a·b )>f (c ·d )的解集为___________.6.已知集合{}a x ax x x A -≤-=2,集合(){}21log 12≤+≤=x x B ,若B A ⊆,则实数a 的取值范围是________________________.评卷人得分三、解答题7.设全集U =R ,集合{}223|=log 1,|2,3x A x y B y y x x x A ⎧⎫⎪⎪⎛⎫=+==+∈⎨⎬⎪⎝⎭⎪⎪⎩⎭,求:(1),A B A B ;(2)()()(),uuuA B A B 痧?.8.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,向量)sin ,2cos2(C C m -=,)sin 2,2(cos C Cn =,且.n m ⊥ (1)求角C 的大小;(2)若2222c b a +=,求A tan 的值.9.定义向量(,)OM a b =的“相伴函数”为()sin cos ;f x a x b x =+函数()sin cos f x a x b x =+的“相伴向量”为(,)OM a b =(其中O 为坐标原点).记平面内所有向量的“相伴函数”构成的集合为.S(1)设()3sin()4sin ,2g x x x π=++求证:();g x S ∈(2)已知()cos()2cos ,h x x x α=++且(),h x S ∈求其“相伴向量”的模; (3)已知(,)(0)M a b b ≠为圆22:(2)1C x y -+=上一点,向量OM 的“相伴函数”()f x在0x x =处取得最大值.当点M 在圆C 上运动时,求0tan 2x 的取值范围. (本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.10.如图,实线部分的月牙形公园是由圆P 上的一段优弧和圆Q 上的一段劣弧围成,圆P 和圆Q 的半径都是2km ,点P 在圆Q 上,现要在公园内建一块顶点都在圆P 上的多边形活动场地.(1)如图甲,要建的活动场地为△RST ,求场地的最大面积;(2)如图乙,要建的活动场地为等腰梯形ABCD ,求场地的最大面积.11.已知集合2{(,)|20,}A x y x mx y x R =+-+=∈,{(,)|10,02}B x y x y x =-+=≤≤,若A B ≠∅,求实数m 的取值范围。
高中数学专题复习
《函数不等式三角向量数列算法等大综合问题》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.函数f (x )=cos x (x )(x ∈R)的图象按向量(m,0) 平移后,得到函数y =-f ′(x )的图象,则m 的值可以为
A.
2π B.π C.-π
D.- 2π (汇编福建理) 2.设不等式20x x -≤的解集为M ,函数()l n (1||f x x =-的定义域为N ,则
M N ⋂为
(A )[0,1) (B )(0,1) (C )[0,1] (D )(-1,0] (汇编陕西卷文)
第II 卷(非选择题)
请点击修改第II 卷的文字说明。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为(A )(1,)+∞ (B )(0,1) (C )(-1,1) (D )(,1)-∞2.在△ABC 中,AB=2,AC=3,AB BC = 1则___BC =. A.3 B.7 C.22 D.23第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.已知向量p =(2,x -1),q =(x ,-3),且p q ⊥,若由x 的值构成的集合A 满足{}2A x ax ⊇=,则实数a 的值构成的集合是 ▲ .4.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)(cos sin )A A =-=,,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为2,36ππ5. 运用物理中矢量运算及向量坐标表示与运算,我们知道: (1)若两点等分单位圆时,有相应关系为:0)c o s (c o s ,0)si n (s i n =α+π+α=α+π+α(2)四点等分单位圆时,有相应关系为:)23cos()sin()2cos(cos ,0)23sin()sin()2sin(sin =π+α+π+α+π+α+α=π+α+π+α+π+α+α 由此可以推知三等分单位圆时的相应关系为: .0)34cos()32cos(cos ;0)34sin()32sin(sin =π+α+π+α+α=π+α+π+α+α 6.已知:集合{}{}22231,23,A x y x x B y y x x x R ==-+==--∈,则()R C AB=_____ 评卷人得分三、解答题7.如图,现有一个以∠AOB 为圆心角、湖岸OA 与OB 为半径的扇形湖面AOB.现欲在弧AB 上取不同于A 、B 的点C ,用渔网沿着弧AC(弧AC 在扇形AOB 的弧AB 上)、半径OC 和线段CD(其中CD ∥OA),在该扇形湖面内隔出两个养殖区域——养殖区域Ⅰ和养殖区域Ⅱ.若OA =1 km ,∠AOB =π3,∠AOC =θ. (1) 用θ表示CD 的长度;(2) 求所需渔网长度(即图中弧AC 、半径OC 和线段CD 长度之和)的取值范围.8.设()()()()3cos ,1sin ,sin ,cos ,22a b ππαλπαββ⎛⎫⎛⎫⎛⎫=---=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0,02πλαβ⎛⎫><<< ⎪⎝⎭是平面上的两个向量,若向量a b +与a b -相互垂直。
高中数学专题复习
《函数不等式三角向量数列算法等大综合问题》单元
过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.将函数y=3sin (x-θ)的图象F 按向量(
3π,3)平移得到图象F ′,若F ′的一条对称轴是直线x=4
π,则θ的一个可能取值是( ) A.π125 B. π125- C. π1211 D. π12
11(汇编湖北理)
2.若关于x 的不等式014
2≤--k x k 的解集是M ,则对任意实数k ,总有( ) A.M ⊂-]1,1[ B.M ⊂]3,1[ C.M C R ⊂]3,1[ D.M C R ⊂-]1,1[ 第II 卷(非选择题)
请点击修改第II 卷的文字说明。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.将函数21xy =+的图象按向量a 平移得到函数12x y +=的图象,则a 等于( )A.(1,1)--B.(1,1)-C.(1,1)D.(1,1)- (汇编辽宁理)2.设不等式20x x -≤的解集为M ,函数()l n (1||f x x =-的定义域为N ,则M N ⋂为(A )[0,1) (B )(0,1) (C )[0,1] (D )(-1,0] (汇编陕西卷文)第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点. (1)若6πϕ=,点P 的坐标为(0,332),则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .4. 设集合{211}A x x x =-<<->或,{},B x a x b =≤≤若{2},A B x x ⋃=>- {13}A B x x ⋂=<≤,则a = ,b = .5.已知集合(){}(){}1,,,+====xa y y x Q k y y x P ,且φ=Q P .那么k 的取值范围是6. 在周长为16的PMN ∆中,6MN =,则PM PN ⋅的取值范围是 [7,16). 评得三、解答题7.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放(14≤≤a a ,且)∈a R 个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()y a f x =⋅,其中161(04)8()15(410)2⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩x xf x x x .若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用. (Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a 个单位的药剂,要使接下来的4天中能够持续有效治污,试求a 的最小值(精确到0.1,参考数据:2取1.4). (本大题16分)8.设向量()()2sin,cos sin ,4cos ,cos sin ,2x a x b x x x f x a b⎛⎫=-=+=⋅ ⎪⎝⎭(1)求()f x 的解析式;(2)若函数()()[]23sin ,0,2g x f x x x π=+∈的图象与直线y k =有且仅有2个不同的交点,求实数k 的取值范围。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=-⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+B .sin()6y x π=-C .sin(2)3y x π=+ D .sin(2)3y x π=-(汇编试题)2.设函数2()43,()32,xf x x xg x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则M N 为(A )(1,)+∞ (B )(0,1) (C )(-1,1) (D )(,1)-∞第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.如图所示:矩形n n n n A B C D 的一边n n A B 在x 轴上,另两个顶点n C 、n D 在函数1()(0)f x x x x=+>的图像上,若点n B 的坐标为()*,0(2,)n n n N ≥∈),矩形n n n nA B C D 的周长记为n a ,则=+⋅⋅⋅++1032a a a ▲ .4.已知集合{}24M x x =<,{}ln 0N x x x =>,则集合M N = ▲ .5.已知集合{}1,2,3,4A =,{},4,7B m =,若{}1,4A B =,则AB = ▲ .6.已知集合2{|40}A x x =-<,{|21,}B x x n n Z ==+∈,则集合A B = .评卷人得分三、解答题7.设集合{12}n P n =,,,…,n *∈N .记()f n 为同时满足下列条件的集合A 的个yO xnnnnD C B A数:①n A P ⊆;②若x A ∈,则2x A ∉;③若n P x A ∈ð,则2n P x A ∉ð. (1)求(4)f ;(2)求()f n 的解析式(用n 表示). 【答案与解析】【点评】本题重点考查集合的概念、组成、元素与集合的基本关系、集合的基本运算—补集和函数的解析式的求法.本题属于中档题,难度适中.8.设向量a =(2,sin θ),b =(1,cos θ),θ为锐角 (1)若a ·b =613,求sin θ+cos θ的值; (2)若a //b,求sin(2θ+3π)的值.9.已知ABC △的面积为3,且满足06AB AC ≤⋅≤,设AB 和AC 的夹角为θ. (1)求θ的取值范围;(2)求函数2π()2sin 3cos24f θθθ⎛⎫=+- ⎪⎝⎭的最大值与最小值.10.如图A 是半径为5的圆O 上的点,C 是圆与x 轴正半轴的交点,A 点的坐标为(4,3),将线段OA 绕原点O 逆时针旋转60得到线段OB 。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.函数cos(2)26y x π=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),y f x =当()y f x =为奇函数时,向量a 可以等于( ).(,2)6A π-- .(,2)6B π-.(,2)6C π- .(,2)6D π(汇编湖北理) 2.若关于x 的不等式0142≤--k x k 的解集是M ,则对任意实数k ,总有( )A.M ⊂-]1,1[ B.M ⊂]3,1[ C.M C R ⊂]3,1[ D.M C R ⊂-]1,1[第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.已知集合{}1,2,3,4A =,{},4,7B m =,若{}1,4A B =,则AB = ▲ .4.设集合},,)2(2|),{(222R y x m y x my x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________(汇编年高考江苏卷14)5.已知向量a =(sinx,cosx),b=(1,一2),且a ⊥b ,则tan2x= .6. 经过点P (-2,-1)的直线l 与两坐标轴在第三象限围成的三角形面积的最小值为_______ 评卷人得分三、解答题7.已知向量(sin ,1),(3cos ,cos 2)(0)3Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 【汇编高考真题山东理17】(本小题满分12分)8.设平面向量a =(cos ,sin )x x ,(cos 23,sin )b x x =+,(sin ,cos )c αα=,x R ∈,⑶a c ⊥,求cos(22)x α+的值;⑵若(0,)2x π∈,证明:a 和b 不可能平行;⑶若0α=,求函数()(2)f x a b c =-的最大值,并求出相应的x 值.(汇编年3月苏、锡、常、镇四市高三数学教学情况调查一)(14分)9.已知集合()(){}0132<---=a x x x A ,函数()12lg2+--=a x xa y 的定义域为集合B .(1)若2=a ,求集合B ;(2)若,B A =求实数a 的值。
高中数学专题复习
《函数不等式三角向量数列算法等大综合问题》单元
过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.函数cos(2)26y x π
=+-的图象F 按向量a 平移到'F ,'F 的函数解析式为(),
y f x =当()y f x =为奇函数时,向量a 可以等于( )
.(,2)6A π
-- .(,2)6B π- .(,2)6
C π- .(,2)6
D π(汇编湖北理) 2.若关于x 的不等式0142
≤--k x k 的解集是M ,则对任意实数k ,总有( )
A.M ⊂-]1,1[ B.M ⊂]3,1[ C.M C R ⊂]3,1[ D.M C R ⊂-]1,1[ 第II 卷(非选择题)
请点击修改第II 卷的文字说明。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分 一、选择题1.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( )(A )0 (B )1 (C )-1 (D )±1(汇编江苏)2. 在△ABC 中,若sinB 、cos 、sinC 成等比数列,则此三角形一定为( )A .直角三角形 B.等腰三角形C .等腰直角三角形D .等腰或直角三角形解析:易知cos 2=sinB·sinC,∴1+cosA=2sinBsinC, 即1-cos(B+C)=2sinBsinC,即1-cosBcosC+sinBsinC=2sinBsinC.∴1-cosBcosC=sinB sinC.∴cos(B -C)=1.∵0<B <π,0<C <π,∴-π<B-C <π.∴B-C=0,B=C.∴△ABC 为等腰三角形.故选B.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题3.已知函数①x x f ln 3)(=;②x e x f c o s 3)(=;③xe xf 3)(=;④x x f c o s 3)(=.其中对于)(x f 定义域内的任意一个自变量1x 都存在唯一个自变量)()(,212x f x f x 使=3成立的函数序号是____▲____.4.设集合},,)2(2|),{(222R y x m y x m y x A ∈≤+-≤=, },,122|),{(R y x m y x m y x B ∈+≤+≤=, 若,φ≠⋂B A 则实数m 的取值范围是______________(汇编年高考江苏卷14)5.已知集合}|{},,02|{2a x x B R x x x x A ≥=∈≤-=,若B B A =⋃,则实数a 的取值范围是_______________6.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0x A ay c ⋅++= 与sin sin 0bx y B C -⋅+=的位置关系是 ▲ .评卷人得分 三、解答题7.定义向量(,)OM a b =的“相伴函数”为()sin cos ;f x a x b x =+函数 ()sin cos f x a x b x =+的“相伴向量”为(,)OM a b =(其中O 为坐标原点).记平面内所有向量的“相伴函数”构成的集合为.S(1)设()3sin()4sin ,2g x x x π=++求证:();g x S ∈(2)已知()cos()2cos ,h x x x α=++且(),h x S ∈求其“相伴向量”的模;(3)已知(,)(0)M a b b ≠为圆22:(2)1C x y -+=上一点,向量OM 的“相伴函数”()f x在0x x =处取得最大值.当点M 在圆C 上运动时,求0tan 2x 的取值范围. (本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.8.已知集合107x A x x ⎧-⎫=>⎨⎬-⎩⎭,{}22220B x x x a a =---< (1)当4a =时,求A B ;(2)若A B ⊆,求实数a 的取值范围. (本题14分)9.1.已知向量(sin ,3)a θ=,(1,cos )b θ=,,22ππθ⎡⎤∈-⎢⎥⎣⎦. (1)若a b ⊥,求θ;(2)求||a b +的取值范围10.已知O 为坐标原点,向量(3cos ,3sin ),(3cos ,sin ),OA x x OB x x == OC 3,0=(),0,2x π⎛⎫∈ ⎪⎝⎭(1)求证:()OA OB OC -⊥;(2)若ABC ∆是等腰三角形,求x ;(3)求tan AOB ∠的最大值及相应的x 值。
高中数学专题复习
《函数不等式三角向量数列算法等大综合问题》单元
过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编北京文数)⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数
()()()f x xa b xb a =+⋅-是
(A )一次函数且是奇函数 (B )一次函数但不是奇函数
(C )二次函数且是偶函数 (D )二次函数但不是偶函数
2.(汇编江西理)已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC +,且A 、
B 、
C 三点共线(该直线不过原点O ),则S 200=( A )
A .100 B. 101 C.200 D.201。
高中数学专题复习
《函数不等式三角向量数列算法等大综合问题》单元
过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.(汇编北京文数)⑷若a,b 是非零向量,且a b ⊥,a b ≠,则函数
()()()f x xa b xb a =+⋅-是
(A )一次函数且是奇函数 (B )一次函数但不是奇函数
(C )二次函数且是偶函数 (D )二次函数但不是偶函数
2.函数()cos f x x x =-在[0,)+∞内 ( )
(A )没有零点 (B )有且仅有一个零点
(C )有且仅有两个零点 (D )有无穷多个零点(汇编陕西理6)
第II 卷(非选择题)。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( ) (A )0 (B )1 (C )-1(D )±1(汇编江苏) 2.(汇编江西理7)E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 33D. 34第II 卷(非选择题)请点击修改第II 卷的文字说明评卷人得分二、填空题3.已知数列{}n a ,首项11a =-,它的前n 项和为n S ,若1n n OB a OA a OC +=-,且,,A B C 三点共线(该直线不过原点O ),则10S = ▲ .4.已知函数32()2,()l o g ,(),,xf x xg x x xh x x x a b c =+=+=+的零点依次为,则a,b,c 由小到大的顺序是 .5.已知集合{}{}22|230,|0A x x x B x x ax b =-->=++≤,AB R =,{}|34A B x x =<≤,则sin cos a x b x +的最小值是分析:根据条件求出,a b 的值,则函数sin cos a x b x +的最小值为22a b -+。
6.定义运算b a *为:()(),⎩⎨⎧>≤=*b a b b a a b a 例如,121=*,则函数f (x )=x x cos sin *的值域为评卷人得分三、解答题7.已知二次函数f (x )=x 2+mx+n 对任意x ∈R ,都有f (-x ) = f (2+x )成立,设向量→a = ( sinx , 2 ) ,→b = (2sinx , 12),→c = ( cos 2x , 1 ),→d =(1,2),(Ⅰ)求函数f (x )的单调区间;(Ⅱ)当x ∈[0,π]时,求不等式f (→a ·→b )>f (→c ·→d )的解集.8. 已知向量)1,(sin θ=a,)3,(cos θ=b,且//a b ,其中)2,0(πθ∈.-1 3 4(1)求θ的值;(2)若20,53)sin(πωθω<<=-,求cos ω的值.9.1.已知向量(sin ,3)a θ=,(1,cos )b θ=,,22ππθ⎡⎤∈-⎢⎥⎣⎦. (1)若a b ⊥,求θ; (2)求||a b +的取值范围10.已知 ]4,2[,2∈=x y x的值域为集合A ,)]1(2)3([log 22+-++-=m x m x y 定义域为集合B ,其中1≠m . (Ⅰ)当4=m ,求B A ⋂; (Ⅱ)设全集为R ,若B C A R ⊆,求实数m 的取值范围.11.已知{}n a 是等差数列,d 为公差且不为0,1a 和d 均为实数,它的前n 项和记为S n 。
高中数学专题复习《函数不等式三角向量数列算法等大综合问题》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编江西理5)等比数列{}n a 中,12a =,8a =4,函数()128()()()f x x x a x a x a =---,则()'0f =( )A .62 B. 92 C. 122 D. 1522.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A .π2cos 234x y ⎛⎫=+- ⎪⎝⎭B .π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C .π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D .π2cos 2312x y ⎛⎫=++ ⎪⎝⎭(湖北理2)BACDA第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)(cos sin )A A =-=,,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为2,36ππ4.已知集合(){}(){}1,,,+====x a y y x Q k y y x P ,且φ=Q P .那么k 的取值范围是5.若将函数()y f x =的图象按向量(,1)6a π=平移后得到函数52sin()16y x π=-+的图象,则函数()y f x =单调递增区间是6.如图,在ABC ∆中,120,2,1,BAC AB AC D ∠=︒==是边BC 上一点,2,DC BD = 则AD BC =__________.评卷人得分三、解答题7.已知向量)1,(sin -=x m ,)21,cos 3(-=x n ,函数2)(2-⋅+=n m m x f . (Ⅰ)求)(x f 的最大值,并求取最大值时x 的取值集合;(Ⅱ)已知a 、b 、c 分别为ABC ∆内角A 、B 、C 的对边,且a ,b ,c 成等比数列,角B 为锐角,且()1f B =,求CA tan 1tan 1+的值.8.已知ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2b ac =,向量()()c o s ,1m A C =-和 ()1,cos n B =满足32m n ⋅=. (1)求sin sin A C 的值;(2)求证:ABC ∆为等边三角形.9.已知向量()()cos 2,sin 2,cos 2,sin 2a A A b B == -B ,其中,A B 为锐角三角形的两个内角.(1)求a b ⋅及a b +; (2)设函数()2a b f x a b⋅=+,求()f x 的值域.10.已知在ABC ∆中,角,,A B C 的对边分别为,,,a b c 向量(c o s,s m A A =,(c o s ,n B B =,3s i n c o s .mn B C ⋅=- (1)求角A 的大小; (2)若3a =,求ABC ∆面积的最大值.11.记f (x )=lg(3-|x -1|)的定义域为A ,集合B ={x |x 2-(a +5)x +5a <0}. (1)当a =1时,求A ∩B ;(2)若A ∩B =A ,求a 的取值范围.12.不等式2|1|x x a ->+的解集为M ,若M ≠∅,且(,0)M ⊆-∞,求实数a 的取值范围。
【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C【解析】考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法。
考虑到求导中,含有x 项均取0,则()'0f 只与函数()f x 的一次项有关;得:412123818()2a a a a a a ⋅⋅==。
2.第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题3.4.解题探究:本题考查集合的运算法则与指数函数的图象与性质,掌握数形结合的数学思想。
解析:.本题两集合表示点集,通过作出函数和的图象,可知满足条件的的取值范围为.解析:解题探究:本题考查集合的运算法则与指数函数的图象与性质,掌握数形结合的数学思想。
解析:(]1,∞-.本题两集合表示点集,通过作出函数1+=xa y 和k y =的图象,可知满足条件的k 的取值范围为(]1,∞-. 5.7[2,2]()66k k k Z ππππ++∈ 6.由余弦定理得可得,又夹角大小为,,所以解析:由余弦定理得222222cos 22AB AC BC AB AD BD B AB AC AB BD+-+-==⨯⨯⨯⨯ 可得7BC =13,3AD =,又,AD BC 夹角大小为ADB ∠,2223298cos 29413791BD AD AB ADB BD AD +-∠==-⨯=-⨯⨯⨯,所以AD BC =8cos 3AD BC ADB ⨯⨯∠=-.【解析】根据向量的加减法法则有:BC AC AB =-112()333AD AB BD AB AC AB AC AB =+=+-=+,此时2212122()()33333AD BC AC AB AC AB AC AC AB AB =+-=+-··18183333=--=-. 评卷人得分三、解答题7. (本小题满分14分)解:(Ⅰ)2)()(-⋅+=m n m x f 221cos sin 31sin 2-+++=x x x )62sin(2cos 212sin 23212sin 2322cos 1π-=-=-+-=x x x x x .……… 3分 故1)(max =x f ,此时Z k k x ∈+=-,2262πππ,得Z k k x ∈+=,3ππ,∴取最大值时x 的取值集合为},3|{Z k k x x ∈+=ππ. ………………… 7分(Ⅱ)()sin(2)16f B B π=-=,20π<<B ,65626πππ<-<-∴B , 262B ππ∴-=,3B π=. …………………………… 10分由ac b =2及正弦定理得C A B sin sin sin 2=于是C A AC A C C C A A C A sin sin sin cos cos sin sin cos sin cos tan 1tan 1+=+=+ 2sin()123sin sin 3A CB B +===. ……………………………………14分 18.解:(1)由32⋅=m n 得,3cos()cos 2A CB -+=, ----------------------------2分又B =π-(A +C ),得cos(A -C )-cos(A +C )=32, -------------------------4分即cos A cos C +sin A sin C -(cos A cos C -sin A sin C )=32,所以sin A sin C =34. ---------6分(2)由b 2=ac 及正弦定理得2sin sin sin B A C =,故23sin 4B =. -------------8分 于是231cos 144B =-=,所以 1cos 2B =或12-. 因为cos B =32-cos(A -C )>0, 所以 1cos 2B =,故π3B =. --------------11分由余弦定理得2222cos b a c ac B =+-,即222b a c ac =+-, 又b 2=ac ,所以22ac a c ac =+-, 得a =c . 因为π3B =,所以三角形ABC 为等边三角形. --------------------- 14分 9.(1)()cos 2cos 2sin 2sin 2cos 2a b A B A B A B ⋅=-=+; ∵()()2222222cos24cos a b a b a b A B A B +=++⋅=++=+,且2A B ππ<+<,∴()2cos a b A B +=-+. ……………6分(2)()()()()()()()22cos 22cos 1212cos 2cos cos cos A B A B a b f x A B A B A B A B a b++-⋅====-++-+-+++,设()cos t A B =+, 则10t -<<, ∴ ()12y f x t t==-+ ()10t -<<,∵ 21'20y t =--<,∴函数12y t t=-+()10t -<<是减函数,其值域为(),1-∞ . (14)分10.(1)cos cos sin sin ,=3sin B+cos (A+B)3sin cos cos sin sin ,33sin B 2sin sin ,sin ,22.33m n A B A B m n B A B A B A B A A A ππ⋅=+⋅=+-∴==∴==又或222(2)2cos ,a b c bc A =+-① 当3A π=时,229,b c bc bc +-=≥、1393sin ;244s bc A bc ∴==≤ ② 当23A π=时,2293,b c bc bc =++≥故3,bc ≤133sin .24s bc A ∴=≤11. 12.。