山东省莱芜市2016年中考数学试题(word版,含解析)
- 格式:doc
- 大小:642.00 KB
- 文档页数:32
数学试卷 第1页(共32页) 数学试卷 第2页(共32页)绝密★启用前山东省莱芜市2016年初中学业考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的算术平方根为( )A .2-B .2C .2± D2.下列运算正确的是( )A .743=a a a ÷B .253=2a a a -C .4283=3a a aD .32254()=a b a b3.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若0a c +=,则b d +( )A .大于0B .小于0C .等于0D .不确定4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是( )A .16B .14C .13D .125.如图,ABC △中,46A ∠=,74C ∠=,BD 平分ABC ∠,交AC 于点D ,那么BDC ∠的度数是( )A .76 B .81 C .92D .1046.将函数2y x =-的图象向下平移3个单位,所得图象对应的函数关系式为( )A .23y x =-+()B .23y x =--()C .23y x =-+D .23y x =--7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x 圈,则列方程为( )A .270330200x x =+B .270330200x x =-C .270330200x x =+D .270330200x x=- 8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是( )A.B.C.D .2 9.2,则这个正多边形为( )A .正十二边形B .正六边形C .正四边形D .正三角形10.已知ABC △中,6AB =,8AC =,11BC =,任作一条直线将ABC △分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A .3条B .5条C .7条D .8条11.如图,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 停止运动;另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动.设点M 运动时间为(s)x ,AMN △的面积为2(cm )y ,则y 关于x 的函数图象是( )12.已知四边形ABCD 为矩形,延长CB 到E ,使CE CA =,连接AE .F 为AE 的中点,连接BF ,DF ,DF 交AB 于点G .下列结论: (1)BF D F ⊥;(2)BDG ADF S S =△△; (3)2 EF FG FD =;(4)AG BC BG AC =.其中正确的个数是( )A .1B .2C .3D .4ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共32页) 数学试卷 第4页(共32页)第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填写在题中的横线上)13.0112πtan433||5--=--()() .14.若一次函数+3y x =与2y x =-的图象交于点A ,则A 关于y 轴的对称点A '的坐标为 .15.如图,A ,B 是反比例函数ky x=图象上的两点,过点A 作AC y ⊥轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,AOD △的面积为3,则k 的值为 .16.如图,将Rt ABC △沿斜边AC 所在直线翻折后点B 落到点D ,过点D 作DE AB ⊥,垂足为E .如果3AE EB =,7EB =,那么BC = .17.在Rt ABC △中,°90ABC ∠=,4AB =,2BC =,如图,将直角顶点B 放在原点,点A 放在y 轴正半轴上,当点B 在x 轴上向右移动时,点A 也随之在y 轴上向下移动,当点A 到达原点时,点B 停止移动,在移动过程中,点C 到原点的最大距离为 .三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤)18.(本小题满分6分)先化简,再求值:211()(1)1a a a a --÷+-,其中a 满足2310a a -=+. 19.(本小题满分8分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成如下两个不完整的统计图.请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为 人,请补全条形统计图;(2)统计的捐款金额的中位数是 元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?20.(本小题满分9分)某体育场看台的坡面AB 与地面的夹角是37,看台最高点B 到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE ,在B 点用测角仪测得旗杆的最高点E 的仰角为33.已知测角仪BF 的高度为1.6米,看台最低点A 与旗杆底端D 之间的距离为16米(C ,A ,D 在同一条直线上). (1)求看台最低点A 到最高点B 的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G ,H 之间的距离为1.2米,下端挂钩H 与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数).sin370.6,cos370.8,≈≈(tan370.75,sin330.54,cos330.84,tan330.65≈≈≈≈)数学试卷 第5页(共32页) 数学试卷 第6页(共32页)21.(本小题满分9分)如图,ABC △为等腰三角形,AB AC =,D 为ABC △内一点,连接AD ,将线段AD 绕点A 旋转AE ,使得DAE BAC ∠=∠,F ,G ,H 分别为BC ,CD ,DE 的中点,连接BD ,CE ,GF ,GH . (1)求证:GH GF =;(2)试说明FGH ∠与BAC ∠互补.22.(本小题满分10分)为迎接“国家卫生城市”复检,某市环卫局准备购买A ,B 两种型号的垃圾箱.通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元;购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元. (1)每个A 型垃圾箱和B 型垃圾箱各多少元?(2)现需要购买A ,B 两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A 型垃圾箱的安装,每天可以安装15个,乙负责B 型垃圾箱的安装,每天可以安装20个.生产厂家表示若购买A 型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B 型垃圾箱超过150个时,该型号的产品可以打八折.若既能在规定时间内完成任务,费用又最低,应购买A 型和B 型垃圾箱各多少个?最低费用是多少元?23.(本小题满分10分)已知AB ,CD 是O 的两条弦,直线AB ,CD 互相垂直,垂足为E ,连接AC ,过点B 作BF AC ⊥,垂足为F ,直线BF 交直线CD 于点M .(1)如图1,当点E 在O 内时,连接AD ,AM ,BD ,求证:AD AM =; (2)如图2,当点E 在O 外时,连接AD ,AM ,求证:AD AM =;(3)如图3,当点E 在O 外时,ABF ∠的平分线与AC 交于点H ,若4tan 3C ∠=,求tan ABH ∠的值.24.(本小题满分12分)如图,二次函数2y ax bx c =++的图象经过点(1,0)A -,(4,0)B ,(2,3)C --,直线BC 与y 轴交于点D ,E 为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E 在直线BC 的上方,过E 分别作BC 和y 轴的垂线,交直线BC 于不同的两点F ,G (F 在G 的左侧),求EFG △周长的最大值;(3)是否存在点E ,使得EDB △是以BD 为直角边的直角三角形?如果存在,求点E 的坐标;如果不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共32页)数学试卷 第8页(共32页)4263a a =,故0b d +<,故选B 。
2016 年山东省莱芜市中考数学试卷一、选择题(每小题 3 分,共 36 分)1.(3 分) 4的算术平方根为()A.﹣ 2 B.2 C.± 2 D.2.(3分)下列运算正确的是().2﹣ 3a=2a C. 3a4 2 8.( 3 2)2 5 4 7÷a4 3A.a=a B5a?a =3a D a b=a b3.(3分)如图,有理数 a, b, c,d 在数轴上的对应点分别是A,B,C,D,若a+c=0,则 b+d()A.大于 0 B.小于 0 C.等于 0D.不确定4.(3 分)投掷一枚均匀的骰子,掷出的点数是 3 的倍数的概率是()A.B.C.D.5.(3 分)如图,△ ABC中,∠ A=46°,∠ C=74°,BD 平分∠ ABC,交 AC于点 D,那么∠ BDC的度数是()A.76°B.81°C.92°D.104°6.(3 分)将函数 y=﹣ 2x 的图象向下平移3 个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3)B. y=﹣2(x﹣3)C.y=﹣ 2x+3D. y=﹣2x﹣ 37.(3 分)甲、乙两个转盘同时转动,甲转动270 圈时,乙恰好转了330 圈,已知两个转盘每分钟共转200 圈,设甲每分钟转x 圈,则列方程为()A.=B.=C.=D.=8.(3 分)用面积为 12π,半径为 6 的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4C. 2D.29.(3 分)正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形C.正四边形D.正三角形10.( 3 分)已知△ ABC中,AB=6,AC=8,BC=11,任作一条直线将△ ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3 条 B.5 条 C.7 条 D.8 条11.( 3 分)如图,正方形 ABCD的边长为 3cm,动点 M 从点 B 出发以 3cm/s 的速度沿着边 BC﹣CD﹣ DA 运动,到达点 A 停止运动,另一动点 N 同时从点 B 出发,以 1cm/s 的速度沿着边 BA 向点 A 运动,到达点 A 停止运动,设点 M 运动时间为 x(s),△ AMN 的面积为 y( cm2),则 y 关于 x 的函数图象是()A.B.C.D.12.( 3 分)已知四边形A BCD为矩形,延长CB到 E,使 CE=CA,连接 AE,F 为AE的中点,连接 BF,DF, DF交 AB 于点 G,下列结论:(1) BF⊥DF;(2) S△BDG=S△ADF;2( 3) EF=FG?FD;( 4)=其中正确的个数是()A.1B.2C.3D.4二、填空题(本题共 5 小题,每小题 4 分,共 20 分)13.(4分)(﹣π)0+﹣()﹣1﹣| tan45 °﹣3| =.214.( 4分)若一次函数 y=x+3 与 y=﹣ 2x 的图象交于点 A,则 A 关于 y 轴的对称点 A′的坐标为.15.(4分)如图, A,B 是反比例函数 y= 图象上的两点,过点 A 作 AC⊥y 轴,垂足为 C, AC交 OB 于点 D.若 D 为 OB 的中点,△ AOD 的面积为 3,则 k 的值为.16.( 4 分)如图,将 Rt△ABC沿斜边 AC所在直线翻折后点作 DE⊥ AB,垂足为 E,如果 AE=3EB,EB=7,那么 BC=B 落到点.D,过点D17.( 4 分)在 Rt△ABC中,∠ ABC=90°,AB=4,BC=2.如图,将直角顶点 B 放在原点,点 A 放在 y 轴正半轴上,当点 B 在 x 轴上向右移动时,点 A 也随之在 y 轴上向下移动,当点 A 到达原点时,点 B 停止移动,在移动过程中,点 C 到原点的最大距离为.三、解答题(本大题共7 小题,共 64 分)18.( 6 分)先化简,再求值:(a﹣)÷,其中a满足a2+3a﹣1=0.19.(8 分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是 50 元,100元,150 元,200 元,300 元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:( 1)宣传小组抽取的捐款人数为人,请补全条形统计图;( 2)统计的捐款金额的中位数是元;(3)在扇形统计图中,求 100 元所对应扇形的圆心角的度数;(4)已知该企业共有 500 人参与本次捐款,请你估计捐款总额大约为多少元?20.( 9 分)某体育场看台的坡面 AB 与地面的夹角是 37°,看台最高点 B 到地面的垂直距离 BC为 3.6 米,看台正前方有一垂直于地面的旗杆 DE,在 B 点用测角仪测得旗杆的最高点 E 的仰角为 33°,已知测角仪 BF的高度为 1.6 米,看台最低点A 与旗杆底端 D 之间的距离为 16 米( C, A, D 在同一条直线上).( 1)求看台最低点 A 到最高点 B 的坡面距离;( 2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H 之间的距离为 1.2米,下端挂钩 H 与地面的距离为 1 米,要求用 30 秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37 ≈°0.6,cos37°≈0.8,tan37 °≈0.75, sin33 ≈°0.54,cos33 °≈ 0.84,tan33 °≈0.65)21.( 9 分)如图,△ ABC为等腰三角形, AB=AC,D 为△ ABC内一点,连接 AD,将线段AD 绕点A 旋转至AE,使得∠DAE=∠BAC,F,G,H 分别为BC,CD,DE的中点,连接 BD,CE,GF, GH.(1)求证: GH=GF;(2)试说明∠ FGH与∠ BAC互补.22.( 10 分)为迎接“国家卫生城市”复检,某市环卫局准备购买 A、B 两种型号的垃圾箱,通过市场调研得知:购买 3 个 A 型垃圾箱和 2 个 B 型垃圾箱共需 540 元;购买 2 个 A 型垃圾箱比购买 3 个 B 型垃圾箱少用 160 元.(1)每个 A 型垃圾箱和 B 型垃圾箱各多少元?(2)现需要购买A,B 两种型号的垃圾箱共300 个,分别由甲、乙两人进行安装,要求在 12 天内完成(两人同时进行安装).已知甲负责 A 型垃圾箱的安装,每天可以安装 15 个,乙负责 B 型垃圾箱的安装,每天可以安装 20 个,生产厂家表示若购买 A 型垃圾箱不少于 150 个时,该型号的产品可以打九折;若购买 B 型垃圾箱超过 150 个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买 A 型和 B 型垃圾箱各多少个?最低费用是多少元?23.( 10 分)已知 AB、 CD是⊙ O 的两条弦,直线 AB、 CD互相垂直,垂足为 E,连接 AC,过点 B 作 BF⊥AC,垂足为 F,直线 BF 交直线 CD 于点 M .(1)如图 1,当点 E 在⊙ O 内时,连接 AD,AM,BD,求证: AD=AM;(2)如图 2,当点 E 在⊙ O 外时,连接 AD,AM,求证: AD=AM;(3)如图 3,当点 E 在⊙ O 外时,∠ ABF的平分线与 AC 交于点 H,若 tan∠ C= ,求tan∠ABH 的值.24.( 12 分)如图,二次函数y=ax2+bx+c 的图象经过点 A(﹣ 1,0), B( 4,0),C(﹣ 2,﹣ 3),直线 BC与 y 轴交于点 D,E 为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点 E 在直线 BC 的上方,过 E 分别作 BC和 y 轴的垂线,交直线 BC 于不同的两点 F, G(F 在 G 的左侧),求△ EFG周长的最大值;(3)是否存在点 E,使得△ EDB是以 BD 为直角边的直角三角形?如果存在,求点 E 的坐标;如果不存在,请说明理由.2016 年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(每小题 3 分,共36 分)1.(3 分)(2016?莱芜) 4 的算术平方根为()A.﹣ 2 B.2C.± 2 D.【分析】依据算术平方根根的定义求解即可.2∴4 的算术平方根是 2,故选: B.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.(3 分)(2016?莱芜)下列运算正确的是().2﹣ 3a=2a C. 3a4 2 8.( 3 2)2 5 4 7÷a4 3A.a=a B 5a?a =3a D a b=a b【分析】分别利用单项式乘以单项式以及单项式除以单项式、积的乘方运算法则分别化简得出答案.【解答】解: A、a7÷ a4=a3,正确;B、5a2﹣3a,无法计算,故此选项错误;C、3a4?a2=3a6,故此选项错误;D、(a3b2)2=a6b4,故此选项错误;故选: A.【点评】此题主要考查了幂的运算性质以及整式的加减运算,正确掌握相关性质是解题关键.3.(3 分)(2016?莱芜)如图,有理数a, b, c,d 在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于 0 B.小于 0 C.等于 0D.不确定【分析】由 a+c=0 可知 a 与 c 互为相反数,所以原点是AC的中点,利用 b、d 与原点的距离可知b+d 与 0 的大小关系.【解答】解:∵ a+c=0,∴a, c 互为相反数,∴原点 O 是 AC的中点,∴由图可知:点 D 到原点的距离大于点 B 到原点的距离,且点 D、B 分布在原点的两侧,故 b+d<0,故选( B).【点评】本题考查数轴、相反数、有理数加法法则,属于中等题型.3 的倍数的概率是4.(3 分)(2016?莱芜)投掷一枚均匀的骰子,掷出的点数是()A.B.C.D.【分析】根据题意,分析可得掷一枚骰子,共 6 种情况,其中是 3 的倍数的有 3、6,2 种情况,由概率公式可得答案.【解答】解:根据题意,掷一枚骰子,共 6 种情况,其中是 3 的倍数的有 3、6,2 种情况,故其概率为;故选 C.【点评】本题考查概率的求法,其计算方法为:如果一个事件有n 种可能,而且A 的概率 P(A)这些事件的可能性相同,其中事件 A 出现 m 种结果,那么事件=.5.(3 分)(2016?莱芜)如图,△ ABC中,∠ A=46°,∠ C=74°,BD 平分∠ ABC,交 AC于点 D,那么∠ BDC的度数是()A.76°B.81°C.92°D.104°【分析】由题意利用三角形内角和定理求出∠ ABC度数,再由 BD 为角平分线求出∠ ABD度数,根据外角性质求出所求角度数即可.【解答】解:∵△ ABC中,∠ A=46°,∠ C=74°,∴∠ ABC=60°,∵ BD为∠ ABC平分线,∴∠ ABD=∠CBD=30°,∵∠ BDC为△ ABD 外角,∴∠ BDC=∠A+∠ ABD=76°,故选 A【点评】此题考查了三角形内角和定理,以及外角性质,熟练掌握内角和定理是解本题的关键.6.(3 分)(2016?莱芜)将函数y=﹣2x 的图象向下平移 3 个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3)B. y=﹣2(x﹣3)C.y=﹣ 2x+3D. y=﹣2x﹣ 3【分析】根据“上加下减”的原则进行解答即可.【解答】解:把函数 y=﹣2x 的图象向下平移 3 个单位后,所得图象的函数关系式为 y=﹣ 2x﹣3.故选 D.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移时“上加下减,左加右减”的法则是解答此题的关键.7.(3 分)(2016?莱芜)甲、乙两个转盘同时转动,甲转动了 330 圈,已知两个转盘每分钟共转 200 圈,设甲每分钟转270 圈时,乙恰好转x 圈,则列方程为()A.=B.=C.=D.=【分析】根据“甲转动 270 圈和乙转了 330 圈所用的时间相等”列出方程即可;【解答】解:设甲每分钟转x 圈,则乙每分钟转动( 200﹣ x)圈,根据题意得:=,故选 D.【点评】本题考查了分式方程的知识,解题的关键是能够从实际问题中找到等量关系,难度不大.8.(3 分)(2016?莱芜)用面积为 12π,半径为 6 的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4C. 2D.2【分析】根据题意可以求得围成圆锥底面圆的周长和半径,从而可以解答本题.【解答】解:由题意可得,围成的圆锥底面圆的周长为:设围成的圆锥底面圆的半径为r,则=4π,2πr=4π,解得, r=2,∴则圆锥的高是:,故选 B.【点评】本题考查圆锥的计算,解题的关键是明确扇形弧长公式,圆锥的底面圆的周长等于侧面扇形的弧长.9.(3 分)(2016?莱芜)正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形C.正四边形D.正三角形【分析】设 AB 是正多边形的一边, OC⊥AB,在直角△ AOC中,利用三角函数求得∠ AOC的度数,从而求得中心角的度数,然后利用360 度除以中心角的度数,即可求得边数.【解答】解:正多边形的内切圆与外接圆的周长之比为:2,则半径之比为:2,设AB 是正多边形的一边, OC⊥AB,则 OC= ,OA=OB=2,在直角△ AOC中, cos∠AOC= = ,∴∠ AOC=30°,∴∠ AOC=60°,则正多边形边数是:=6.故选: B.【点评】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.10.( 3 分)( 2016?莱芜)已知△ ABC中, AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3 条 B.5 条 C.7 条 D.8 条【分析】分别以 A、B、C 为等腰三角形的顶点,可画出直线,再分别以AB、AC、BC为底的等腰三角形,可画出直线,综合两种情况可求得答案.【解答】解:分别以 A、 B、 C 为等腰三角形的顶点的等腰三角形有 4 个,如图 1,分别为△ ABD、△ ABE、△ ABF、△ ACG,∴满足条件的直线有 4 条;分别以 AB、AC、BC为底的等腰三角形有 3 个,如图 2,分别为△ ABH、△ ACM、△ BCN,∴满足条件的直线有 3 条,综上可知满足条件的直线共有7 条,故选 C.【点评】本题主要考查等腰三角形的性质,正确画出图形是解题的关键.11.( 3 分)(2016?莱芜)如图,正方形 ABCD的边长为 3cm,动点 M 从点 B 出发以 3cm/s 的速度沿着边 BC﹣CD﹣DA 运动,到达点 A 停止运动,另一动点 N 同时从点 B 出发,以 1cm/s 的速度沿着边 BA 向点 A 运动,到达点 A 停止运动,设点 M 运动时间为 x(s),△AMN 的面积为 y(cm2),则 y 关于 x 的函数图象是()A.B.C.D.【分析】分三种情况进行讨论,当0≤x≤1 时,当 1≤x≤2 时,当 2≤x≤3 时,分别求得△ ANM 的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得, BN=x,当0≤x≤ 1 时, M 在 BC边上, BM=3x,AN=3﹣x,则S△ANM=AN?BM,∴y= ?(3﹣x) ?3x=﹣ x2 + x,故 C 选项错误;当 1≤x≤ 2 时, M 点在 CD边上,则S△ANM=AN?BC,∴ y= (3﹣x)?3=﹣x+,故D选项错误;当2≤x≤ 3 时, M 在 AD 边上, AM=9﹣x,∴ S△ANM= AM?AN,∴ y= ?(9﹣3x)?(3﹣x)= (x﹣3)2,故 B 选项错误;故选( A).【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.利用数形结合,分类讨论是解决问题的关键.12.( 3 分)(2016?莱芜)已知四边形ABCD为矩形,延长CB到E,使 CE=CA,连接 AE,F 为 AE的中点,连接 BF,DF, DF 交 AB 于点 G,下列结论:(1) BF⊥DF;(2) S△BDG=S△ADF;2( 3) EF=FG?FD;( 4)=其中正确的个数是()A.1B.2C.3D.4【分析】利用矩形的性质和直角三角形的性质得出结论判断出△BDF≌△ ACF,借助直角三角形的斜边大于直角边,再用面积公式判断出面积大小,判断出△AFG∽△ DFA,△ BFG∽△ DFB,即可判断出结论.【解答】解:如图 1,连接 CF,设AC与 BD 的交点为点 O,∵点 F 是 AE 中点,∴ AF=EF,∵ CE=CA,∴ CF⊥AE,∵四边形ABCD是矩形,∴ AC=BD,∴ OA=OB,∴∠ OAB=∠OBA,∵点F 是Rt△ABE斜边上的中点,∴ AF=BF,∴∠BAF=∠FBA,∴∠ FAC=∠FBD,在△ BDF和△ ACF中,,∴△ BDF≌△ ACF,∴∠ BFD=∠AFC=90°,∴BD⊥DF,所以①正确;过点 F 作 FH⊥ AD 交 DA 的延长线于点 H,在Rt△AFH中,FH<AF,在Rt△BFG中,BG>BF,∵ AF=BF,∴BG>FH,∵S△ADF= FH× AD, S△BDG= BG×AD,∴S△BDG> S△ADF,所以②错误;∵∠ ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ ABF=∠ADG,∵∠ BAF=∠FBA,∴∠ BAF=∠ADG,∵∠ AFG=∠DFA,∴△ AFG∽△ DFA,∴,∴AF2=FG?FD,∵EF=AF,2∴ EF=FG?FD,所以③正确;∵ BF=EF,∴ BF2=FG?FD,∴,∵∠ BFG=∠DFB,∴△ BFG∽△ DFB,∴∠ ABF=∠BDF,∵由③知,∠ ABF=∠ADF∴∠ ADF=∠BDF,∴(利用角平分线定理),∵BD=AC, AD=BC,∴,所以④正确,故选 C.【点评】此题是相似三角形的性质和判定,全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,三角形内角平分线定理,解本题的是△ BDF≌△ACF.二、填空题(本题共 5 小题,每小题 4 分,共 20 分)13.(4分)(莱芜)(﹣π)0+﹣()﹣1﹣| tan45 °﹣3| = ﹣1 .2016?2【分析】原式利用零指数幂、负整数指数幂法则,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式 =1+3﹣ 3﹣ 2=﹣1.故答案为:﹣ 1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.( 4 分)(2016?莱芜)若一次函数 y=x+3 与 y=﹣ 2x 的图象交于点 A,则 A 关于 y 轴的对称点 A′的坐标为( 1, 2).【分析】直接联立函数解析式求出 A 点坐标,再利用关于 y 轴对称点的性质得出答案.【解答】解:∵一次函数 y=x+3 与 y=﹣ 2x 的图象交于点 A,∴x+3=﹣2x,解得: x=﹣ 1,则 y=2,故 A 点坐标为:(﹣ 1, 2),∴ A 关于 y 轴的对称点 A′的坐标为:( 1, 2).故答案为:( 1, 2).y 轴对称点的性质,正确【点评】此题主要考查了一次函数的交点问题以及关于得出 A 点坐标是解题关键.15.( 4 分)(2016?莱芜)如图, A,B 是反比例函数 y= 图象上的两点,过点 A 作 AC⊥ y 轴,垂足为 C,AC交 OB 于点 D.若 D 为 OB 的中点,△ AOD的面积为3,则 k 的值为 8 .【分析】先设点 D 坐标为( a,b),得出点 B 的坐标为(2a,2b),A 的坐标为( 4a,b),再根据△ AOD 的面积为 3,列出关系式求得 k 的值.【解答】解:设点 D 坐标为( a,b),∵点 D 为 OB 的中点,∴点 B 的坐标为( 2a,2b),∴k=4ab,又∵ AC⊥ y 轴, A 在反比例函数图象上,∴A 的坐标为( 4a,b),∴AD=4a﹣a=3a,∵△ AOD的面积为 3,∴×3a× b=3,∴ab=2,∴k=4ab=4×2=8.故答案为: 8【点评】本题主要考查了反比例函数系数 k 的几何意义,以及运用待定系数法求反比例函数解析式,根据△ AOD的面积为 3 列出关系式是解题的关键.16.(4 分)( 2016?莱芜)如图,将点 D,过点 D 作 DE⊥ AB,垂足为Rt△ABC沿斜边AC 所在直线翻折后点E,如果 AE=3EB,EB=7,那么 BC= 4B 落到.【分析】根据相似三角形的判定和性质、以及勾股定理解答即可.【解答】解:∵ DE⊥AB,∠ B=90°,∴DE∥BC,∴∠ 1=∠ 3,∵∠ 1=∠ 2,∴∠ 2=∠ 3,∴DH=DC,∵ DE∥BC,∴△ AFH∽△ ABC,∴,设EH=3x, BC=DC=DH=4x,∴ DE=7x,∵AE=3EB,EB=7,∴ AE=21,∵AD=AB=AE+BE=7+21=28,∴7x=7 ,∴x= ,∴BC=4 .故答案为: 4 .【点评】此题考查相似三角形的判定和性质,证明 DH=DC是解题关键.17.(4 分)(2016?莱芜)在Rt△ABC中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点 B 放在原点,点 A 放在 y 轴正半轴上,当点 B 在 x 轴上向右移动时,点 A 也随之在 y 轴上向下移动,当点 A 到达原点时,点 B 停止移动,在移动过程中,点 C 到原点的最大距离为2+2.【分析】根据题意首先取 A1B1的中点 E,连接 OE,C1E,当 O,E,C1在一条直线上时,点 C 到原点的距离最大,进而求出答案.【解答】解:如图所示:取 A1B1的中点 E,连接 OE,C1 E,当 O,E,C1在一条直线上时,点 C 到原点的距离最大,在Rt△ A1OB1中,∵ A1B1=AB=4,点 OE为斜边中线,∴OE=B1E= A1B1=2,又∵ B1 1,C =BC=2∴ C1E==2 ,∴点 C 到原点的最大距离为: OE+C1E=2+2 .故答案为: 2+2.【点评】此题主要考查了轨迹以及勾股定理等知识,正确得出 C 点位置是解题关键.三、解答题(本大题共7 小题,共 64 分)18.( 6 分)(2016?莱芜)先化简,再求值:(a﹣)÷,其中 a 满足a2+3a﹣ 1=0.【分析】根据题意得到 a2+3a=1,根据分式的通分、约分法则把原式化简,代入计算即可.【解答】解:∵ a2+3a﹣ 1=0,∴a2+3a=1原式 =×=(a+1)(a+2)=a2+3a+2=3.【点评】本题考查的是分式的化简求值,掌握分式的通分、约分法则是解题的关键.19.( 8 分)(2016?莱芜)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是 50 元, 100 元, 150 元, 200 元, 300 元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:( 1)宣传小组抽取的捐款人数为50人,请补全条形统计图;( 2)统计的捐款金额的中位数是150元;(3)在扇形统计图中,求 100 元所对应扇形的圆心角的度数;(4)已知该企业共有 500 人参与本次捐款,请你估计捐款总额大约为多少元?【分析】(1)根据题意即可得到结论;求得捐款 200 元的人数即可补全条形统计图;(2)根据中位数的定义即可得到结论;(3)用周角乘以 100 元所占的百分比即可求得圆心角;(4)根据题意即可得到结论.【解答】解:(1)50,补全条形统计图,故答案为: 50;(2) 150,故答案为: 150;(3)× 360°=72°.(4)( 50×4+100×10+150×12+200×18+300× 6)× 500=84000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.( 9 分)(2016?莱芜)某体育场看台的坡面AB 与地面的夹角是37°,看台最高点 B 到地面的垂直距离BC为 3.6 米,看台正前方有一垂直于地面的旗杆DE,在 B 点用测角仪测得旗杆的最高点 E 的仰角为 33°,已知测角仪 BF的高度为 1.6米,看台最低点 A 与旗杆底端 D 之间的距离为 16 米( C,A,D 在同一条直线上).( 1)求看台最低点 A 到最高点 B 的坡面距离;( 2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H 之间的距离为 1.2米,下端挂钩 H 与地面的距离为 1 米,要求用 30 秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)( sin37 ≈°0.6,cos37°≈0.8,tan37 °≈0.75, sin33 ≈°0.54,cos33 °≈ 0.84,tan33 °≈0.65)【分析】(1)根据正弦的定义计算即可;(2)作 FP⊥ED 于 P,根据正切的定义求出 AC,根据正切的概念求出 EP,计算即可.【解答】解:(1)在 Rt△ABC中,AB==6 米;( 2) AC==4.8 米,则CD=4,.8+16=20.8米,作 FP⊥ ED于 P,∴ FP=CD=20.,8∴EP=FP×tan∠EFP=13.52,DP=BF+BC=5.2,ED=EP+PD=18.72,EG=ED﹣GH﹣HD=16.52,则红旗升起的平均速度为:16.52÷30=0.55,答:红旗升起的平均速度为0.55 米/ 秒.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.( 9 分)(2016?莱芜)如图,△ ABC为等腰三角形, AB=AC, D 为△ ABC内一点,连接 AD,将线段 AD 绕点 A 旋转至 AE,使得∠ DAE=∠BAC,F, G,H 分别为BC, CD,DE的中点,连接 BD,CE,GF, GH.( 1)求证: GH=GF;( 2)试说明∠ FGH与∠ BAC互补.【分析】(1)首先得出△ ABD≌△ ACE(SAS),进而利用三角形中位线定理得出GH=GF;(2)利用全等三角形的性质结合平行线的性质得出∠ FGH=∠ DGF+∠HGD 进而得出答案.【解答】证明:(1)∵∠ DAE=∠BAC,∴∠ BAD=∠CAE,在△ ABD和△ ACE中,∴△ ABD≌△ ACE( SAS),∴BD=CE,∵ F, G, H 分别为 BC, CD, DE的中点,∴GH∥ GF,且 GH= CE,GF= BD,∴GH=GF;(2)∵△ ABD≌△ ACE,∴∠ ABD=∠ACE,∵ HG∥ CE,GE∥BD,∴∠ HGD=∠ECD,∠ GFC=∠DBC,∴∠ HGD=∠ACD+∠ ECA=∠ ACD+∠ABD,∠ DGF=∠ GFC+∠GCF=∠DBC+∠GCF,∴∠ FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ ACD+∠ ABD=∠ABC+∠ACB=180°﹣∠ BAC,∴∠ FGH与∠ BAC互补.【点评】此题主要考查了全等三角形的判定与性质以及三角形中位线定理,正确得出△ ABD≌△ ACE是解题关键.22.(10 分)(2016?莱芜)为迎接“国家卫生城市”复检,某市环卫局准备购买 A、B 两种型号的垃圾箱,通过市场调研得知:购买 3 个 A 型垃圾箱和 2 个 B 型垃圾箱共需 540 元;购买 2 个 A 型垃圾箱比购买 3 个 B 型垃圾箱少用 160 元.(1)每个 A 型垃圾箱和 B 型垃圾箱各多少元?(2)现需要购买A,B 两种型号的垃圾箱共300 个,分别由甲、乙两人进行安装,要求在 12 天内完成(两人同时进行安装).已知甲负责 A 型垃圾箱的安装,每天可以安装 15 个,乙负责 B 型垃圾箱的安装,每天可以安装 20 个,生产厂家表示若购买 A 型垃圾箱不少于150 个时,该型号的产品可以打九折;若购买B型垃圾箱超过 150 个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买 A 型和 B 型垃圾箱各多少个?最低费用是多少元?【分析】(1)设每个 A 型垃圾箱和 B 型垃圾箱分别为x 元和 y 元,利用两次购买的费用列方程,然后解方程组即可;( 2)设购买 A 型垃圾箱 m 个,则购买 B 型垃圾箱( 300﹣m)个,购买垃圾箱的费用为 w 元,利用工作效率和总工作时间可得到 60≤m≤ 180,然后讨论:若60≤m<150 得到 w=4m+28800,若 150≤m≤ 180 得 w=﹣30m+3600,再利用一次函数的性质求出两种情况下的 w 的最小值,于是比较大小可得到满足条件的购买方案.【解答】解:(1)设每个 A 型垃圾箱和 B 型垃圾箱分别为x 元和 y 元,根据题意得,解得,∴每个 A 型垃圾箱和 B 型垃圾箱分别为 100 元和 120 元;(2)设购买 A 型垃圾箱 m 个,则购买 B 型垃圾箱( 300﹣m)个,购买垃圾箱的费用为 w 元,根据题意得,解得 60≤m≤180,若60≤ m<150,w=100m+120×0.8×( 300﹣m) =4m+28800,当 m=60 时, w 最小, w 的最小值 =4×60+28800=29040(元);若150≤m≤ 180,w=100×0.9× m+120×( 300﹣m) =﹣ 30m+3600,当 m=180,w 最小, w 的最小值 =﹣ 30×180+36000=30600(元);∵29040<30600,∴购买 A 型垃圾箱 60 个,则购买 B 型垃圾箱 240 个时,既能在规定时间内完成任务,费用又最低,最低费用为 29040 元.【点评】本题考查了一元一次不等式组的应用:分析题意,找出不等关系;设未知数,列出不等式组;解不等式组;从不等式组解集中找出符合题意的答案;作答.也考查了二元一次方程组合一次函数的性质.23.( 10 分)( 2016?莱芜)已知 AB、 CD 是⊙ O 的两条弦,直线AB、 CD 互相垂直,垂足为 E,连接 AC,过点 B 作 BF⊥AC,垂足为 F,直线 BF 交直线 CD 于点M.(1)如图 1,当点 E 在⊙ O 内时,连接 AD,AM,BD,求证: AD=AM;(2)如图 2,当点 E 在⊙ O 外时,连接 AD,AM,求证: AD=AM;(3)如图 3,当点 E 在⊙ O 外时,∠ ABF的平分线与 AC 交于点 H,若 tan∠ C= ,求 tan∠ABH 的值.【分析】(1)根据垂直的定义和垂直平分线的判定好小子即可求解;(2)如图 2,连结 BD,先证明四边形 ABDC是圆内接四边形,根据圆内接四边形的性质和垂直平分线的性质即可求解;(3)如图 3,过点 H 作 HN⊥AB,垂足为 N,在 Rt△ABF中和在 Rt△BNH 中,根据三角函数的定义即可求解.【解答】(1)证明:∵ AB⊥CD,BF⊥ AC,∴∠ BEM=∠BFA=90°,∴∠ EBM+∠BME=90°,∠ABF+∠BAF=90°,∴∠ BME=∠BAC,∴∠ BDM=∠ BMD,∴BD=BM,∵ AB⊥CD,∴AB是 MD 的垂直平分线,∴AD=AM;(2)证明:如图 2,连结 BD,∵ AB⊥CD,BF⊥ AC,∴∠ BEM=∠BFA=90°,∵∠ EBM=∠FBA,∴∠ BME=∠BAF,∴四边形 ABDC是圆内接四边形,∴∠ BDM=∠ BAC,∴∠ BDM=∠ BMD,∴BD=BM,∵ AB⊥CD,∴AB是 MD 的垂直平分线,∴AD=AM;(3)解:如图 3,过点 H 作 HN⊥AB,垂足为 N.易知∠ AHN=∠ ABF=∠ C,在 Rt△ANH 中,设 HM=3m,∵ tan∠ AHN=tan∠C= = ,∴AN=4m,∴AH=5m,∵BH平分∠ABF,∴ HN=HF=3m,∴AF=AH+HF=8m,在 Rt△ABF中,∵ tan∠ ABF=tan∠ C= = ,∴BF=6m,∴AB=10m,∴BN=AB﹣ AN=6m,∴在 Rt△ BNH中, tan∠NBH= = =,∴tan∠ ABH= .【点评】本题考查了圆的综合,涉及了圆内接四边形的判定与性质、等腰三角形的判定与性质及垂直平分线的性质,三角函数,解答本题的关键是掌握数形结合思想运用.24.(12 分)(2016?莱芜)如图,二次函数 y=ax2+bx+c 的图象经过点 A(﹣ 1,0),B(4,0),C(﹣ 2,﹣ 3),直线 BC 与 y 轴交于点 D,E 为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点 E 在直线 BC 的上方,过 E 分别作 BC和 y 轴的垂线,交直线 BC 于不同的两点 F, G(F 在 G 的左侧),求△ EFG周长的最大值;(3)是否存在点 E,使得△ EDB是以 BD 为直角边的直角三角形?如果存在,求点 E 的坐标;如果不存在,请说明理由.【分析】(1)如图 1,运用待定系数法求这个二次函数的解析式;(2)如图 2,先求直线 BC的解析式为 y= x﹣ 2,设出点 E 的坐标,写出点 G 的坐标(﹣ m2+3m+8,﹣ m2+ m+2),求出 EG 的长,证明∴△ EFG∽△ DOB,根据相似三角形周长的比等于相似比表示△EFG 周长═(﹣m2+2m+8)=[ ﹣( m﹣ 1)2+9] ,根据二次函数的顶点确定其最值;( 3)分二种情况讨论:分别以 D、 B 两个顶点为直角时,列方程组,求出点 E 的坐标,根据两垂直直线的一次项系数为负倒数得出结论.【解答】解:(1)如图 1,把 A(﹣ 1,0),B(4,0),C(﹣ 2,﹣3)代入y=ax2+bx+c 中,得:,解得:,则二次函数的解析式y=﹣x2+x+2;( 2)如图 2,设直线 BC的解析式为 y=kx+b,把 B(4,0), C(﹣ 2,﹣ 3)代入 y=kx+b 中得:,解得:,∴直线 BC的解析式为 y= x﹣2,设E(m,﹣ m2+ m+2),﹣ 2<m< 4,∵EG⊥y 轴,∴ E 和 G 的纵坐标相等,∵点 G 在直线 BC上,当y=﹣ m2+ m+2 时,﹣ m 2+ m+2= x﹣ 2,x=﹣ m2+3m+8,则G(﹣ m2+3m+8,﹣ m2 + m+2),∴EG=﹣m2+3m+8﹣ m=﹣m2+2m+8,∵ EG∥AB,∴∠ EGF=∠OBD,∵∠EFG=∠BOD=90°,∴△ EFG∽△ DOB,∴=,∵D( 0,﹣ 2), B( 4,0),∴ OB=4, OD=2,∴ BD==2 ,∴=﹣,∴△ EFG的周长 =(﹣ m2+2m+8),=[ ﹣( m﹣ 1)2+9] ,∴当 m=1 时,△ EFG周长最大,最大值是;(3)存在点 E,分两种情况:①若∠ EBD=90°,则 BD⊥ BE,如图3,设 BD 的解析式为: y=kx+b,把 B(4,0)、 D( 0,﹣ 2)代入得:,解得:,∴ BD的解析式为: y=x﹣2,∴设直线 EB的解析式为: y=﹣2x+b,把B(4,0)代入得: b=8,∴直线EB的解析式为: y=﹣ 2x+8,∴,﹣x2+ x+2=﹣2x+8,解得: x1=3,x2=4(舍),当x=3 时, y=﹣2×3+8=2,∴ E( 3, 2),②当 BD⊥DE时,即∠ EDB=90°,如图 4,同理得: DE的解析式为: y=﹣ 2x+b,把D(0,﹣ 2)代入得: b=﹣2,∴ DE的解析式为: y=﹣ 2x﹣2,∴,解得:,∴ E( 8,﹣ 18)或(﹣ 1,0),综上所述,点 E(3,2)或( 8,﹣ 18)或(﹣ 1,0),故存在满足条件的点E,点 E 的坐标为( 3, 2)或(﹣ 1,0)或( 8,18).【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数、一次函数的解析式;根据两直线垂直,则一次项系数为负倒数,利用一条直线求另一条直线的解析式;若三角形直角三角形时,要采用分类讨论的思想,分二种情况进行讨论,利用勾股定理或解析式或相似求出点 E 的坐标.。
山东省莱芜市中考数学试卷(含答案)绝密★启用前 试卷类型A莱芜市中等学校招生考试数 学 试 题注意事项:1.答卷前考生务必在规定位置将姓名、准考证号等内容填写准确。
2.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分。
考试时间为120分钟。
3.请将第Ⅰ卷选择题答案填写在第Ⅱ卷首答案栏内,填在其它位置不得分。
4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷一并收回。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答案栏的相应位置上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.31-的倒数是A .3-B .31-C .31D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅C .22)21(21-=--D .1)2160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是A .B .C .D .4.4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为A .3.1×106元B .3.11×104元C .3.1×104元D .3.10×105元5.如图,数轴上A 、B 两点分别对应实数a 、b,则下列结论正确的是 A .0>abB .0>-b aC .0>+b aD .0||||>-b a6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A .B .C .D .7.已知反比例函数x y 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-28.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为 A .2.5 B .5 C .10 D .9.二次函数c bx ax y ++=2的图象如图所示,则一次函数bx y +=图象不经过 A .第一象限 B .第二象限C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y 随时间x (第9题图)乙甲 10 -1 a b BA (第5题图) (第6题图)列结论不正确...的是A.甲先到达终点B.前30分钟,甲在乙的前面C.第48分钟时,两人第一次相遇D.这次比赛的全程是28千米绝密★启用前试卷类型A莱芜市中等学校招生考试数学试题第Ⅱ卷(非选择题共84分)注意事项:第II卷共6页,用钢笔或圆珠笔直接答在本试卷上。
2018年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂写在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记0分,共36分)1.(3分)(2018?莱芜)﹣2的绝对值是()A.﹣2 B.﹣12C.12D.22.(3分)(2018?莱芜)经中国旅游研究院综合测算,今年“五一”假日期间全国接待国内游客1.47亿人次,1.47亿用科学记数法表示为()A.14.7×107B.1.47×107C.1.47×108D.0.147×1093.(3分)(2018?莱芜)无理数2√11﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间4.(3分)(2018?莱芜)下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.5.(3分)(2018?莱芜)若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2+xx−y B.2yxC.2y33xD.2y2(x−y)6.(3分)(2018?莱芜)某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)8990929495人数46857对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92 D.极差是67.(3分)(2018?莱芜)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2 B.65πcm2 C.120πcm2D.130πcm28.(3分)(2018?莱芜)在平面直角坐标系中,已知△ABC为等腰直角三角形,CB=CA=5,点C(0,3),点B在x轴正半轴上,点A在第三象限,且在反比例函数y=kx的图象上,则k=()A.3 B.4 C.6 D.129.(3分)(2018?莱芜)如图,AB∥CD,∠BED=61°,∠ABE的平分线与∠CDE 的平分线交于点F,则∠DFB=()A.149°B.149.5°C.150°D.150.5°10.(3分)(2018?莱芜)函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<﹣4或x>2 B.﹣4<x<2 C.x<0或x>2 D.0<x<211.(3分)(2018?莱芜)如图,边长为2的正△ABC的边BC在直线l上,两条距离为l的平行直线a和b垂直于直线l,a和b同时向右移动(a的起始位置在B点),速度均为每秒1个单位,运动时间为t(秒),直到b到达C点停止,在a和b向右移动的过程中,记△ABC夹在a和b之间的部分的面积为s,则s 关于t的函数图象大致为()A.B.C.D.12.(3分)(2018?莱芜)如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG?FC④EG?AE=BG?AB其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题4分,共20分。
2016年山东省莱芜市中考数学试卷一、选择题1.4的算术平方根为()A.﹣2 B.2 C.±2 D.【解析】∵22=4,∴4的算术平方根是2,故选:B.2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2a C.3a4•a2=3a8 D.(a3b2)2=a5b4【解析】A、a7÷a4=a3,正确;B、5a2﹣3a,无法计算,故此选项错误;C、3a4•a2=3a6,故此选项错误;D、(a3b2)2=a6b4,故此选项错误;故选:A.3.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定【解析】∵a+c=0,∴a,c互为相反数,∴原点O是AC的中点,∴由图可知:点D到原点的距离大于点B到原点的距离,且点D、B分布在原点的两侧,故b+d<0,故选(B).4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是()A.B.C.D.【解析】根据题意,掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,故其概率为;故选C.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是()A.76°B.81°C.92°D.104°【解析】∵△ABC中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD为∠ABC平分线,∴∠ABD=∠CBD=30°,∵∠BDC为△ABD外角,∴∠BDC=∠A+∠ABD=76°,故选A6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3)B.y=﹣2(x﹣3)C.y=﹣2x+3 D.y=﹣2x﹣3【解析】把函数y=﹣2x的图象向下平移3个单位后,所得图象的函数关系式为y=﹣2x﹣3.故选D.7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A. =B. =C. =D. =【解析】设甲每分钟转x圈,则乙每分钟转动(200﹣x)圈,根据题意得: =,故选D.8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4C.2D.2【解析】由题意可得,围成的圆锥底面圆的周长为: =4π,设围成的圆锥底面圆的半径为r,则2πr=4π,解得r=2,∴则圆锥的高是:,故选B.9.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形C.正四边形D.正三角形【解析】正多边形的内切圆与外接圆的周长之比为:2,则半径之比为:2,设AB是正多边形的一边,OC⊥AB,则OC=,OA=OB=2,在直角△AOC中,cos∠AOC==,∴∠AOC=30°,∴∠AOB=60°,则正多边形边数是 =6.故选:B.10.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3条B.5条C.7条D.8条【解析】分别以A、B、C为等腰三角形的顶点的等腰三角形有4个,如图1,分别为△ABD、△ABE、△ABF、△ACG,∴满足条件的直线有4条;分别以AB、AC、BC为底的等腰三角形有3个,如图2,分别为△ABH、△ACM、△BCN,∴满足条件的直线有3条,综上可知满足条件的直线共有7条,故选C.11.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【解析】由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则=AN•BM,S△ANM∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则=AN•BC,S△ANM∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣x,∴S=AM•AN,△ANM∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选(A ).12.已知四边形ABCD 为矩形,延长CB 到E ,使CE=CA ,连接AE ,F 为AE 的中点,连接BF ,DF ,DF 交AB 于点G ,下列结论:(1)BF ⊥DF ; (2)S △BDG =S △ADF ; (3)EF 2=FG •FD ; (4)= 其中正确的个数是( )A .1B .2C .3D .4 【解析】如图1,连接CF ,设AC 与BD 的交点为点O ,∵点F 是AE 中点,∴AF=EF ,∵CE=CA ,∴CF ⊥AE ,∵四边形ABCD 是矩形,∴AC=BD ,∴OA=OB ,∴∠OAB=∠OBA ,∵点F 是Rt △ABE 斜边上的中点,∴AF=BF ,∴∠BAF=∠FBA ,∴∠FAC=∠FBD ,在△BDF 和△ACF 中,,∴△BDF ≌△ACF ,∴∠BFD=∠AFC=90°,∴BD ⊥DF ,所以①正确;过点F 作FH ⊥AD 交DA 的延长线于点H ,在Rt △AFH 中,FH <AF ,在Rt △BFG 中,BG >BF ,∵AF=BF ,∴BG >FH ,∵S △ADF =FH ×AD ,S △BDG =BG ×AD ,∴S△BDG >S△ADF,所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ABF=∠ADG,∵∠BAF=∠FBA,∴∠BAF=∠ADG,∵∠AFG=∠DFA,∴△AFG∽△DFA,∴,∴AF2=FG•FD,∵EF=AF,∴EF2=FG•FD,所以③正确;∵BF=EF,∴BF2=FG•FD,∴,∵∠BFG=∠DFB,∴△BFG∽△DFB,∴∠ABF=∠BDF,∵∠BAF=∠ABF,∠BAF=∠ADC∴∠ADC=∠BDF,∴,∵BD=AC,AD=BC,∴,所以④正确,故选C.二、填空题(本题共5小题,每小题4分,共20分)13.0+﹣()﹣1﹣|tan45°﹣3|= ﹣1 .【解析】原式=1+3﹣3﹣2=﹣1.故答案为:﹣114.若一次函数y=x+3与y=﹣2x的图象交于点A,则A关于y轴的对称点A′的坐标为(1,2).【解析】∵一次函数y=x+3与y=﹣2x的图象交于点A,∴x+3=﹣2x,解得:x=﹣1,则y=2,故A点坐标为:(﹣1,2),∴A关于y轴的对称点A′的坐标为:(1,2).故答案为:(1,2).15.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D 为OB的中点,△AOD的面积为3,则k的值为8 .【解析】设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:816.如图,将Rt△ABC沿斜边AC所在直线翻折后点B落到点D,过点D作DE⊥AB,垂足为E,如果AE=3EB,EB=7,那么BC= 4.【解析】∵DE⊥AB,∠B=90°,∴DE∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴DH=DC ,∵DE ∥BC ,∴△AFH ∽△ABC ,∴,设EH=3x ,BC=DC=DH=4x ,∴DE=7x ,∵AE=3EB ,EB=7,∴AE=21,∵AD=AB=AE+BE=7+21=28,在Rt △ADE 中,DE=,∴7x=7,∴x=,∴BC=4.故答案为:4.17.在Rt △ABC 中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B 放在原点,点A 放在y 轴正半轴上,当点B 在x 轴上向右移动时,点A 也随之在y 轴上向下移动,当点A 到达原点时,点B 停止移动,在移动过程中,点C 到原点的最大距离为 2+2 .【解析】如图所示:取A 1B 1的中点E ,连接OE ,C 1E ,当O ,E ,C 1在一条直线上时,点C 到原点的距离最大,在 Rt △A 1OB 1中,∵A 1B 1=AB=4,点OE 为斜边中线,∴OE=B 1E=A 1B 1=2,又∵B 1C 1=BC=2,∴C 1E==2,∴点C 到原点的最大距离为:OE+C 1E=2+2. 故答案为:2+2.三、解答题(本大题共7小题,共64分)18.先化简,再求值:(a ﹣)÷,其中a 满足a 2+3a ﹣1=0.【解】∵a 2+3a ﹣1=0,∴a 2+3a=1原式=×=(a+1)(a+2)=a2+3a+2=3.19.(8分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为50 人,请补全条形统计图;(2)统计的捐款金额的中位数是150 元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【解】(1)50,补全条形统计图,故答案为:50;(2)150;(3)×360°=72°.(4)(50×4+100×10+150×12+200×18+300×6)×500=100(元).20.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【解】(1)在Rt△ABC中,AB==6米;(2)AC==4.8米,则CD=4,.8+16=20.8米,作FP⊥ED于P,∴FP=CD=20.8,∴EP=FP×tan∠EFP=13.52,DP=BF+BC=5.2,ED=EP+PD=18.72,EG=ED﹣GH﹣HD=16.52,则红旗升起的平均速度为:16.52÷30=0.55,答:红旗升起的平均速度为0.55米/秒.21.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.(1)求证:GH=GF;(2)试说明∠FGH与∠BAC互补.证明:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∵F,G,H分别为BC,CD,DE的中点,∴GH∥GF,且GH=CE,GF=BD,∴GH=GF;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵HG∥CE,GE∥BD,∴∠HGD=∠ECD,∠GFC=∠DBC,∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,∴∠FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ACD+∠ABD=∠ABC+∠ACB=180°﹣∠BAC,∴∠FGH与∠BAC互补.22.为迎接“国家卫生城市”复检,某市环卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元;购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱各多少元?(2)现需要购买A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买A型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B 型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买A型和B型垃圾箱各多少个?最低费用是多少元?【解】(1)设每个A型垃圾箱和B型垃圾箱分别为x元和y元,根据题意得,解得,∴每个A型垃圾箱和B型垃圾箱分别为100元和120元;(2)设购买A型垃圾箱m个,则购买B型垃圾箱(300﹣m)个,购买垃圾箱的费用为w元,根据题意得,解得60≤m≤180,若60≤m<150,w=100m+120×0.8×(300﹣m)=4m+28800,当m=60时,w最小,w的最小值=4×60+28800=29040(元);若150≤m≤180,w=100×0.9×m+120×(300﹣m)=﹣30m+3600,当m=1800,w最小,w的最小值=﹣30×180+36000=30600(元);∵29040<30600,∴购买A型垃圾箱60个,则购买B型垃圾箱240个时,既能在规定时间内完成任务,费用又最低,最低费用为29040元.23.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH的值.(1)证明:∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∴∠EBM+∠BME=90°,∠ABF+∠BAF=90°,∴∠BME=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;(2)证明:如图2,连结BD,∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∵∠EBM=∠FBA,∴∠BME=∠BAF,∴四边形ABDC是圆内接四边形,∴∠BDM=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;(3)解:如图3,过点H作HN⊥AB,垂足为N.易知∠AHN=∠ABF=∠C,在Rt△ANH中,设HM=3m,∵tan∠AHN=tan∠C==,∴AN=4m,∴AH=5m,∵BH平分∠ABF,∴HN=HF=3m,∴AF=AH+HF=8m,在Rt△ABF中,∵tan∠ABF=tan∠C==,∴BF=6m,∴AB=10m,∴BN=AB﹣AN=6m,∴在Rt△BNH中,tan∠NBH===,∴tan∠ABH=.24.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC与y 轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.【解】(1)如图1,把A(﹣1,0),B(4,0),C(﹣2,﹣3)代入y=ax2+bx+c中,得:,解得:,则二次函数的解析式y=﹣x2+x+2;(2)如图2,设直线BC的解析式为y=kx+b,把B(4,0),C(﹣2,﹣3)代入y=kx+b中得:,解得:,∴直线BC的解析式为y=x﹣2,设E(m,﹣ m2+m+2),﹣2<m<4,∵EG⊥y轴,∴E和G的纵坐标相等,∵点G在直线BC上,当y=﹣m2+m+2时,﹣ m2+m+2=x﹣2,x=﹣m2+3m+8,则G(﹣m2+3m+8,﹣ m2+m+2),∴EG=﹣m2+3m+8﹣m=﹣m2+2m+8,∵EG∥AB,∴∠EGF=∠OBD,∵∠EFG=∠BOD=90°,∴△EFG∽△DOB,∴=,∵D(0,﹣2),B(4,0),∴OB=4,OD=2,∴BD==2,∴=﹣,∴△EFG的周长=(﹣m2+2m+8)= [﹣(m﹣1)2+9],∴当m=1时,△EFG周长最大,最大值是;(3)存在点E,分两种情况:①若∠EBD=90°,则BD⊥DE,如图3,设BD的解析式为:y=kx+b,把B(4,0)、D(0,﹣2)代入得:,解得:,∴BD的解析式为:y=x﹣2,∴设直线EB的解析式为:y=﹣2x+b,把B(4,0)代入得:b=8,∴直线EB的解析式为:y=﹣2x+8,∴,﹣x2+x+2=﹣2x+8,解得:x1=3,x2=4(舍),当x=3时,y=﹣2×3+8=2,∴E(3,2),②当BD⊥DE时,即∠EDB=90°,如图4,同理得:DE的解析式为:y=﹣2x+b,把D(0,﹣2)代入得:b=﹣2,∴DE的解析式为:y=﹣2x﹣2,∴,解得:,∴E(8,﹣18)或(﹣1,0),③当∠DEB=90°时,以BD为直径画圆,如图5,发现与抛物线无交点,所以此种情况不存在满足条件的E点;综上所述,点E(3,2)或(8,﹣18)或(﹣1,0),故存在满足条件的点E,点E的坐标为(3,2)或(﹣1,0)或(8,18).。
绝密★启用前 试卷类型A 莱芜市2015年初中学业水平测试 数 学 试 题第I 卷选择题答案栏第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题选对得3分,共36分。
)1.31-的倒数是A .3-B .31-C .31D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅C .22)21(21-=--D .1)2160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是A .B .C .D .4.2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为A .3.1×106元B .3.11×104元C .3.1×104元D .3.10×105元5.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是 A .0>ab B .0>-b aC .0>+b aD .0||||>-b a1 0 -1 a b BA (第5题图)6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是A. B. C. D.7.已知反比例函数x y 2-=,下列结论不正确的是A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-28.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A .2.5B .5C .10D .159.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过 A .第一象限 B .第二象限C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米) 随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确的是 A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米第Ⅱ卷(非选择题 共84分)(第9题图)(第12题图)(第6题图)二、填空题(本大题共5小题,只要求填写最后结果,每小题填对得4分,共20分) 13.分解因式:=-+-x x x 232 .14.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 .15.某公司在2009年的盈利额为200万元,预计2011年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元.16.在平面直角坐标系中,以点)3,4(A 、)0,0(B 、)0,8(C 为顶点的三角形向上平移3个单位,得到△111C B A (点111C B A 、、分别为点C B A 、、的对应点),然后以点1C 为中心将△111C B A 顺时针旋转︒90,得到△122C B A (点22B A 、分别是点11B A 、的对应点),则点2A 的坐标是 .17.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…,观察上面的计算过程,寻找规律并计算=610C .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤) 18.(本题满分6分)先化简,再求值:24)2122(+-÷+--x xx x ,其中34 +-=x .19.(本题满分8分)2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A :不了解,B :一般了解,C :了解较多,D :熟悉).请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少? 20.(本题满分9分)2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A 处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)21.(本题满分9分)在Rt △ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D. (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.得分 评卷人得分 评卷人A B C D人数510 15 20 25 (第19题图)A 10%B30% DCODCB AB AC(第20题图)22.(本题满分10分)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?23.(本题满分10分)在ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.E DA E DAA DE24.(本题满分12分)如图,在平面直角坐标系中,已知抛物线c bx ax y ++=2交x 轴于)0,6(),0,2(B A 两点,交y 轴于点)32,0(C . (1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线x y 2=交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于点E 、F 两点,求劣弧EF 的长;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分为1︰2两部分.(第24题图)莱芜市2015年初中学业水平测试 数 学 试 题 答 案一、选择题(本大题共12个小题,每小题3分,共36分)二、填空题(本大题共5个小题,每小题4分,共20分)13. 2)1(--x x ; 14. 2; 15. 220; 16.)7,11( ; 17.210三、解答题(本大题共7个小题,共64分) 18.(本小题满分6分)解:原式=24212)2)(2(+-÷+-+-x xx x x ………………………1分 =x x x x -+⨯+-422162 ………………………2分 =)42(2)4)(4(-+-⨯+-+x x x x x ………………………4分=4--x ………………………5分 当34+-=x 时, 原式=4)34(-+--=434--=3-. ………………………6分19.(本小题满分8分)解:(1)5÷10%=50(人) ………………………2分(2)见右图 ………………………4分(3)360°×5020=144° ………………………6分(4)51502015550=---=P . ………………………8分20.(本小题满分9分)解:过A 作AD ⊥CB ,垂足为点D ………………………1分 在Rt △ADC 中,∵CD=36,∠CAD=60°.∴AD=31233660tan ==︒CD ≈20.76. ……5分在Rt △ADB 中,∵AD ≈20.76,∠BAD=37°.∴BD=37tan ⨯AD ≈20.76×0.75=15.57≈15.6(米). ………8分答:气球应至少再上升15.6米. …………………………9分 21.(本小题满分9分)解:(1)在Rt △ACB 中,∵AC=3cm ,BC=4cm ,∠ACB=90°,∴AB=5cm . ……1分 连结CD ,∵BC 为直径,∴∠ADC =∠BDC =90°. ∵∠A=∠A ,∠ADC=∠ACB ,∴Rt △ADC ∽Rt △ACB .∴AC ADAB AC =,∴592==AB AC AD . …………………………4分 (2)当点E 是AC 的中点时,ED 与⊙O 相切. ………………5分证明:连结OD ,∵DE 是Rt △ADC 的中线.∴ED=EC ,∴∠EDC=∠ECD .∵OC=OD ,∴∠ODC =∠OCD . …………………7分 ∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD =∠ACB =90°.∴ED 与⊙O 相切. …………………………9分 22.(本小题满分10分)解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个. ………………1分由题意得⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x …………………………3分解这个不等式组得18≤x ≤20.BACDOD B A由于x只能取整数,∴x的取值是18,19,20.…………………………5分当x=18时,30-x=12;当x=19时,30-x=11;当x=20时,30-x=10.故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个.……7分(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低,最低费用是860×18+570×12=22320(元).…………………………10分方法二:①方案一的费用是:860×18+570×12=22320(元);②方案二的费用是:860×19+570×11=22610(元);③方案三的费用是:860×20+570×10=22900(元)故方案一费用最低,最低费用是22320元.…………………………10分23.(本小题满分10分)解:(1)四边形EGFH是平行四边形.…………………………1分ABCD的对角线AC、BD交于点O.∴点O ABCD的对称中心.∴EO=FO,GO=HO.∴四边形EGFH是平行四边形.…………………………4分(2)菱形.…………………………5分(3)菱形.…………………………6分(4)四边形EGFH是正方形.…………………………7分∵AC=BD ABCD是矩形.又∵AC⊥BD ABCD ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°.OB=OC.∵EF⊥GH ,∴∠GOF=90°.∴∠BOG=∠COF.∴△BOG≌△COF.∴OG=OF,∴GH=EF.…………9分由(1)知四边形EGFH是平行四边形,又∵EF⊥GH,EF=GH.∴四边形EGFH是正方形.……………10分24. (本小题满分12分)解:(1)∵抛物线cbxaxy++=2经过点)0,2(A,)0,6(B,)320(,C.∴⎪⎩⎪⎨⎧==++=++320636024c c b a c b a , 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==3233463c b a .∴抛物线的解析式为:32334632+-=x x y . …………………………3分(2)易知抛物线的对称轴是4=x .把x=4代入y=2x 得y=8,∴点D 的坐标为(4,8). ∵⊙D 与x 轴相切,∴⊙D 的半径为8. …………………………4分 连结DE 、DF ,作DM ⊥y 轴,垂足为点M .在Rt △MFD 中,FD=8,MD=4.∴cos ∠MDF=21.∴∠MDF=60°,∴∠EDF=120°. …………………………6分∴劣弧EF 的长为:π=⨯π⨯3168180120. …………………………7分 (3)设直线AC 的解析式为y=kx+b. ∵直线AC 经过点)32,0(),0,2(C A .∴⎩⎨⎧==+3202b b k ,解得⎪⎩⎪⎨⎧=-=323b k .∴直线AC 的解析式为:323+-=x y设点)0)(3233463,(2<+-m m m m P ,PG 交直线AC 于N 则点N 坐标为)323,(+-m m .∵GNPN S S GNA PNA ::=∆∆.∴①若PN ︰GN=1︰2,则PG ︰GN=3︰2,PG=23GN.即32334632+-m m =)(32323+-m .解得:m1=-3, m2=2(舍去).当m=-3时,32334632+-m m =3215.∴此时点P 的坐标为)3215,3(-. …………………………10分知识像烛光,能照亮一个人,也能照亮无数的人。
2016年山东省莱芜市中考数学试卷一、选择题1. 4的算术平方根为()A.﹣2 B.2 C.±2 D.2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2a C.3a4•a2=3a8D.(a3b2)2=a5b43.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是()A.B.C.D.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是()A.76° B.81° C.92° D.104°6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3) B.y=﹣2(x﹣3)C.y=﹣2x+3 D.y=﹣2x﹣37.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A. =B. =C. =D. =8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4 C.2 D.29.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形10.已知△ABC 中,AB=6,AC=8,BC=11,任作一条直线将△ABC 分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( ) A .3条 B .5条 C .7条 D .8条11.如图,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达点A 停止运动,另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动,设点M 运动时间为x (s ),△AMN 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D .12.已知四边形ABCD 为矩形,延长CB 到E ,使CE=CA ,连接AE ,F 为AE 的中点,连接BF ,DF ,DF 交AB 于点G ,下列结论: (1)BF ⊥DF ; (2)S △BDG =S △ADF ; (3)EF 2=FG •FD ;(4)=其中正确的个数是( )A .1B .2C .3D .4二、填空题(本题共5小题,每小题4分,共20分)13.0+﹣()﹣1﹣|tan45°﹣3|= .14.若一次函数y=x+3与y=﹣2x 的图象交于点A ,则A 关于y 轴的对称点A′的坐标为 .15.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB 的中点,△AOD的面积为3,则k的值为.16.如图,将Rt△ABC沿斜边AC所在直线翻折后点B落到点D,过点D作DE⊥AB,垂足为E,如果AE=3EB,EB=7,那么BC= .17.在Rt△ABC中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.三、解答题(本大题共7小题,共64分)18.先化简,再求值:(a﹣)÷,其中a满足a2+3a﹣1=0.19.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为人,请补全条形统计图;(2)统计的捐款金额的中位数是元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?20.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.(1)求证:GH=GF;(2)试说明∠FGH与∠BAC互补.22.为迎接“国家卫生城市”复检,某市环卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元;购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱各多少元?(2)现需要购买A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买A型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买A型和B型垃圾箱各多少个?最低费用是多少元?23.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH的值.24.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.2016年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题1.4的算术平方根为()A.﹣2 B.2 C.±2 D.【考点】算术平方根.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2,故选:B.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2a C.3a4•a2=3a8D.(a3b2)2=a5b4【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】分别利用单项式乘以单项式以及单项式除以单项式、积的乘方运算法则分别化简得出答案.【解答】解:A、a7÷a4=a3,正确;B、5a2﹣3a,无法计算,故此选项错误;C、3a4•a2=3a6,故此选项错误;D、(a3b2)2=a6b4,故此选项错误;故选:A.【点评】此题主要考查了幂的运算性质以及整式的加减运算,正确掌握相关性质是解题关键.3.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定【考点】数轴.【分析】由a+c=0可知a与c互为相反数,所以原点是AC的中点,利用b、d与原点的距离可知b+d与0的大小关系.【解答】解:∵a+c=0,∴a,c互为相反数,∴原点O是AC的中点,∴由图可知:点D到原点的距离大于点B到原点的距离,且点D、B分布在原点的两侧,故b+d<0,故选(B).【点评】本题考查数轴、相反数、有理数加法法则,属于中等题型.4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是()A.B.C.D.【考点】概率公式.【分析】根据题意,分析可得掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,由概率公式可得答案.【解答】解:根据题意,掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,故其概率为;故选C.【点评】本题考查概率的求法,其计算方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是()A.76° B.81° C.92° D.104°【考点】三角形内角和定理.【专题】计算题;三角形.【分析】由题意利用三角形内角和定理求出∠ABC度数,再由BD为角平分线求出∠ABD度数,根据外角性质求出所求角度数即可.【解答】解:∵△ABC中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD为∠ABC平分线,∴∠ABD=∠CBD=30°,∵∠BDC为△ABD外角,∴∠BDC=∠A+∠ABD=76°,故选A【点评】此题考查了三角形内角和定理,以及外角性质,熟练掌握内角和定理是解本题的关键.6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3) B.y=﹣2(x﹣3)C.y=﹣2x+3 D.y=﹣2x﹣3【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则进行解答即可.【解答】解:把函数y=﹣2x的图象向下平移3个单位后,所得图象的函数关系式为y=﹣2x﹣3.故选D.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移时“上加下减,左加右减”的法则是解答此题的关键.7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据“甲转动270圈和乙转了330圈所用的时间相等”列出方程即可;【解答】解:设甲每分钟转x圈,则乙每分钟转动(200﹣x)圈,根据题意得: =,故选D.【点评】本题考查了分式方程的知识,解题的关键是能够从实际问题中找到等量关系,难度不大.8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4 C.2 D.2【考点】圆锥的计算.【分析】根据题意可以求得围成圆锥底面圆的周长和半径,从而可以解答本题.【解答】解:由题意可得,围成的圆锥底面圆的周长为:=4π,设围成的圆锥底面圆的半径为r,则2πr=4π,解得,r=2,∴则圆锥的高是:,故选B.【点评】本题考查圆锥的计算,解题的关键是明确扇形弧长公式,圆锥的底面圆的周长等于侧面扇形的弧长.9.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形【考点】正多边形和圆.【分析】设AB是正多边形的一边,OC⊥AB,在直角△AOC中,利用三角函数求得∠AOC的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,即可求得边数.【解答】解:正多边形的内切圆与外接圆的周长之比为:2,则半径之比为:2,设AB是正多边形的一边,OC⊥AB,则OC=,OA=OB=2,在直角△AOC中,cos∠AOC==,∴∠AOC=30°,∴∠AOC=60°,则正多边形边数是: =6.故选:B.【点评】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.10.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3条B.5条C.7条D.8条【考点】等腰三角形的性质.【分析】分别以A、B、C为等腰三角形的顶点,可画出直线,再分别以AB、AC、BC为底的等腰三角形,可画出直线,综合两种情况可求得答案.【解答】解:分别以A、B、C为等腰三角形的顶点的等腰三角形有4个,如图1,分别为△ABD、△ABE、△ABF、△ACG,∴满足条件的直线有4条;分别以AB、AC、BC为底的等腰三角形有3个,如图2,分别为△ABH、△ACM、△BCN,∴满足条件的直线有3条,综上可知满足条件的直线共有7条,故选C.【点评】本题主要考查等腰三角形的性质,正确画出图形是解题的关键.11.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A 停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M 运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则=AN•BM,S△ANM∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x≤2时,M点在CD边上,则=AN•BC,S△ANM∴y=(3﹣x)•3=﹣x+,故D选项错误;当2≤x≤3时,M在AD边上,AM=9﹣x,∴S=AM•AN,△ANM∴y=•(9﹣3x)•(3﹣x)=(x﹣3)2,故B选项错误;故选(A).【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.利用数形结合,分类讨论是解决问题的关键.12.已知四边形ABCD 为矩形,延长CB 到E ,使CE=CA ,连接AE ,F 为AE 的中点,连接BF ,DF ,DF 交AB 于点G ,下列结论: (1)BF ⊥DF ; (2)S △BDG =S △ADF ; (3)EF 2=FG •FD ;(4)=其中正确的个数是( )A .1B .2C .3D .4【考点】相似三角形的判定与性质;矩形的性质.【分析】利用矩形的性质和直角三角形的性质得出结论判断出△BDF ≌△ACF ,借助直角三角形的斜边大于直角边,再用面积公式判断出面积大小,判断出△AFG ∽△DFA ,△BFG ∽△DFB ,即可判断出结论. 【解答】解:如图1,连接CF ,设AC 与BD 的交点为点O , ∵点F 是AE 中点, ∴AF=EF , ∵CE=CA , ∴CF ⊥AE ,∵四边形ABCD 是矩形, ∴AC=BD , ∴OA=OB , ∴∠OAB=∠OBA ,∵点F 是Rt △ABE 斜边上的中点, ∴AF=BF ,在△BDF 和△ACF 中,,∴△BDF ≌△ACF , ∴∠BFD=∠AFC=90°, ∴BD ⊥DF , 所以①正确;过点F 作FH ⊥AD 交DA 的延长线于点H , 在Rt △AFH 中,FH <AF , 在Rt △BFG 中,BG >BF , ∵AF=BF , ∴BG >FH ,∵S △ADF =FH ×AD ,S △BDG =BG ×AD , ∴S △BDG >S △ADF , 所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°, ∴∠ABF=∠ADG , ∵∠BAF=∠FBA , ∴∠BAF=∠ADG , ∵∠AFG=∠DFA , ∴△AFG ∽△DFA ,∴,∴AF 2=FG •FD , ∵EF=AF , ∴EF 2=FG •FD , 所以③正确; ∵BF=EF , ∴BF 2=FG •FD ,∴,∴∠ABF=∠BDF,∵∠BAF=∠ABF,∠BAF=∠ADC∴∠ADC=∠BDF,∴,∵BD=AC,AD=BC,∴,所以④正确,故选C.【点评】此题是相似三角形的性质和判定,全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,三角形内角平分线定理,解本题的是△BDF≌△ACF.二、填空题(本题共5小题,每小题4分,共20分)13.0+﹣()﹣1﹣|tan45°﹣3|= ﹣1 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+3﹣3﹣2=﹣1.故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.若一次函数y=x+3与y=﹣2x的图象交于点A,则A关于y轴的对称点A′的坐标为(1,2).【考点】两条直线相交或平行问题.【分析】直接联立函数解析式求出A点坐标,再利用关于y轴对称点的性质得出答案.【解答】解:∵一次函数y=x+3与y=﹣2x的图象交于点A,∴x+3=﹣2x,解得:x=﹣1,则y=2,故A点坐标为:(﹣1,2),∴A关于y轴的对称点A′的坐标为:(1,2).故答案为:(1,2).【点评】此题主要考查了一次函数的交点问题以及关于y轴对称点的性质,正确得出A点坐标是解题关键.15.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB 的中点,△AOD的面积为3,则k的值为8 .【考点】反比例函数系数k的几何意义;待定系数法求反比例函数解析式.【分析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.【解答】解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:8【点评】本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD 的面积为3列出关系式是解题的关键.16.如图,将Rt△ABC沿斜边AC所在直线翻折后点B落到点D,过点D作DE⊥AB,垂足为E,如果AE=3EB,EB=7,那么BC= 4.【考点】翻折变换(折叠问题).【分析】根据相似三角形的判定和性质、以及勾股定理解答即可.【解答】解:∵DE⊥AB,∠B=90°,∴DE∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴DH=DC,∵DE∥BC,∴△AFH∽△ABC,∴,设EH=3x,BC=DC=DH=4x,∴DE=7x,∵AE=3EB,EB=7,∴AE=21,∵AD=AB=AE+BE=7+21=28,在Rt△ADE中,DE=,∴7x=7,∴x=,∴BC=4.故答案为:4.【点评】此题考查相似三角形的判定和性质,证明DH=DC 是解题关键.17.在Rt △ABC 中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B 放在原点,点A 放在y 轴正半轴上,当点B 在x 轴上向右移动时,点A 也随之在y 轴上向下移动,当点A 到达原点时,点B 停止移动,在移动过程中,点C 到原点的最大距离为 2+2.【考点】轨迹;坐标与图形性质.【分析】根据题意首先取A 1B 1的中点E ,连接OE ,C 1E ,当O ,E ,C 1在一条直线上时,点C 到原点的距离最大,进而求出答案.【解答】解:如图所示:取A 1B 1的中点E ,连接OE ,C 1E ,当O ,E ,C 1在一条直线上时,点C 到原点的距离最大,在Rt △A 1OB 1中,∵A 1B 1=AB=4,点OE 为斜边中线, ∴OE=B 1E=A 1B 1=2, 又∵B 1C 1=BC=2, ∴C 1E==2,∴点C 到原点的最大距离为:OE+C 1E=2+2.故答案为:2+2.【点评】此题主要考查了轨迹以及勾股定理等知识,正确得出C 点位置是解题关键.三、解答题(本大题共7小题,共64分)18.先化简,再求值:(a ﹣)÷,其中a 满足a 2+3a ﹣1=0.【考点】分式的化简求值.【分析】根据题意得到a2+3a=1,根据分式的通分、约分法则把原式化简,代入计算即可.【解答】解:∵a2+3a﹣1=0,∴a2+3a=1原式=×=(a+1)(a+2)=a2+3a+2=3.【点评】本题考查的是分式的化简求值,掌握分式的通分、约分法则是解题的关键.19.(8分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为50 人,请补全条形统计图;(2)统计的捐款金额的中位数是150 元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【考点】条形统计图;用样本估计总体;扇形统计图;中位数.【分析】(1)根据题意即可得到结论;求得捐款200元的人数即可补全条形统计图;(2)根据中位数的定义即可得到结论;(3)用周角乘以100元所占的百分比即可求得圆心角;(4)根据题意即可得到结论.【解答】解:(1)50,补全条形统计图,故答案为:50;(2)150,故答案为:150;(3)×360°=72°.(4)(50×4+100×10+150×12+200×18+300×6)×500=100(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据正弦的定义计算即可;(2)作FP⊥ED于P,根据正切的定义求出AC,根据正切的概念求出EP,计算即可.【解答】解:(1)在Rt△ABC中,AB==6米;(2)AC==4.8米,则CD=4,.8+16=20.8米,作FP⊥ED于P,∴FP=CD=20.8,∴EP=FP×tan∠EFP=13.52,DP=BF+BC=5.2,ED=EP+PD=18.72,EG=ED﹣GH﹣HD=16.52,则红旗升起的平均速度为:16.52÷30=0.55,答:红旗升起的平均速度为0.55米/秒.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.(1)求证:GH=GF;(2)试说明∠FGH与∠BAC互补.【考点】旋转的性质;全等三角形的判定与性质;等腰三角形的性质;三角形中位线定理.【分析】(1)首先得出△ABD≌△ACE(SAS),进而利用三角形中位线定理得出GH=GF;(2)利用全等三角形的性质结合平行线的性质得出∠FGH=∠DGF+∠HGD进而得出答案.【解答】证明:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∵F,G,H分别为BC,CD,DE的中点,∴GH∥GF,且GH=CE,GF=BD,∴GH=GF;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵HG∥CE,GE∥BD,∴∠HGD=∠ECD,∠GFC=∠DBC,∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,∴∠FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ACD+∠ABD=∠ABC+∠ACB=180°﹣∠BAC,∴∠FGH与∠BAC互补.【点评】此题主要考查了全等三角形的判定与性质以及三角形中位线定理,正确得出△ABD≌△ACE是解题关键.22.为迎接“国家卫生城市”复检,某市环卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元;购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱各多少元?(2)现需要购买A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买A型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买A型和B型垃圾箱各多少个?最低费用是多少元?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设每个A型垃圾箱和B型垃圾箱分别为x元和y元,利用两次购买的费用列方程,然后解方程组即可;(2)设购买A型垃圾箱m个,则购买B型垃圾箱(300﹣m)个,购买垃圾箱的费用为w元,利用工作效率和总工作时间可得到60≤m≤180,然后讨论:若60≤m<150得到w=4m+28800,若150≤m≤180得w=﹣30m+3600,再利用一次函数的性质求出两种情况下的w的最小值,于是比较大小可得到满足条件的购买方案.【解答】解:(1)设每个A型垃圾箱和B型垃圾箱分别为x元和y元,根据题意得,解得,∴每个A型垃圾箱和B型垃圾箱分别为100元和120元;(2)设购买A型垃圾箱m个,则购买B型垃圾箱(300﹣m)个,购买垃圾箱的费用为w元,根据题意得,解得60≤m≤180,若60≤m<150,w=100m+120×0.8×(300﹣m)=4m+28800,当m=60时,w最小,w的最小值=4×60+28800=29040(元);若150≤m≤180,w=100×0.9×m+120×(300﹣m)=﹣30m+3600,当m=1800,w最小,w的最小值=﹣30×180+36000=30600(元);∵29040<30600,∴购买A型垃圾箱60个,则购买B型垃圾箱240个时,既能在规定时间内完成任务,费用又最低,最低费用为29040元.【点评】本题考查了一元一次不等式组的应用:分析题意,找出不等关系;设未知数,列出不等式组;解不等式组;从不等式组解集中找出符合题意的答案;作答.也考查了二元一次方程组合一次函数的性质.23.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH的值.【考点】圆的综合题.【分析】(1)根据垂直的定义和垂直平分线的判定好小子即可求解;(2)如图2,连结BD,先证明四边形ABDC是圆内接四边形,根据圆内接四边形的性质和垂直平分线的性质即可求解;(3)如图3,过点H作HN⊥AB,垂足为N,在Rt△ABF中和在Rt△BNH中,根据三角函数的定义即可求解.【解答】(1)证明:∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∴∠EBM+∠BME=90°,∠ABF+∠BAF=90°,∴∠BME=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;(2)证明:如图2,连结BD,∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∵∠EBM=∠FBA,∴∠BME=∠BAF,∴四边形ABDC是圆内接四边形,∴∠BDM=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;(3)解:如图3,过点H作HN⊥AB,垂足为N.易知∠AHN=∠ABF=∠C,在Rt△ANH中,设HM=3m,∵tan∠AHN=tan∠C==,∴AN=4m,∴AH=5m,∵BH平分∠ABF,∴HN=HF=3m,∴AF=AH+HF=8m,在Rt△ABF中,∵tan∠ABF=tan∠C==,∴BF=6m,∴AB=10m,∴BN=AB﹣AN=6m,∴在Rt△BNH中,tan∠NBH===,∴tan∠ABH=.【点评】本题考查了圆的综合,涉及了圆内接四边形的判定与性质、等腰三角形的判定与性质及垂直平分线的性质,三角函数,解答本题的关键是掌握数形结合思想运用.24.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)如图1,运用待定系数法求这个二次函数的解析式;(2)如图2,先求直线BC的解析式为y=x﹣2,设出点E的坐标,写出点G的坐标(﹣m2+3m+8,﹣ m2+m+2),求出EG的长,证明∴△EFG∽△DOB,根据相似三角形周长的比等于相似比表示△EFG周长═(﹣m2+2m+8)= [﹣(m﹣1)2+9],根据二次函数的顶点确定其最值;(3)分三种情况讨论:分别以三个顶点为直角时,列方程组,求出点E的坐标,根据两垂直直线的一次项系数为负倒数得出结论.【解答】解:(1)如图1,把A(﹣1,0),B(4,0),C(﹣2,﹣3)代入y=ax2+bx+c中,得:,解得:,则二次函数的解析式y=﹣x2+x+2;(2)如图2,设直线BC的解析式为y=kx+b,把B(4,0),C(﹣2,﹣3)代入y=kx+b中得:,解得:,∴直线BC的解析式为y=x﹣2,设E(m,﹣ m2+m+2),﹣2<m<4,∵EG⊥y轴,∴E和G的纵坐标相等,∵点G在直线BC上,当y=﹣m2+m+2时,﹣ m2+m+2=x﹣2,x=﹣m2+3m+8,则G(﹣m2+3m+8,﹣ m2+m+2),∴EG=﹣m2+3m+8﹣m=﹣m2+2m+8,∵EG∥AB,∴∠EGF=∠OBD,∵∠EFG=∠BOD=90°,∴△EFG∽△DOB,∴=,∵D(0,﹣2),B(4,0),∴OB=4,OD=2,∴BD==2,∴=﹣,∴△EFG的周长=(﹣m2+2m+8),= [﹣(m﹣1)2+9],∴当m=1时,△EFG周长最大,最大值是;(3)存在点E,分两种情况:①若∠EBD=90°,则BD⊥DE,如图3,设BD的解析式为:y=kx+b,把B(4,0)、D(0,﹣2)代入得:,解得:,∴BD的解析式为:y=x﹣2,∴设直线EB的解析式为:y=﹣2x+b,把B(4,0)代入得:b=8,∴直线EB的解析式为:y=﹣2x+8,∴,﹣x2+x+2=﹣2x+8,解得:x1=3,x2=4(舍),当x=3时,y=﹣2×3+8=2,∴E(3,2),②当BD⊥DE时,即∠EDB=90°,如图4,同理得:DE的解析式为:y=﹣2x+b,把D(0,﹣2)代入得:b=﹣2,∴DE的解析式为:y=﹣2x﹣2,∴,解得:,∴E(8,﹣18)或(﹣1,0),③当∠DEB=90°时,以BD为直径画圆,如图5,发现与抛物线无交点,所以此种情况不存在满足条件的E点;综上所述,点E(3,2)或(8,﹣18)或(﹣1,0),故存在满足条件的点E,点E的坐标为(3,2)或(﹣1,0)或(8,18).【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数、一次函数的解析式;根据两直线垂直,则一次项系数为负倒数,利用一条直线求另一条直线的解析式;若三角形直角三角形时,要采用分类讨论的思想,分三种情况进行讨论,利用勾股定理或解析式或相似求出点E的坐标.。
山东省莱芜市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)估算38×73,下列结果正确的是()A . 2774B . 2800C . 2100D . 22002. (2分) (2015高二上·昌平期末) 如图,已知△ABC为直角三角形,∠C=90° ,若沿图中虚线剪去∠C,则∠1+∠2等于()A . 90°B . 135°C . 270°D . 315°3. (2分)(2017·黄冈模拟) “人间四月天,麻城看杜鹃”,2016年麻城市杜鹃花期间共接待游客约1200000人次,同比增长约26%,将1200000用科学记数法表示应是()A . 12×105B . 1.2×106C . 1.2×105D . 0.12×1054. (2分)下列计算中,正确的是()A . a+a11=a12B . 5a﹣4a=aC . a6÷a5=1D . (a2)3=a55. (2分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7.关于这组数据,下列结论错误的是()A . 极差是7B . 众数是8C . 中位数是8.5D . 平均数是96. (2分)(2017·鄂州) 对于不等式组,下列说法正确的是()A . 此不等式组的正整数解为1,2,3B . 此不等式组的解集为﹣1<x≤C . 此不等式组有5个整数解D . 此不等式组无解7. (2分)如果x<y<﹣1,那么代数式的值是()A . 0B . 正数C . 负数D . 非负数8. (2分)分式方程的解是()A . x=﹣9B . x=9C . x=3D .9. (2分) (2018八下·桐梓月考) 正方形ABCD中,AC=4,则正方形ABCD面积为()A . 4B . 8C . 16D . 3210. (2分)已知,则直线y=kx+2k一定经过()A . 第1,2象限B . 第2,3象限C . 第3,4象限D . 第1,4象限二、填空题 (共8题;共8分)11. (1分)(2016·历城模拟) 分解因式:a2﹣2a+1=________.12. (1分)如图,菱形ABCD中,对角线AC=6,BD=8,M,N分别是BC,CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是________.13. (1分)(2017·含山模拟) 某校组织开展“迎新春长跑活动”,将报名的男运动员共分成4组,分别是:七年级组、八年级组、九年级组、教工组,各组人数所占比例如图所示,已知九年级组有60人,则教工组人数是________.14. (1分)在函数中,自变量的取值范围是________15. (1分)(2017·广州模拟) 已知关于x的一元二次方程x2﹣2(1﹣m)x+m2=0的两实数根为x1 , x2 ,则y=x1+x2+2x1x2的最小值为________.16. (1分)如图所示,PA切⊙O于A,PB切⊙O于B,OP交⊙O于C,下列说法:①PA=PB,②∠1=∠2,③OP 垂直平分AB,其中正确说法的序号是________17. (1分)(2018·嘉兴模拟) 如图所示,点A1 , A2 , A3在x轴上,且OA1=A1A2=A2A3 ,分别过点A1 ,A2 , A3作y轴的平行线,与反比例函数(x>0)的图象分别交于点B1 , B2 , B3 ,分别过点B1 , B2 ,B3作x轴的平行线,分别于y轴交于点C1 , C2 , C3 ,连接OB1 , OB2 , OB3 ,那么图中阴影部分的面积之和为________.18. (1分) (2017八下·东台期中) 在直角坐标系中,有如图所示的Rt△ABO,AB⊥x轴于点B,斜边AO=10,直角边AB=6,反比例函数y= (x>0)的图象经过AO的中点C,且与AB交于点D,则点D的坐标为________.三、解答题 (共11题;共93分)19. (10分) (2019七下·端州期中) 计算:(1)(-3)2+(2)( +3)20. (10分) (2019七下·洛宁期中)(1)解方程组:;(2)解不等式: .21. (5分)先化简,再求值:,其中x=-1.22. (5分) (2017七上·闵行期末) 解方程:.23. (7分) (2016八下·凉州期中) 如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)填空:①当t为________ s时,四边形ACFE是菱形;②当t为________ s时,以A、F、C、E为顶点的四边形是直角梯形.24. (10分)(2017·苏州模拟) 甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.25. (10分) (2019九下·大丰期中) 如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.(1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈2.24)26. (10分)(2017·长宁模拟) 如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA= ,cot∠ABC= ,AD=8.(1)求⊙D的半径;(2)求CE的长.27. (6分)(2018·普宁模拟) 如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为________.28. (5分) (2017八下·西城期中) 己知:在中,,,,将绕点顺时针旋转得到,且满足,求的长.29. (15分)已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共11题;共93分)19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、28-1、29-1、29-2、29-3、。
2015年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,每小题3分)1.(3分)(2015•莱芜)﹣3的相反数是()A. 3 B.﹣3 C. D.﹣2.(3分)(2015•莱芜)将数字2.03×10﹣3化为小数是()A. 0.203 B. 0.0203 C. 0.00203 D. 0.0002033.(3分)(2015•莱芜)下列运算正确的是()A.(﹣a2)•a3=﹣a6 B. a6÷a3=a2 C. a2+a3=a5 D.(a3)2=a64.(3分)(2015•莱芜)要使二次根式有意义,则x的取值范围是()A. x B. x C. x D. x5.(3分)(2015•莱芜)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFG的度数为()A.35° B.40° C.70° D.140°6.(3分)(2015•莱芜)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.7.(3分)(2015•莱芜)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣18.(3分)(2015•莱芜)下列几何体中,主视图和左视图都为矩形的是()A. B. C. D.9.(3分)(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A. 27 B. 35 C. 44 D. 5410.(3分)(2015•莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关11.(3分)(2015•莱芜)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D 的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A. B. C. D.12.(3分)(2015•莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O 与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB•CD=;(4)∠ABE=∠DCE.A. 1 B. 2 C. 3 D. 4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2015•莱芜)计算:﹣|﹣2|+(﹣1)3+2﹣1= .14.(4分)(2015•莱芜)已知m+n=3,m﹣n=2,则m2﹣n2= .15.(4分)(2015•莱芜)不等式组的解集为.16.(4分)(2015•莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.17.(4分)(2015•莱芜)如图,反比例函数y=(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t= .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)(2015•莱芜)先化简,再求值:(1﹣),其中x=3.19.(8分)(2015•莱芜)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀 45 b良好 a 0.3合格 105 0.35不合格 60 c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.20.(9分)(2015•莱芜)为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)21.(9分)(2015•莱芜)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.22.(10分)(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?23.(10分)(2015•莱芜)如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.24.(12分)(2015•莱芜)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,2),B(0,﹣2),其对称轴为直线x=,C(0,)为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.2015年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分)1.(3分)(2015•莱芜)﹣3的相反数是()A. 3 B.﹣3 C. D.﹣考点:相反数.专题:常规题型.分析:根据相反数的概念解答即可.解答:解:﹣3的相反数是3,故选:A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2015•莱芜)将数字2.03×10﹣3化为小数是()A. 0.203 B. 0.0203 C. 0.00203 D. 0.000203考点:科学记数法—原数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:2.03×10﹣3化为小数是0.00203.故选C.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2015•莱芜)下列运算正确的是()A.(﹣a2)•a3=﹣a6 B. a6÷a3=a2 C. a2+a3=a5 D.(a3)2=a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、(﹣a2)•a3=﹣a5,故错误;B、a6÷a3=a3,故错误;C、a2•a3=a5,故错误;D、正确;故选:D.点评:本题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(2015•莱芜)要使二次根式有意义,则x的取值范围是()A. x B. x C. x D. x考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:依题意得3﹣2x≥0,解得x≤.故选:B.点评:本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2015•莱芜)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFG的度数为()A.35° B.40° C.70° D.140°考点:平行线的性质.分析:先根据两直线平行同旁内角互补,求出∠AEG的度数,然后根据角平分线的定义求出∠AEF的度数,然后根据两直线平行内错角相等,即可求出∠EFG的度数.解答:解:∵AB∥CD,∠FGE=40°,∴∠AEG+∠FGE=180°,∴∠AEG=140°,∵EF平分∠AEG,∴∠AEF=∠AEG=70°,∵AB∥CD,∴∠EFG=∠AEF=70°.故选C.点评:此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.6.(3分)(2015•莱芜)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念对各选项分析判断即可得解.解答:解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.(3分)(2015•莱芜)为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1考点:方差;算术平均数;中位数;众数;极差.分析:分别计算该组数据的平均数,众数,极差及方差后找到正确的答案即可.解答:解:根据题意可知x=﹣1,平均数=(﹣6﹣3﹣1﹣1+2+3)÷6=﹣1,∵数据﹣1出现两次最多,∴众数为﹣1,极差=3﹣(﹣6)=9,方差=[(﹣6+1)2+(﹣3+1)2+(﹣1+1)2+(2+1)2+(﹣1+1)2+(3+1)2]=9.故选A.点评:此题考查了方差、极差、平均数、中位数及众数的知识,属于基础题,掌握各部分的定义及计算方法是解题关键.8.(3分)(2015•莱芜)下列几何体中,主视图和左视图都为矩形的是()A. B. C. D.考点:简单几何体的三视图.分析:分别写出各几何体的主视图和左视图,然后进行判断.解答:解:A、主视图和左视图都为圆,所以A选项错误;B、主视图和左视图都为矩形的,所以B选项正确;C、主视图和左视图都为等腰三角形,所以C选项错误;D、主视图为矩形,左视图为圆,所以D选项错误.故选B.点评:本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.记住常见的几何体的三视图.9.(3分)(2015•莱芜)一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A. 27 B. 35 C. 44 D. 54考点:多边形内角与外角.分析:设出题中所给的两个未知数,利用内角和公式列出相应等式,根据边数为整数求解即可,再进一步代入多边形的对角线计算方法,即可解答.解答:解:设这个内角度数为x,边数为n,∴(n﹣2)×180°﹣x=1510,180n=1870+x,∵n为正整数,∴n=11,∴=44,故选:C.点评:此题考查多边形的内角和计算公式以及多边形的对角线条数的计算方法,属于需要识记的知识.10.(3分)(2015•莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关考点:列代数式(分式).分析:设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A 地到B地所用时间,然后比较大小即可判定选择项.解答:解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.点评:此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.11.(3分)(2015•莱芜)如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D 的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A. B. C. D.考点:动点问题的函数图象.分析:根据题意,分三种情况:(1)当0≤t≤2a时;(2)当2a<t≤3a时;(3)当3a<t≤5a 时;然后根据直角三角形中三边的关系,判断出y关于x的函数解析式,进而判断出y与x 的函数关系的图象是哪个即可.解答:解:(1)当0≤t≤2a时,∵PD2=AD2+AP2,AP=x,∴y=x2+a2.(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵PD2=CD2+CP2,∴y=(3a﹣x)2+(2a)2=x2﹣6ax+13a2.(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵PD2=y,∴y=(5a﹣x)2=(x﹣5a)2,综上,可得y=∴能大致反映y与x的函数关系的图象是选项D中的图象.故选:D.点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.12.(3分)(2015•莱芜)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,以BC为直径的⊙O 与AD相切,点E为AD的中点,下列结论正确的个数是()(1)AB+CD=AD;(2)S△BCE=S△ABE+S△DCE;(3)AB•CD=;(4)∠ABE=∠DCE.A. 1 B. 2 C. 3 D. 4考点:圆的综合题.分析:设DC和半圆⊙O相切的切点为F,连接OF,根据切线长定理以及相似三角形的判定和性质逐项分析即可.解答:解:设DC和半圆⊙O相切的切点为F,∵在直角梯形ABCD中AB∥CD,AB⊥BC,∴∠ABC=∠DCB=90°,∵AB为直径,∴AB,CD是圆的切线,∵AD与以AB为直径的⊙O相切,∴AB=AF,CD=DF,∴AD=AE+DE=AB+CD,故①正确;如图1,连接OE,∵AE=DE,BO=CO,∴OE∥AB∥CD,OE=(AB+CD),∴OE⊥BC,∴S△BCE=BC•OE=(AB+CD)=(AB+CD)•BC==S△ABE+S△DCE,故②正确;如图2,连接AO,OD,∵AB∥CD,∴∠BAD+∠ADC=180°,∵AB,CD,AD是⊙O的切线,∴∠OAD+∠EDO=(∠BAD+∠ADC)=90°,∴∠AOD=90°,∴∠AOB+∠DOC=∠AOB+∠BAO=90°,∴∠BAO=∠DOC,∴△ABO∽△CDO,∴,∴AB•CD=OB•OC=BC BC=BC2,故③正确,如图1,∵OB=OC,OE⊥BC,∴BE=CE,∴∠BEO=∠CEO,∵AB∥OE∥CD,∴∠ABE=∠BEO,∠DCE=∠OEC,∴∠ABE=∠DCE,故④正确,综上可知正确的个数有4个,故选D.点评:本题考查了切线的判定和性质、相似三角形的判定与性质、直角三角形的判定与性质.解决本题的关键是熟练掌握相似三角形的判定定理、性质定理,做到灵活运用.二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2015•莱芜)计算:﹣|﹣2|+(﹣1)3+2﹣1= .考点:实数的运算;负整数指数幂.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用绝对值的代数意义化简,第三项利用乘方的意义化简,最后一项利用负整数指数幂法则计算即可得到结果.解答:解:原式=3﹣2﹣1+=,故答案为:点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(4分)(2015•莱芜)已知m+n=3,m﹣n=2,则m2﹣n2= 6 .考点:平方差公式.分析:根据平方差公式,即可解答.解答:解:m2﹣n2=(m+n)(m﹣n)=3×2=6.故答案为:6.点评:本题考查了平方差公式,解决本题的关键是熟记平方差公式.15.(4分)(2015•莱芜)不等式组的解集为﹣1≤x<2 .考点:解一元一次不等式组.分析:先求出每个不等式的解集,根据不等式的解集找出不等式组的解集即可.解答:解:∵由①得:x≥﹣1,由②得:x<2,∴不等式组的解集是﹣1≤x<2,故答案为﹣1≤x<2.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集.16.(4分)(2015•莱芜)如图,在扇形OAB中,∠AOB=60°,扇形半径为r,点C在上,CD⊥OA,垂足为D,当△OCD的面积最大时,的长为.考点:垂径定理;弧长的计算;解直角三角形.分析:由OC=r,点C在上,CD⊥OA,利用勾股定理可得DC的长,求出OD=时△OCD 的面积最大,∠COA=45°时,利用弧长公示得到答案.解答:解:∵OC=r,点C在上,CD⊥OA,∴DC==,∴S△OCD=OD•,∴S△OCD2=OD2•(r2﹣OD2)=﹣OD4+r2OD2=﹣(OD2﹣)2+∴当OD2=,即OD=r时△OCD的面积最大,∴∠OCD=45°,∴∠COA=45°,∴的长为:=πr,故答案为:.点评:本题主要考查了扇形的面积,勾股定理,求出OD=时△OCD的面积最大,∠COA=45°是解答此题的关键.17.(4分)(2015•莱芜)如图,反比例函数y=(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t= .考点:反比例函数图象上点的坐标特征;坐标与图形变化-对称.分析:根据反比例函数图象上点的坐标特征由点A坐标为(1,﹣1)得到k=﹣1,即反比例函数解析式为y=﹣,且ON=MN=1,则可判断△OMN为等腰直角三角形,知∠MON=45°,再利用PQ⊥OM可得到∠OPQ=45°,然后轴对称的性质得PN=PN′,NN′⊥PQ,所以∠NPQ=∠N′PQ=45°,于是得到N′P⊥x轴,则点n′的坐标可表示为(t,﹣),于是利用Pn=Pn′得t﹣1=|﹣|=,然后解方程可得到满足条件的t的值.解答:解:如图,∵点A坐标为(1,﹣1),∴k=﹣1×1=﹣1,∴反比例函数解析式为y=﹣,∵ON=MN=1,∴△OMN为等腰直角三角形,∴∠MON=45°,∵直线l⊥OM,∴∠OPQ=45°,∵点N和点N′关于直线l对称,∴PN=PN′,NN′⊥PQ,∴∠N′PQ=∠OPQ=45°,∠N′PN=90°,∴N′P⊥x轴,∴点N′的坐标为(t,﹣),∵PN=PN′,∴t﹣1=|﹣|=,整理得t2﹣t﹣1=0,解得t1=,t2=(不符合题意,舍去),∴t的值为.故答案为:.点评:本题考查了反比例函数的综合题,涉及知识点有反比例函数图象上点的坐标特征、等腰直角三角形的性质和轴对称的性质和用求根公式法解一元二次方程等.利用对称的性质得到关于t的方程是解题的关键.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)(2015•莱芜)先化简,再求值:(1﹣),其中x=3.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=•=•=,当x=3时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)(2015•莱芜)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀 45 b良好 a 0.3合格 105 0.35不合格 60 c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.考点:列表法与树状图法;频数(率)分布表;条形统计图.分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.解答:解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.点评:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.20.(9分)(2015•莱芜)为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)考点:解直角三角形的应用-方向角问题.分析:先解Rt△ADC,求出CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里,那么渔船到的避风港D处所用时间:210÷18=11小时.再解Rt△ADB,求出BD=AD•tan∠BAD≈280×2.4=672海里,那么BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C 后面200海里时所需时间为x小时,根据追及问题的等量关系列出方程(40﹣18)x=462﹣200,解方程求出x=11,由于11<11,所以渔船能顺利躲避本次台风的影响.解答:解:由题意可知∠BAD=67.5°,∠CAD=36.9°,AC=350海里.在Rt△ADC中,∵∠ADC=90°,∠DAC=36.9°,AC=350海里,∴CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里.∴渔船到的避风港D处所用时间:210÷18=11小时.在Rt△ADB中,∵∠ADB=90°,∠BAD=67.5°,∴BD=AD•tan∠BAD≈280×2.4=672海里,∴BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据题意得(40﹣18)x=462﹣200,解得x=11,∵11<11,∴渔船能顺利躲避本次台风的影响.点评:本题考查了解直角三角形的应用﹣方向角问题,难度中等,求出强台风移动到渔船C后面200海里时所需时间是解题的关键.21.(9分)(2015•莱芜)如图,△ABC是等腰直角三角形,∠ACB=90°,分别以AB,AC为直角边向外作等腰直角△ABD和等腰直角△ACE,G为BD的中点,连接CG,BE,CD,BE与CD交于点F.(1)判断四边形ACGD的形状,并说明理由.(2)求证:BE=CD,BE⊥CD.考点:全等三角形的判定与性质;等腰直角三角形;平行四边形的判定.专题:证明题.分析:(1)利用等腰直角三角形的性质易得BD=2BC,因为G为BD的中点,可得BG=BC,由∠CGB=45°,∠ADB=45得AD∥CG,由∠CBD+∠ACB=180°,得AC∥BD,得出四边形ACGD 为平行四边形;(2)利用全等三角形的判定证得△DAC≌△BAE,由全等三角形的性质得BE=CD;首先证得四边形ABCE为平行四边形,再利用全等三角形的判定定理得△BCE≌△CAD,易得∠CBE=∠ACD,由∠ACB=90°,易得∠CFB=90°,得出结论.解答:(1)解:∵△ABC是等腰直角三角形,∠ACB=90°,∴AB=BC,∵△ABD和△ACE均为等腰直角三角形,∴BD==BC=2BC,∵G为BD的中点,∴BG=BD=BC,∴△CBG为等腰直角三角形,∴∠CGB=45°,∵∠ADB=45°,AD∥CG,∵∠ABD=45°,∠ABC=45°∴∠CB D=90°,∵∠ACB=90°,∴∠CBD+∠ACB=180°,∴AC∥BD,∴四边形ACGD为平行四边形;(2)证明:∵∠EAB=∠EAC+∠CAB=90°+45°=135°,∠CAD=∠DAB+∠BAC=90°+45°=135°,∴∠EAB=∠CAD,在△DAC与△BAE中,,∴△DAC≌△BAE,∴BE=CD;∵∠EAC=∠BCA=90°,EA=AC=BC,∴四边形ABCE为平行四边形,∴CE=AB=AD,在△BCE与△CAD中,,∴△BCE≌△CAD,∴∠CBE=∠ACD,∵∠ACD+∠BCD=90°,∴∠CBE+∠BCD=90°,∴∠CFB=90°,即BE⊥CD.点评:本题主要考查了等腰直角三角形的性质,平行四边形和全等三角形的判定及性质定理,综合运用各种定理是解答此题的关键.22.(10分)(2015•莱芜)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?考点:一元一次不等式组的应用;分式方程的应用.分析:(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.解答:解:(1)设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600(300﹣m)=400m+180000,当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.点评:本题考查了分式方程和一元一次不等式耳朵应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.23.(10分)(2015•莱芜)如图,已知AB是⊙O的直径,C是⊙O上任一点(不与A,B重合),AB⊥CD于E,BF为⊙O的切线,OF∥AC,连结AF,FC,AF与CD交于点G,与⊙O交于点H,连结CH.(1)求证:FC是⊙O的切线;(2)求证:GC=GE;(3)若cos∠AOC=,⊙O的半径为r,求CH的长.考点:圆的综合题.专题:计算题.分析:(1)首先根据OF∥AC,OA=OC,判断出∠BOF=∠COF;然后根据全等三角形判定的方法,判断出△BOF≌△COF,推得∠OCF=∠OBF=90°,再根据点C在⊙O上,即可判断出FC 是⊙O的切线.(2)延长AC、BF交点为M.由△BOF≌△COF可知:BF=CF然后再证明:FM=CF,从而得到BF=MF,因为DC∥BM,所以△AEG∽△ABF,△AGC∽△AFM,然后依据相似三角形的性质可证GC=GE;(3)因为cos∠AOC=,OE=,AE=.由勾股定理可求得EC=.AC=.因为EG=GC,所以EG=.由(2)可知△AEG∽△ABF,可求得CF=BF=.在Rt△ABF中,由勾股定理可求得AF=3r.然后再证明△CFH∽△AFC,由相似三角形的性质可求得CH的长.解答:(1)证明:∵OF∥AC,∴∠BOF=∠OAC,∠COF=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠BOF=∠COF,在△BOF和△COF中,,∴∠OCF=∠OBF=90°,又∵点C在⊙O上,∴FC是⊙O的切线.(2)如下图:延长AC、BF交点为M.由(1)可知:△BOF≌△COF,∴∠OFB=∠CFO,BF=CF.∵AC∥OF,∴∠M=∠OFB,∠MCF=∠CFO.∴∠M=∠MCF.∴CF=MF.∴BF=FM.∵DC∥BM,∴△AEG∽△ABF,△AGC∽△AFM.∴,.∴又∵BF=FM,∴EG=GC.(3)如下图所示:∵cos∠AOC=,∴OE=,AE=.在Rt△GOC中,EC==.在Rt△AEC中,AC==.∵EG=GC,∴EG=.∴,即.∴BF=.∴CF=.在Rt△ABF中,AF===3r.∵CF是⊙O的切线,AC为弦,∴∠HCF=∠HAC.又∵∠CFH=∠AFC,∴△CFH∽△AFC.∴,即:.∴CH=.点评:本题主要考查的是圆的综合应用,同时还涉及了勾股定理,锐角三角形函数,相似三角形的性质和判定,全等三角形的性质和判定,证得BF=FM是解答本题的关键.24.(12分)(2015•莱芜)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,2),B(0,﹣2),其对称轴为直线x=,C(0,)为y轴上一点,直线AC与抛物线交于另一点D.(1)求抛物线的函数表达式;(2)试在线段AD下方的抛物线上求一点E,使得△ADE的面积最大,并求出最大面积;(3)在抛物线的对称轴上是否存在一点F,使得△ADF是直角三角形?如果存在,求点F的坐标;如果不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)利用待定系数法求抛物线解析式;(2)作EP∥y轴交AD于P,如图1,先利用待定系数法求出直线AD的解析式为y=﹣x+,再通过解方程组得D(5,﹣2),设E(x,x2﹣x﹣2)(﹣3<x<5),。
20XX年山东省莱芜市中考数学试题及答案(word版)20XX年市中考试题数学第一部分选择题共3分如-2-1这四个数中最大的数是A B C -2 D-1答案B答案球体圆锥正方体圆柱A1个 B 2个 C 3个 D4个答案B 0的解为A -2B 2C ±2 D答案答案A 10°B 20°C 25° D30°答案A B C D答案答案A 135°B 1225°C 1155° D1125°答案与2-互为倒数C若a>则a>bD梯形的面积等于梯形的中位线与高的乘积的一半答案M为坐标轴上一点且使得△MOA为等腰三角形则满足条件的点M的个数为A4 B 5 C 6 D8答案答案B二填空题本大题共5小题只要求填写最后结果每小题填对得4分共20分13 2013山东莱芜134分分解因式2m3-8m答案2mm2m-2答案图象的公共点若将一次函数y 3x+2的图象向下平移4个单位则它与反比例函数图象的交点坐标为答案16 2013山东莱芜164分如图矩形ABCD中AB 1EF分别为ADCD的中点沿BE 将△ABE折叠若点A恰好落在BF上则AD答案答案其中a 2解当a 时原式19.2013山东莱芜198分在学校开展的学习交通安全知识争做文明中学生主题活动月中学校德工处随机选取了该校部分学生对闯红灯情况进行了一次调查调查结果有三种情况A从不闯红灯B偶尔闯红灯C经常闯红灯德工处将调查的数据进行了整理并绘制了尚不完整的统计图如下请根据相关信息解答下列问题1求本次活动共调查了多少名学生2请补全图二并求图一种B区域的圆心角的度数3若该校有240名学生请估算该校不严格遵守信号灯指示的人数解1本次活动共调查了200名学生2补全图二200-120-20 60B区域的圆心角的度数是108°3估计该校不严格遵守信号等指示的人数为960人37°方向C处B岛在南偏东66°方向从B岛测得渔船在正西方向已知两个小岛间的距离是72海里A岛上维修船的速度为每小时20海里B岛上维修船的速度为每小时288海里为及时赶到维修问调度中心应该派遣哪个岛上的维修船参考数据cos37°≈08sin37°≈06sin66°≈09cos66°≈04解作AD⊥BC的延长线于点D在Rt△ADB中AD AB·cos∠BAD 72×cos66° 72×04 288海里BD AB·sin∠BAD 72×sin66° 72×09 648海里在Rt△ADC中海里CD AC·sin∠CAD 36×sin37° 36×06 216海里BC BD-CD 648-216 432 海里A岛上维修船需要时间小时B岛上维修船需要时间小时∵<∴调度中心应该派遣B岛上的维修船解1证明连结CE∵点E为Rt△ACB的斜边AB的中点∴CE AB AE∵△ACD是等边三角形∴AD CD在△ADE与△CDE中AD CDDE DEAE CE∴△ADE≌△CDE∴∠ADE ∠CDE 30°∵∠DCB 150°∴∠EDC∠DCB 180°∴DE‖CB2 ∵∠DCB 150°若四边形DCBE是平行四边形则DC‖BE ∠DCB∠B 180°∴∠B 30°在Rt△ACB中sinB sin30° AC 或AB 2AC∴当AC 或AB 2AC时四边形DCBE是平行四边形22 2013山东莱芜2210分某学校将周三阳光体育项目定为跳绳活动为此学校准备购置长短两种跳绳若干已知长跳绳的单价比短跳绳单价的两倍多4元且购买2条长跳绳与购买5条短跳绳的费用相同1 两种跳绳的单价各是多少元2 若学校准备用不超过2000元的现金购买200条长短跳绳且短跳绳的条数不超过长跳绳的6倍问学校有几种购买方案可供选择解1设长跳绳的单价是x元短跳绳的单价为y元由题意得解得所以长跳绳单价是20元短跳绳的单价是8元2设学校购买a条长跳绳由题意得解得∵a为正整数∴a的整数值为293313233所以学校共有5种购买方案可供选择23 2013山东莱芜2310分如图⊙O的半径为1直线CD经过圆心O交⊙O于CD两点直径AB⊥CD点M是直线CD上异于点COD的一个动点AM所在的直线交于⊙O于点N点P是直线CD上另一点且PM PN1 当点M在⊙O内部如图一试判断PN与⊙O的关系并写出证明过程2 当点M在⊙O外部如图二其它条件不变时1的结论是否还成立请说明理由3 当点M在⊙O外部如图三∠AMO 15°求图中阴影部分的面积解1PN与⊙O相切证明连结ON则∠ONA ∠OAN∵PM PN∴∠PNM ∠PMN∵∠AMO ∠PMN∴∠PNM ∠AMO∴∠PNO ∠PNM∠ONA ∠AMO∠ONA 90°即PN与⊙O相切2成立证明连结ON则∠ONA ∠OAN∵PM PN∴∠PNM ∠PMN在Rt△AOM中∴∠OMA∠OAM 90°∴∠PNM∠ONA 90°∴∠PNO 180°-90° 90°即PN与⊙O相切3连结ON由2可知∠ONP 90°∵∠AMO 15°PM PN∴∠PNM 15°∠OPN 30°∵∠PON 60°∠AON 30°作NE⊥OD垂足为点E则NE ON·sin60° 1×OC·OACO·NE24 2013山东莱芜2412分如图抛物线 y ax2bxca≠0经过点A-30B 10 C -21 交y轴于点M1 求抛物线的表达式2 D为抛物线在第二象限部分上的一点作DE垂直x轴于点E交线段AM于点F求线段DF长度的最大值并求此时点D的坐标3 抛物线上是否存在一点P作PN垂直x轴于点N使得以点PAN为顶点的三角形与△MAO相似若存在求点P的坐标若不存在请说明理由解由题意可知解得∴抛物线的表达式为y2将x 0代入抛物线表达式得y 1∴点M的坐标为01设直线MA的表达式为y kxb则解得k b 1∴直线MA的表达式为y x1设点D的坐标为则点F的坐标为DF当时DF的最大值为此时即点D的坐标为3存在点P使得以点PAN为顶点的三角形与△MAO相似在Rt△MAO中AO 3MO要使两个三角形相似由题意可知点P不可能在第一象限设点P在第二象限时∵点P不可能在直线MN上∴只能PN 3NM∴即解得m -3舍去或m -8又-3 M 0故此时满足条件的点不存在当点P在第三象限时∵点P不可能在直线MN上∴只能PN 3NM∴即解得m -3或m 8此时点P的坐标为-815若AN 3PN时则-3即解得m -3舍去或m 2当m 2时此时点P的坐标为2-若PN 3NA则-即解得m -3舍去或m 10此时点P的坐标为1039综上所述满足条件的点P的坐标为-8152-1039。
2015年山东莱芜中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前山东省莱芜市2016年初中学业考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.4的算术平方根为( )A .2-B .2C .2± D2.下列运算正确的是( )A .743=a a a ÷B .253=2a a a -C .4283=3a a aD .32254()=a b a b3.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若0a c +=,则b d +( )A .大于0B .小于0C .等于0D .不确定4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是( )A .16B .14C .13D .125.如图,ABC △中,46A ∠=,74C ∠=,BD 平分ABC ∠,交AC 于点D ,那么BDC ∠的度数是( )A .76B .81C .92D .1046.将函数2y x =-的图象向下平移3个单位,所得图象对应的函数关系式为( )A .23y x =-+()B .23y x =--()C .23y x =-+D .23y x =--7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x 圈,则列方程为( )A .270330200x x =+B .270330200x x =-C .270330200x x=+D .270330200x x=- 8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是( )A.B.C.D .2 92,则这个正多边形为( )A .正十二边形B .正六边形C .正四边形D .正三角形10.已知ABC △中,6AB =,8AC =,11BC =,任作一条直线将ABC △分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A .3条B .5条C .7条D .8条11.如图,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC CD DA --运动,到达点A 停止运动;另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动.设点M 运动时间为(s)x ,AMN △的面积为2(cm )y ,则y 关于x 的函数图象是( )12.已知四边形ABCD 为矩形,延长CB 到E ,使CE CA =,连接AE .F 为AE 的中点,连接BF ,DF ,DF 交AB 于点G .下列结论: (1)BF DF ⊥;(2)BDG ADF S S =△△; (3)2 EF FG FD = ;(4)AG BC BG AC =.其中正确的个数是( )A .1B .2C .3D .4ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,每小题4分,共20分.把答案填写在题中的横线上)13.0112πtan433||5--=-+- ()-( .14.若一次函数+3y x =与2y x =-的图象交于点A ,则A 关于y 轴的对称点A '的坐标为 .15.如图,A ,B 是反比例函数ky x=图象上的两点,过点A 作AC y ⊥轴,垂足为C ,AC 交OB 于点D .若D 为OB 的中点,AOD △的面积为3,则k 的值为 .16.如图,将Rt ABC △沿斜边AC 所在直线翻折后点B 落到点D ,过点D 作DE AB ⊥,垂足为E .如果3AE EB =,7EB =,那么BC = .17.在Rt ABC △中,°90ABC ∠=,4AB =,2BC =,如图,将直角顶点B 放在原点,点A 放在y 轴正半轴上,当点B 在x 轴上向右移动时,点A 也随之在y 轴上向下移动,当点A 到达原点时,点B 停止移动,在移动过程中,点C 到原点的最大距离为 .三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤) 18.(本小题满分6分)先化简,再求值:211()(1)1a a a a --÷+-,其中a 满足2310a a -=+. 19.(本小题满分8分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成如下两个不完整的统计图.请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为 人,请补全条形统计图;(2)统计的捐款金额的中位数是 元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?20.(本小题满分9分)某体育场看台的坡面AB 与地面的夹角是37 ,看台最高点B 到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE ,在B 点用测角仪测得旗杆的最高点E 的仰角为33 .已知测角仪BF 的高度为1.6米,看台最低点A 与旗杆底端D 之间的距离为16米(C ,A ,D 在同一条直线上). (1)求看台最低点A 到最高点B 的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G ,H 之间的距离为1.2米,下端挂钩H 与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数).sin 370.6,cos370.8,≈≈ (tan370.75,sin330.54,cos330.84,tan330.65≈≈≈≈ )数学试卷 第5页(共6页) 数学试卷 第6页(共6页)21.(本小题满分9分)如图,ABC △为等腰三角形,AB AC =,D 为ABC △内一点,连接AD ,将线段AD 绕点A 旋转AE ,使得DAE BAC ∠=∠,F ,G ,H 分别为BC ,CD ,DE 的中点,连接BD ,CE ,GF ,GH . (1)求证:GH GF =;(2)试说明FGH ∠与BAC ∠互补.22.(本小题满分10分)为迎接“国家卫生城市”复检,某市环卫局准备购买A ,B 两种型号的垃圾箱.通过市场调研得知:购买3个A 型垃圾箱和2个B 型垃圾箱共需540元;购买2个A 型垃圾箱比购买3个B 型垃圾箱少用160元. (1)每个A 型垃圾箱和B 型垃圾箱各多少元?(2)现需要购买A ,B 两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A 型垃圾箱的安装,每天可以安装15个,乙负责B 型垃圾箱的安装,每天可以安装20个.生产厂家表示若购买A 型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B 型垃圾箱超过150个时,该型号的产品可以打八折.若既能在规定时间内完成任务,费用又最低,应购买A 型和B 型垃圾箱各多少个?最低费用是多少元?23.(本小题满分10分)已知AB ,CD 是O 的两条弦,直线AB ,CD 互相垂直,垂足为E ,连接AC ,过点B 作BF AC ⊥,垂足为F ,直线BF 交直线CD 于点M .(1)如图1,当点E 在O 内时,连接AD ,AM ,BD ,求证:AD AM =; (2)如图2,当点E 在O 外时,连接AD ,AM ,求证:AD AM =;(3)如图3,当点E 在O 外时,ABF ∠的平分线与AC 交于点H ,若4tan 3C ∠=,求tan ABH ∠的值.24.(本小题满分12分)如图,二次函数2y ax bx c =++的图象经过点(1,0)A -,(4,0)B ,(2,3)C --,直线BC 与y 轴交于点D ,E 为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E 在直线BC 的上方,过E 分别作BC 和y 轴的垂线,交直线BC 于不同的两点F ,G (F 在G 的左侧),求EFG △周长的最大值;(3)是否存在点E ,使得EDB △是以BD 为直角边的直角三角形?如果存在,求点E 的坐标;如果不存在,请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
山东省莱芜市中考数学试卷含答案解析版The following text is amended on 12 November 2020.2017年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是( )A .﹣16B .16C .﹣6D .6 2.(3分)某种细菌的直径是米,将数据用科学记数法表示为( )A .×10﹣7B .×10﹣8C .×10﹣7D .78×10﹣83.(3分)下列运算正确的是( )A .2x 2﹣x 2=1B .x 6÷x 3=x 2C .4xx 4=4x 5D .(3xy 2)2=6x 2y 44.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少设自行车的平均速度为x 千米/小时,应列方程为( )A .30x ﹣1=40x −25B .30x ﹣1=40x +25C .30x +1=40x −25D .30x +1=40x +255.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )A .B .C .D .6.(3分)如图,AB 是⊙O 的直径,直线DA 与⊙O 相切与点A ,DO 交⊙O 于点C ,连接BC ,若∠ABC=21°,则∠ADC 的度数为( )A .46°B .47°C .48°D .49°7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14D .158.(3分)如图,在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( )A .x 2B .(2﹣√3)πC .2−√32π D .π 9.(3分)如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A .√72B .2√73C .3√55D .√26410.(3分)如图,在四边形ABCD 中,DC ∥AB ,AD=5,CD=3,sinA=sinB=13,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD ﹣DC ﹣CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A .B .C .D .11.(3分)对于实数a ,b ,定义符号min{a ,b},其意义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a .例如:min={2,﹣1}=﹣1,若关于x 的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为( )A .23B .1C .43D .5312.(3分)如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣√5;③(S四边形CDEF)2=9+2√5;④DF2﹣DG2=7﹣2√5.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(﹣12)﹣3﹣2cos45°+(﹣π)0+√8= .14.(4分)圆锥的底面周长为2x3,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为.15.(4分)直线y=kx+b与双曲线y=﹣6x交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE= .16.(4分)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(52,y2)是函数图象上的两点,则y1>y2;③a=﹣13c;④若△ABC是等腰三角形,则b=﹣2√73.其中正确的有(请将结论正确的序号全部填上)17.(4分)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE= .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)先化简,再求值:(a+6xx−3)÷(a+9x+9x−3),其中a=√3﹣3.19.(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a= ,b= ,c= .(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.20.(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到)(cos31°≈,tan31°≈,cos19°≈,tan19°≈,cos40°≈,tan40°≈)21.(9分)已知△ABC 与△DEC 是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE ,DB ,试判断线段AE 和DB 的数量和位置关系,并说明理由;(2)如图②所示,连接DB ,将线段DB 绕D 点顺时针旋转90°到DF ,连接AF ,试判断线段DE 和AF 的数量和位置关系,并说明理由.22.(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元23.(10分)已知AB 是⊙O 的直径,C 是圆上一点,∠BAC 的平分线交⊙O 于点D ,过D 作DE ⊥AC 交AC 的延长线于点E ,如图①.(1)求证:D 是⊙O 的切线;(2)若AB=10,AC=6,求BD 的长;(3)如图②,若F 是OA 中点,FG ⊥OA 交直线DE 于点G ,若FG=194,tan ∠BAD=34,求⊙O 的半径.24.(12分)抛物线y=ax 2+bx+c 过A (2,3),B (4,3),C (6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D 在线段AC 的上方,DE ⊥AB 交AC 于点E ,若满足xx xx =√52,求点D 的坐标; (3)如图②,F 为抛物线顶点,过A 作直线l ⊥AB ,若点P 在直线l 上运动,点Q 在x 轴上运动,是否存在这样的点P 、Q ,使得以B 、P 、Q 为顶点的三角形与△ABF 相似,若存在,求P 、Q 的坐标,并求此时△BPQ 的面积;若不存在,请说明理由.2017年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)(2017莱芜)﹣6的倒数是( )A .﹣16B .16C .﹣6D .6 【考点】17:倒数.【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣16. 故选:A【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.(3分)(2017莱芜)某种细菌的直径是米,将数据用科学记数法表示为( )A .×10﹣7B .×10﹣8C .×10﹣7D .78×10﹣8【考点】1J :科学记数法—表示较小的数.【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数用科学记数法表示为×10﹣7.故选A .【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2017莱芜)下列运算正确的是( )A .2x 2﹣x 2=1B .x 6÷x 3=x 2C .4xx 4=4x 5D .(3xy 2)2=6x 2y 4【考点】4I :整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A 、原式=x 2,不符合题意;B 、原式=x 3,不符合题意;C 、原式=4x 5,符合题意;D 、原式=9x 2y 4,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017莱芜)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少设自行车的平均速度为x 千米/小时,应列方程为( )A .30x ﹣1=40x −25B .30x ﹣1=40x +25C .30x +1=40x −25D .30x +1=40x +25【考点】B6:由实际问题抽象出分式方程.【分析】根据电动车每小时比自行车多行驶了25千米,可用x 表示出电动车的速度,再由自行车行驶30千米比电动车行驶40千米多用了1小时,可列出方程.【解答】解:设自行车的平均速度为x 千米/小时,则电动车的平均速度为(x+25)千米/小时,由自行车行驶30千米比电动车行驶40千米多用了1小时,可列方程30x﹣1=40x +25, 故选B .【点评】本题主要考查列方程解应用题,确定出题目中的等量关系是解题的关键.5.(3分)(2017莱芜)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )A .B .C .D .【考点】U2:简单组合体的三视图.【分析】根据左视图的定义,画出左视图即可判断.【解答】解:根据左视图的定义,从左边观察得到的图形,是选项C . 故选C .【点评】本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.6.(3分)(2017莱芜)如图,AB 是⊙O 的直径,直线DA 与⊙O 相切与点A ,DO 交⊙O 于点C ,连接BC ,若∠ABC=21°,则∠ADC 的度数为( )A .46°B .47°C .48°D .49°【考点】MC :切线的性质.【分析】根据等边对等角可得∠B=∠BCO ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AOD=∠B+∠BCO ,根据切线的性质可得∠OAD=90°,然后根据直角三角形两锐角互余求解即可.【解答】解:∵OB=OC ,∴∠B=∠BCO=21°,∴∠AOD=∠B+∠BCO=21°+21°=42°,∵AB 是⊙O 的直径,直线DA 与⊙O 相切与点A ,∴∠OAD=90°,∴∠ADC=90°﹣∠AOD=90°﹣42°=48°.故选C .【点评】本题考查了切线的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.(3分)(2017莱芜)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14D .15【考点】L3:多边形内角与外角;L2:多边形的对角线.【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n 边形的内角和可以表示成(n ﹣2)180°,设这个多边形的边数是n ,就得到方程,从而求出边数,进而求出对角线的条数.【解答】解:根据题意,得(n ﹣2)180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7×(7−3)2=14, 故选C .【点评】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.8.(3分)(2017莱芜)如图,在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( )A .x 2B .(2﹣√3)πC .2−√32πD .π【考点】MO :扇形面积的计算;KO :含30度角的直角三角形;R2:旋转的性质.【分析】解直角三角形得到AC ,AB ,根据旋转推出△ABC 的面积等于△ADE 的面积,根据扇形和三角形的面积公式即可得到结论.【解答】解:在Rt △ABC 中,∠BCA=90°,∠BAC=30°,BC=2, ∴AC=2√3,AB=4,∵将Rt △ABC 绕点A 逆时针旋转90°得到Rt △ADE ,∴△ABC 的面积等于△ADE 的面积,∠CAB=∠DAE ,AE=AC=2√3,AD=AB=4, ∴∠CAE=∠DAB=90°,∴阴影部分的面积S=S 扇形BAD +S △ABC ﹣S 扇形CAE ﹣S △ADE=90x ×42360+12×2×2√3﹣90x ×(2√3)2360﹣12×2×2√3=π.故选D .【点评】本题考查了三角形、扇形的面积,旋转的旋转,勾股定理等知识点的应用,解此题的关键是把求不规则图形的面积转化成求规则图形(如三角形、扇形)的面积.9.(3分)(2017莱芜)如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB+PM 的值最小时,PM 的长是( )A .√72B .2√73C .3√55D .√264【考点】PA :轴对称﹣最短路线问题;L8:菱形的性质.【分析】如图,连接DP ,BD ,作DH ⊥BC 于H .当D 、P 、M 共线时,P′B +P′M=D M 的值最小,利用勾股定理求出DM ,再利用平行线的性质即可解决问题.【解答】解:如图,连接DP ,BD ,作DH ⊥BC 于H .∵四边形ABCD 是菱形,∴AC ⊥BD ,B 、D 关于AC 对称, ∴PB+PM=PD+PM ,∴当D 、P 、M 共线时,P′B +P′M=DM 的值最小,∵CM=13BC=2,∵∠ABC=120°,∴∠DBC=∠ABD=60°,∴△DBC 是等边三角形,∵BC=6, ∴CM=2,HM=1,DH=3√3,在Rt △DMH 中,DM=√xx 2+xx 2=√(3√3)2+12=2√7,∵CM ∥AD ,∴x′x xx′=xx xx =26=13, ∴P′M=14DM=√72.故选A .【点评】本题考查轴对称﹣最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.10.(3分)(2017莱芜)如图,在四边形ABCD 中,DC ∥AB ,AD=5,CD=3,sinA=sinB=13,动点P 自A 点出发,沿着边AB 向点B 匀速运动,同时动点Q 自点A 出发,沿着边AD ﹣DC ﹣CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t (秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A. B. C.D.【考点】E7:动点问题的函数图象.【分析】过点Q做QM⊥AB于点M,分点Q在线段AD、DC、CB上三种情况考虑,根据三角形的面积公式找出s关于t的函数关系式,再结合四个选项即可得出结论.【解答】解:过点Q做QM⊥AB于点M.当点Q在线段AD上时,如图1所示,∵AP=AQ=t(0≤t≤5),sinA=1 3,∴QM=13t,∴s=12APQM=16t2;当点Q在线段CD上时,如图2所示,∵AP=t(5≤t≤8),QM=ADsinA=5 3,∴s=12APQM=56t;当点Q在线段CB上时,如图3所示,∵AP=t(8≤t≤20√23+3(利用解直角三角形求出AB=20√23+3),BQ=5+3+5﹣t=13﹣t,sinB=1 3,∴QM=13(13﹣t),∴s=12APQM=﹣16(t2﹣13t),∴s=﹣16(t2﹣13t)的对称轴为直线x=132.综上观察函数图象可知B选项中的图象符合题意.故选B.【点评】本题考查了动点问题的函数图象以及三角形的面积,分点Q 在线段AD 、DC 、CB 上三种情况找出s 关于t 的函数关系式是解题的关键.11.(3分)(2017莱芜)对于实数a ,b ,定义符号min{a ,b},其意义为:当a ≥b 时,min{a ,b}=b ;当a <b 时,min{a ,b}=a .例如:min={2,﹣1}=﹣1,若关于x 的函数y=min{2x ﹣1,﹣x+3},则该函数的最大值为( ) A .23 B .1 C .43 D .53【考点】F5:一次函数的性质.【分析】根据定义先列不等式:2x ﹣1≥﹣x+3和2x ﹣1<﹣x+3,确定其y=min{2x ﹣1,﹣x+3}对应的函数,画图象可知其最大值.【解答】解:由题意得:{x =2x −1x =−x +3,解得:{x =43x =53, 当2x ﹣1≥﹣x+3时,x ≥43,∴当x ≥43时,y=min{2x ﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为53;当2x ﹣1<﹣x+3时,x <43,∴当x <43时,y=min{2x ﹣1,﹣x+3}=2x ﹣1,由图象可知:此时该函数的最大值为53;综上所述,y=min{2x ﹣1,﹣x+3}的最大值是当x=43所对应的y 的值,如图所示,当x=43时,y=53,故选D .【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.12.(3分)(2017莱芜)如图,正五边形ABCDE 的边长为2,连结AC 、AD 、BE ,BE 分别与AC 和AD 相交于点F 、G ,连结DF ,给出下列结论:①∠FDG=18°;②FG=3﹣√5;③(S 四边形CDEF )2=9+2√5;④DF 2﹣DG 2=7﹣2√5.其中正确结论的个数是( )A .1B .2C .3D .4【考点】MM :正多边形和圆;S9:相似三角形的判定与性质.【分析】①先根据正五方形ABCDE 的性质得:∠ABC=180°﹣360°5=108°,由等边对等角可得:∠BAC=∠ACB=36°,再利用角相等求BC=CF=CD ,得∠CDF=∠CFD=180°−72°2=54°,可得∠FDG=18°;②证明△ABF ∽△ACB ,得xx xx =xxxx,代入可得FG 的长;③如图1,先证明四边形CDEF 是平行四边形,根据平行四边形的面积公式可得:(S 四边形CDEF )2=EF 2DM 2=4×10+2√54=10+2√5;④如图2,CDEF 是菱形,先计算EC=BE=4﹣FG=1+√5,由S 四边形CDEF =12FDEC=2×√10254,可得FD 2=10﹣2√5,计算可得结论.【解答】解:①∵五方形ABCDE 是正五边形,∴AB=BC ,∠ABC=180°﹣360°5=108°,∴∠BAC=∠ACB=36°,∴∠ACD=108°﹣36°=72°, 同理得:∠ADE=36°, ∵∠BAE=108°,AB=AE , ∴∠ABE=36°,∴∠CBF=108°﹣36°=72°, ∴BC=FC , ∵BC=CD , ∴CD=CF ,∴∠CDF=∠CFD=180°−72°2=54°,∴∠FDG=∠CDE ﹣∠CDF ﹣∠ADE=108°﹣54°﹣36°=18°; 所以①正确;②∵∠ABE=∠ACB=36°,∠BAC=∠BAF , ∴△ABF ∽△ACB , ∴xx xx =xx xx , ∴ABED=ACEG ,∵AB=ED=2,AC=BE=BG+EF ﹣FG=2AB ﹣FG=4﹣FG ,EG=BG ﹣FG=2﹣FG , ∴22=(2﹣FG )(4﹣FG ), ∴FG=3+√5>2(舍),FG=3﹣√5;所以②正确;③如图1,∵∠EBC=72°,∠BCD=108°, ∴∠EBC+∠BCD=180°, ∴EF ∥CD , ∵EF=CD=2,∴四边形CDEF 是平行四边形, 过D 作DM ⊥EG 于M , ∵DG=DE ,∴EM=MG=12EG=12(EF ﹣FG )=12(2﹣3+√5=√5−1,由勾股定理得:DM=√xx 2−xx 2=22−(512)2=√10254,∴(S 四边形CDEF )2=EF 2DM 2=4×10+2√54=10+2√5;所以③不正确;④如图2,连接EC , ∵EF=ED ,∴CDEF 是菱形, ∴FD ⊥EC ,∵EC=BE=4﹣FG=4﹣(3﹣√5)=1+√5,∴S四边形CDEF =12FDEC=2×√10+2√54,12×FD×(1+√5)=√1025FD2=10﹣2√5,∴DF2﹣DG2=10﹣2√5﹣4=6﹣2√5,所以④不正确;本题正确的有两个,故选B.【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握正五边形的性质是解题的关键.二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2017莱芜)(﹣12)﹣3﹣2cos45°+(﹣π)0+√8= ﹣7+√2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣8﹣√2+1+2√2=﹣7+√2,故答案为:﹣7+√2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(4分)(2017莱芜)圆锥的底面周长为2x3,母线长为2,点P 是母线OA的中点,一根细绳(无弹性)从点P 绕圆锥侧面一周回到点P ,则细绳的最短长度为 2√3 .【考点】KV :平面展开﹣最短路径问题;MP :圆锥的计算.【分析】连接AA′,根据弧长公式可得出圆心角的度数,由勾股定理可得出AA′.【解答】解:如图,连接AA′,∵底面周长为2x3,∴弧长=xx ×2180=2x3,∴n=60°即∠AOA′=60°, ∴∠A=60°,作OB ⊥AA′于B ,在Rt △OBA 中, ∵OA=2, ∴OB=1, ∴AB=√3, ∴AA′=2√3. 故答案是:2√3.【点评】本题考查了圆锥的计算,平面展开﹣路径最短问题,注意“数形结合”数学思想的应用.15.(4分)(2017莱芜)直线y=kx+b 与双曲线y=﹣6x交于A (﹣3,m ),B(n ,﹣6)两点,将直线y=kx+b 向上平移8个单位长度后,与双曲线交于D ,E 两点,则S △ADE = 16 .【考点】G8:反比例函数与一次函数的交点问题.【分析】利用待定系数法求出平移后的直线的解析式,求出点D 、E 的左边,再利用分割法求出三角形的面积即可.【解答】解:由题意A (﹣3,2),B (1,﹣6), ∵直线y=kx+b 经过点A (﹣3,2),B (1,﹣6), ∴{−3x +x =2x +x =−6, 解得{x =−2x =−4,∴y=﹣2x﹣4,向上平移8个单位得到直线y=﹣2x+4,由{x=−6 xx=−2x+4,解得{x=3x=−2和{x=−1x=6,不妨设D(3,﹣2),E(﹣1,6),∴S△ADE =6×8﹣12×4×2﹣12×6×4﹣12×8×4=16,故答案为16.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.16.(4分)(2017莱芜)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y1),Q(52,y2)是函数图象上的两点,则y1>y2;③a=﹣13c;④若△ABC是等腰三角形,则b=﹣2√73.其中正确的有①③(请将结论正确的序号全部填上)【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点;KH:等腰三角形的性质.【分析】①根据抛物线开口方向和与x轴的两交点可知:当x=﹣4时,y<0,即16a﹣4b+c<0;②根据图象与x轴的交点A、B的横坐标分别为﹣3,1确定对称轴是:x=﹣1,可得:(﹣,y3)与Q(52,y2)是对称点,所以y1<y2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(52,y2),﹣1﹣(﹣5)=4,52﹣(﹣1)=,由对称性得:(﹣,y3)与Q(52,y2)是对称点,∴则y1<y2;故②不正确;③∵﹣x2x=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0,3a+c=0,a=﹣13 c;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣9=7,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=√7,与b=2a、a+b+c=0联立组成解方程组,解得b=﹣2√7 3;同理当AB=AC=4时∵AO=1,△AOC为直角三角形,又∵OC的长即为|c|,∴c2=16﹣1=15,∵由抛物线与y轴的交点在y轴的正半轴上,∴c=√15与b=2a、a+b+c=0联立组成解方程组,解得b=﹣2√15 3;同理当AC=BC时在△AOC中,AC2=1+c2,在△BOC中BC2=c2+9,∵AC=BC,∴1+c2=c2+9,此方程无实数解.经解方程组可知有两个b值满足条件.故⑤错误.综上所述,正确的结论是①③.故答案是:①③.【点评】本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数y=ax2+bx+c的图象与系数的关系:当a<0,抛物线开口向下;抛物线的对称轴为直线x=﹣x2x;抛物线与y轴的交点坐标为(0,c),与x轴的交点为(x1,0)、(x2,0).17.(4分)(2017莱芜)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE= √5−12.【考点】S9:相似三角形的判定与性质;KD :全等三角形的判定与性质;LB :矩形的性质.【分析】利用互余先判断出∠ABE=FCB ,进而得出△ABE ≌△FCB ,即可得出BF=AE ,BE=BC=1,再判断出∠BAF=∠AEB ,进而得出△ABE ∽△FBA ,即可得出AE=AB 2,最后用勾股定理即可得出结论.【解答】解:∵四边形ABCD 是矩形,∴BC=AD=1,∠BAF=∠ABC=90°,∴∠ABE+∠CBF=90°,∵BE ⊥AC ,∴∠BFC=90°,∴∠BCF+∠CBF=90°,∴∠ABE=∠FCB ,在△ABE 和△FCB 中,{∠xxx =∠xxx =90°xx =xx ∠xxx =∠xxx,∴△ABE ≌△FCB ,∴BF=AE ,BE=BC=1,∵BE ⊥AC ,∴∠BAF+∠ABF=90°,∵∠ABF+∠AEB=90°,∴∠BAF=∠AEB ,∵∠BAE=∠AFB ,∴△ABE ∽△FBA ,∴xx xx =xx xx, ∴xx xx =1xx, ∴AE=AB 2,在Rt △ABE 中,BE=1,根据勾股定理得,AB 2+AE 2=BE 2=1,∴AE+AE 2=1,∵AE >0,∴AE=√5−12. 【点评】此题主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解本题的关键是判断出AE=AB 2.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)(2017莱芜)先化简,再求值:(a+6xx−3)÷(a+9x+9x−3),其中a=√3﹣3.【考点】6D:分式的化简求值.【分析】先将原分式化简成xx+3,再代入a的值,即可求出结论.【解答】解:原式=x(x−3)+6xx−3÷x(x−3)+9x+9x−3,=x2+3xx−3×x−3x+6x+9,=x(x+3)x−3×x−3(x+3),=xx+3.当a=√3﹣3时,原式=xx+3=√3−√3−3+3=√3−√3=1﹣√3.【点评】本题考查了分式的化简求值,将原分式化简成xx+3是解题的关键.19.(8分)(2017莱芜)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a= 300 ,b= 60 ,c= 10 .(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VA:统计表;VC:条形统计图.【分析】(1)根据学生数和相应的百分比,即可得到a的值,根据总人数乘以百分比,即可得到b的值,根据学生数除以总人数,可得百分比,即可得出c 的值;(2)根据b的值,即可将条形统计图补充完整;(3)根据最喜欢绑腿跑的百分比乘以该校学生数,即可得到结果;(4)根据树状图或列表的结果中,选到“C”和“E”的占2种,即可得出恰好选到学生喜欢程度最高的两项的概率.【解答】解:(1)由题可得,a=45÷15%=300,b=300×20%=60,c=30300×100=10,故答案为:300,60,10;(2)如图:(3)3000×20%=600(名);(4)树状图为:共20种情况,其中选到“C”和“E”的有2种,∴恰好选到“C”和“E”的概率是220=110.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图的应用,熟练掌握运算法则是解本题的关键.20.(9分)(2017莱芜)某学校教学楼(甲楼)的顶部E 和大门A 之间挂了一些彩旗.小颖测得大门A 距甲楼的距离AB 是31cm ,在A 处测得甲楼顶部E 处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到)(2)若小颖在甲楼楼底C 处测得学校后面医院楼(乙楼)楼顶G 处的仰角为40°,爬到甲楼楼顶F 处测得乙楼楼顶G 处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到)(cos31°≈,tan31°≈,cos19°≈,tan19°≈,cos40°≈,tan40°≈)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【分析】(1)在直角三角形ABE 中,利用锐角三角函数定义求出AE 与BE 的长即可;(2)过点F 作FM ⊥GD ,交GD 于M ,在直角三角形GMF 中,利用锐角三角函数定义表示出GM 与GD ,设甲乙两楼之间的距离为xm ,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)在Rt △ABE 中,BE=ABtan31°=31tan31°≈,AE=xx xxx31°=31xxx31°≈, 则甲楼的高度为,彩旗的长度为;(2)过点F 作FM ⊥GD ,交GD 于M ,在Rt △GMF 中,GM=FMtan19°,在Rt △GDC 中,DG=CDtan40°,设甲乙两楼之间的距离为xm ,FM=CD=x ,根据题意得:xtan40°﹣xtan19°=,解得:x=,则乙楼的高度为,甲乙两楼之间的距离为.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键.21.(9分)(2017莱芜)已知△ABC 与△DEC 是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE ,DB ,试判断线段AE 和DB 的数量和位置关系,并说明理由;(2)如图②所示,连接DB ,将线段DB 绕D 点顺时针旋转90°到DF ,连接AF ,试判断线段DE 和AF 的数量和位置关系,并说明理由.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据等腰直角三角形的性质、全等三角形的判定定理证明Rt△BCD≌Rt△ACE,根据全等三角形的性质解答;(2)证明△EBD≌△ADF,根据全等三角形的性质证明即可.【解答】解:(1)AE=DB,AE⊥DB,证明:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,{xx=xx∠xxx=∠xxx xx=xx,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF,证明:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,{xx=xx∠xxx=∠xxx xx=xx,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.(10分)(2017莱芜)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元【考点】FH :一次函数的应用;9A :二元一次方程组的应用;CE :一元一次不等式组的应用.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可;(2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大于乙种口罩的45,得出不等式求出后,根据m 的取值,得到5种方案,设网店获利w 元,则有w=(25﹣)m+(20﹣18)(500﹣m )=+1000,故当m=227时,w 最大,求出即可.【解答】解:(1)设该网店甲种口罩每袋的售价为x 元,乙种口罩每袋的售价为y 元,根据题意得:{x −x =52x +3x =110, 解这个方程组得:{x =25x =20, 故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m 袋,购进乙种口罩(500﹣m )袋,。
2017年山东省莱芜市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)﹣6的倒数是( )A .﹣16ﻩB .16 C.﹣6 D.62.(3分)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( )A.7.8×10﹣7 B.7.8×10﹣8ﻩC .0.78×10﹣7 D.78×10﹣83.(3分)下列运算正确的是( )A.2x 2﹣x 2=1 B.x 6÷x 3=x2 C .4x•x 4=4x 5ﻩD .(3xy 2)2=6x2y 44.(3分)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/小时,应列方程为( )A .30x ﹣1=40x−25B .30x ﹣1=40x+25 C.30x +1=40x−25 D.30x +1=40x+255.(3分)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )A.ﻩB.C.ﻩD.6.(3分)如图,AB 是⊙O 的直径,直线DA 与⊙O 相切与点A,D O交⊙O于点C,连接B C,若∠A BC=21°,则∠ADC 的度数为( )A .46°ﻩB .47°ﻩC.48° D.49°7.(3分)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是( )A .12B .13C .14ﻩD .158.(3分)如图,在Rt △ABC 中,∠BCA=90°,∠BA C=30°,BC=2,将Rt △ABC 绕A 点顺时针旋转90°得到Rt △ADE,则B C扫过的面积为( )A.π2B.(2﹣√3)π C .2−√32πﻩD.π 9.(3分)如图,菱形ABCD 的边长为6,∠ABC=120°,M 是BC 边的一个三等分点,P 是对角线AC 上的动点,当PB +P M的值最小时,PM 的长是( )A.√72ﻩB .2√73 C.3√55ﻩD .√26410.(3分)如图,在四边形ABCD 中,DC ∥AB,AD=5,CD=3,sinA=si nB=13,动点P自A点出发,沿着边A B向点B 匀速运动,同时动点Q 自点A出发,沿着边AD ﹣DC ﹣CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(秒)时,△APQ 的面积为s,则s 关于t的函数图象是( )A .ﻩB .C . D.11.(3分)对于实数a,b ,定义符号mi n{a ,b },其意义为:当a ≥b时,min {a,b }=b;当a <b 时,min {a,b }=a.例如:min={2,﹣1}=﹣1,若关于x 的函数y=min {2x﹣1,﹣x +3},则该函数的最大值为( )A .23 B.1 C.43 D.5312.(3分)如图,正五边形ABCD E的边长为2,连结AC 、AD 、BE,BE 分别与AC 和AD 相交于点F 、G ,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣√5;③(S四边形CDEF )2=9+2√5;④DF2﹣DG 2=7﹣2√5.其中正确结论的个数是( )A.1ﻩB.2ﻩC.3ﻩD.4二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(﹣12)﹣3﹣2c os 45°+(3.14﹣π)0+√8= . 14.(4分)圆锥的底面周长为2π3,母线长为2,点P 是母线O A的中点,一根细绳(无弹性)从点P 绕圆锥侧面一周回到点P,则细绳的最短长度为 .15.(4分)直线y =k x+b与双曲线y=﹣6x交于A (﹣3,m),B (n,﹣6)两点,将直线y=kx +b 向上平移8个单位长度后,与双曲线交于D ,E 两点,则S △AD E= .16.(4分)二次函数y =ax 2+bx +c (a <0)图象与x 轴的交点A 、B的横坐标分别为﹣3,1,与y 轴交于点C ,下面四个结论:①16a﹣4b +c <0;②若P(﹣5,y 1),Q (52,y2)是函数图象上的两点,则y 1>y 2;③a=﹣13c ;④若△ABC 是等腰三角形,则b=﹣2√73.其中正确的有 (请将结论正确的序号全部填上)17.(4分)如图,在矩形ABC D中,BE⊥AC 分别交AC 、AD于点F、E ,若AD=1,AB=CF,则AE= .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)先化简,再求值:(a +6a a−3)÷(a +9a+9a−3),其中a =√3﹣3. 19.(8分)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名) 百分比(%) 袋鼠跳45 15 夹球跑30 c 跳大绳75 25 绑腿跑b 20 拔河赛90 30 根据图表中提供的信息,解答下列问题:(1)a = ,b= ,c= .(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.20.(9分)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)21.(9分)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.22.(10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?23.(10分)已知AB 是⊙O 的直径,C 是圆上一点,∠BA C的平分线交⊙O 于点D,过D 作D E⊥AC 交AC 的延长线于点E,如图①.(1)求证:D是⊙O的切线;(2)若AB=10,A C=6,求BD 的长;(3)如图②,若F是OA 中点,FG ⊥O A交直线D E于点G,若FG=194,t an∠BAD =34,求⊙O 的半径.24.(12分)抛物线y =ax 2+b x+c 过A(2,3),B (4,3),C(6,﹣5)三点.(1)求抛物线的表达式;(2)如图①,抛物线上一点D在线段AC的上方,DE⊥AB交AC于点E,若满足DE AE =√52,求点D的坐标;(3)如图②,F为抛物线顶点,过A作直线l⊥AB,若点P在直线l上运动,点Q 在x轴上运动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与△ABF相似,若存在,求P、Q的坐标,并求此时△BPQ的面积;若不存在,请说明理由.ﻩ2017年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确选项的代码涂在答题卡上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分)1.(3分)(2017•莱芜)﹣6的倒数是( )A.﹣16ﻩB.16C.﹣6D.6【考点】17:倒数.【分析】乘积是1的两数互为倒数.【解答】解:﹣6的倒数是﹣1 6.故选:A【点评】本题主要考查的是倒数的定义,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•莱芜)某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( )A .7.8×10﹣7B .7.8×10﹣8ﻩC.0.78×10﹣7D .78×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:数0.00000078用科学记数法表示为7.8×10﹣7.故选A .【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2017•莱芜)下列运算正确的是( )A.2x2﹣x 2=1ﻩB.x 6÷x 3=x 2 C .4x•x 4=4x 5ﻩD .(3xy 2)2=6x 2y 4【考点】4I:整式的混合运算.【分析】各项计算得到结果,即可作出判断.【解答】解:A 、原式=x 2,不符合题意;B、原式=x 3,不符合题意;C 、原式=4x5,符合题意;D、原式=9x 2y 4,不符合题意,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2017•莱芜)电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x千米/小时,应列方程为( )A.30x ﹣1=40x−25ﻩB .30x ﹣1=40x+25 C.30x +1=40x−25 D.30x +1=40x+25 【考点】B6:由实际问题抽象出分式方程.【分析】根据电动车每小时比自行车多行驶了25千米,可用x 表示出电动车的速度,再由自行车行驶30千米比电动车行驶40千米多用了1小时,可列出方程.【解答】解:设自行车的平均速度为x千米/小时,则电动车的平均速度为(x+25)千米/小时,由自行车行驶30千米比电动车行驶40千米多用了1小时,可列方程30x﹣1=40x+25,故选B.【点评】本题主要考查列方程解应用题,确定出题目中的等量关系是解题的关键. 5.(3分)(2017•莱芜)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是( )A.B. C.ﻩD.【考点】U2:简单组合体的三视图.【分析】根据左视图的定义,画出左视图即可判断.【解答】解:根据左视图的定义,从左边观察得到的图形,是选项C.故选C.【点评】本题考查三视图、熟练掌握三视图的定义,是解决问题的关键.6.(3分)(2017•莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切与点A,D O交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A.46°ﻩB.47°C.48°ﻩD.49°【考点】MC:切线的性质.【分析】根据等边对等角可得∠B=∠BCO,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AOD=∠B+∠BCO,根据切线的性质可得∠OAD=90°,然后根据直角三角形两锐角互余求解即可.【解答】解:∵OB=OC,∴∠B=∠BCO=21°,∴∠AOD=∠B+∠BCO=21°+21°=42°,∵AB是⊙O的直径,直线DA与⊙O相切与点A,∴∠OAD=90°,∴∠ADC=90°﹣∠AOD=90°﹣42°=48°.故选C.【点评】本题考查了切线的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.7.(3分)(2017•莱芜)一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是()A.12ﻩB.13ﻩC.14D.15【考点】L3:多边形内角与外角;L2:多边形的对角线.【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n﹣2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数,进而求出对角线的条数.【解答】解:根据题意,得(n﹣2)•180=360°×2+180°,解得:n=7.则这个多边形的边数是7,七边形的对角线条数为7×(7−3)2=14, 故选C.【点评】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.8.(3分)(2017•莱芜)如图,在Rt △ABC 中,∠BCA=90°,∠BA C=30°,BC=2,将Rt △A BC 绕A 点顺时针旋转90°得到Rt △ADE ,则BC 扫过的面积为( )A.π2 B.(2﹣√3)πﻩC.2−√32πﻩD .π 【考点】MO:扇形面积的计算;KO :含30度角的直角三角形;R2:旋转的性质.【分析】解直角三角形得到A C,A B,根据旋转推出△ABC 的面积等于△ADE 的面积,根据扇形和三角形的面积公式即可得到结论.【解答】解:在Rt △AB C中,∠BCA=90°,∠B AC=30°,BC=2,∴AC=2√3,A B=4,∵将Rt △ABC 绕点A 逆时针旋转90°得到Rt△ADE,∴△ABC 的面积等于△ADE 的面积,∠CAB=∠DAE,AE=A C=2√3,AD=AB=4, ∴∠CA E=∠D AB=90°,∴阴影部分的面积S =S 扇形BAD +S △A BC ﹣S扇形CAE ﹣S△ADE=90π×42360+12×2×2√3﹣90π×(2√3)2360﹣12×2×2√3=π. 故选D.【点评】本题考查了三角形、扇形的面积,旋转的旋转,勾股定理等知识点的应用,解此题的关键是把求不规则图形的面积转化成求规则图形(如三角形、扇形)的面积.9.(3分)(2017•莱芜)如图,菱形A BCD的边长为6,∠ABC=120°,M 是B C边的一个三等分点,P 是对角线AC 上的动点,当P B+PM 的值最小时,PM 的长是( )A.√72 B.2√73ﻩC.3√55 D .√264【考点】PA :轴对称﹣最短路线问题;L8:菱形的性质.【分析】如图,连接DP,BD,作D H⊥B C于H .当D 、P 、M 共线时,P′B +P′M=DM 的值最小,利用勾股定理求出DM ,再利用平行线的性质即可解决问题.【解答】解:如图,连接DP ,BD ,作D H⊥BC 于H.∵四边形AB CD是菱形,∴A C⊥B D,B 、D 关于AC 对称,∴PB+PM=PD +PM,∴当D 、P 、M 共线时,P′B +P′M=DM 的值最小,∵CM =13B C=2, ∵∠ABC =120°,∴∠D BC=∠A BD=60°,∴△D BC是等边三角形,∵BC=6,∴CM=2,HM =1,DH =3√3,在R t△DMH 中,DM=√DH 2+HM 2=√(3√3)2+12=2√7,∵CM ∥A D,∴P′M DP′=CM AD =26=13, ∴P′M =14D M=√72. 故选A.【点评】本题考查轴对称﹣最短问题、菱形的性质、等边三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是灵活应用所学知识解决问题,属于中考常考题型.10.(3分)(2017•莱芜)如图,在四边形A BCD 中,DC∥AB,A D=5,CD=3,sinA=sin B=13,动点P 自A 点出发,沿着边AB 向点B匀速运动,同时动点Q自点A 出发,沿着边AD ﹣DC ﹣CB 匀速运动,速度均为每秒1个单位,当其中一个动点到达终点时,它们同时停止运动,设点P 运动t(秒)时,△APQ 的面积为s ,则s 关于t 的函数图象是( )A.ﻩB.ﻩC .ﻩD.【考点】E7:动点问题的函数图象.【分析】过点Q 做Q M⊥A B于点M,分点Q 在线段A D、DC 、C B上三种情况考虑,根据三角形的面积公式找出s 关于t 的函数关系式,再结合四个选项即可得出结论.【解答】解:过点Q 做QM⊥AB于点M .当点Q 在线段AD 上时,如图1所示,∵AP=AQ=t(0≤t ≤5),si nA=13, ∴QM=13t , ∴s=12AP•QM=16t2; 当点Q 在线段CD上时,如图2所示,∵AP =t(5≤t ≤8),QM=AD•sinA=53, ∴s=12AP•Q M=56t ; 当点Q在线段CB 上时,如图3所示,∵AP=t(8≤t≤20√23+3(利用解直角三角形求出AB =20√23+3),BQ=5+3+5﹣t=13﹣t ,si nB =13, ∴QM=13(13﹣t ), ∴s=12AP•QM =﹣16(t2﹣13t ), ∴s=﹣16(t 2﹣13t )的对称轴为直线x=132. 综上观察函数图象可知B 选项中的图象符合题意.故选B.【点评】本题考查了动点问题的函数图象以及三角形的面积,分点Q 在线段AD 、DC 、C B上三种情况找出s 关于t 的函数关系式是解题的关键.11.(3分)(2017•莱芜)对于实数a,b,定义符号min {a,b },其意义为:当a≥b 时,m in {a,b}=b;当a <b 时,m in {a ,b }=a .例如:min ={2,﹣1}=﹣1,若关于x 的函数y=min {2x ﹣1,﹣x +3},则该函数的最大值为( )A .23B .1ﻩC.43 D.53【考点】F5:一次函数的性质.【分析】根据定义先列不等式:2x﹣1≥﹣x +3和2x ﹣1<﹣x+3,确定其y =min {2x ﹣1,﹣x +3}对应的函数,画图象可知其最大值.【解答】解:由题意得:{y =2x −1y =−x +3,解得:{x =43y =53, 当2x﹣1≥﹣x +3时,x≥43, ∴当x ≥43时,y=min {2x﹣1,﹣x +3}=﹣x+3, 由图象可知:此时该函数的最大值为53; 当2x ﹣1<﹣x +3时,x <43, ∴当x <43时,y =m in {2x ﹣1,﹣x +3}=2x ﹣1, 由图象可知:此时该函数的最大值为53;综上所述,y=m in {2x ﹣1,﹣x +3}的最大值是当x=43所对应的y 的值, 如图所示,当x=43时,y =53, 故选D.【点评】本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.12.(3分)(2017•莱芜)如图,正五边形ABC DE的边长为2,连结AC 、AD 、B E,BE 分别与A C和AD 相交于点F 、G,连结DF ,给出下列结论:①∠F DG=18°;②F G=3﹣√5;③(S四边形CDE F)2=9+2√5;④DF 2﹣DG 2=7﹣2√5.其中正确结论的个数是( )A.1ﻩB .2 C .3 D.4【考点】MM :正多边形和圆;S9:相似三角形的判定与性质.【分析】①先根据正五方形ABCDE 的性质得:∠ABC=180°﹣360°5=108°,由等边对等角可得:∠BAC=∠AC B=36°,再利用角相等求BC=C F=CD,得∠CDF=∠CFD=180°−72°2=54°,可得∠FDG=18°;②证明△ABF ∽△ACB ,得AB AC =EG ED ,代入可得FG 的长;③如图1,先证明四边形CDEF 是平行四边形,根据平行四边形的面积公式可得:(S 四边形CDEF )2=EF 2•DM 2=4×10+2√54=10+2√5; ④如图2,ﻩCD EF是菱形,先计算EC=BE=4﹣FG=1+√5,由S 四边形CDEF =12FD•EC=2×√10+2√54,可得FD 2=10﹣2√5,计算可得结论. 【解答】解:①∵五方形A BC DE是正五边形,∴AB=BC,∠A BC=180°﹣360°5=108°, ∴∠BAC=∠ACB=36°,∴∠A CD=108°﹣36°=72°,同理得:∠AD E=36°,∵∠BAE =108°,A B=A E,∴∠ABE =36°,∴∠CBF=108°﹣36°=72°,∴BC=F C,∵BC =CD,∴CD =CF, ∴∠CDF=∠CFD=180°−72°2=54°, ∴∠FD G=∠CD E﹣∠CDF ﹣∠ADE=108°﹣54°﹣36°=18°;所以①正确;②∵∠ABE=∠AC B=36°,∠BAC=∠B AF,∴△ABF ∽△ACB,∴AB AC =EG ED, ∴A B•ED=AC•EG,∵AB=ED=2,AC=BE=BG +EF ﹣FG=2AB ﹣FG=4﹣F G,E G=BG ﹣F G=2﹣FG , ∴22=(2﹣FG )(4﹣FG ),∴F G=3+√5>2(舍),FG =3﹣√5;所以②正确;③如图1,∵∠EBC=72°,∠BCD=108°,∴∠E BC +∠BC D=180°,∴EF ∥CD,∵E F=CD=2,∴四边形CDEF 是平行四边形,过D 作DM ⊥EG 于M,∵DG =D E,∴EM=MG=12EG=12(E F﹣FG)=12(2﹣3+√5)=√5−12, 由勾股定理得:DM=√DE 2−EM 2=2−(5−12)=√10+254,∴(S 四边形CDEF )2=EF 2•DM2=4×10+2√54=10+2√5; 所以③不正确;④如图2,连接EC,∵EF=ED,∴ﻩC DE F是菱形,∴FD ⊥E C,∵E C=BE =4﹣FG=4﹣(3﹣√5)=1+√5,∴S四边形CDE F=12FD•EC=2×√10+254, 12×FD ×(1+√5)=√10+2√5,FD2=10﹣2√5,∴DF2﹣DG2=10﹣2√5﹣4=6﹣2√5,所以④不正确;本题正确的有两个,故选B.【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质、平行四边形和菱形的判定和性质,有难度,熟练掌握正五边形的性质是解题的关键.二、填空题(本大题共5小题,每小题填对得4分,共20分,请填在答题卡上)13.(4分)(2017•莱芜)(﹣12)﹣3﹣2cos45°+(3.14﹣π)0+√8= ﹣7+√2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣8﹣√2+1+2√2=﹣7+√2,故答案为:﹣7+√2【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.(4分)(2017•莱芜)圆锥的底面周长为2π3,母线长为2,点P是母线OA的中点,一根细绳(无弹性)从点P绕圆锥侧面一周回到点P,则细绳的最短长度为2√3.【考点】KV:平面展开﹣最短路径问题;MP:圆锥的计算.【分析】连接AA′,根据弧长公式可得出圆心角的度数,由勾股定理可得出AA′.【解答】解:如图,连接AA′,∵底面周长为2π3,∴弧长=nπ×2180=2π3,∴n=60°即∠AOA′=60°,∴∠A=60°,作OB⊥AA′于B,在Rt△OBA中,∵OA=2,∴OB=1,∴AB=√3,∴AA′=2√3.故答案是:2√3.【点评】本题考查了圆锥的计算,平面展开﹣路径最短问题,注意“数形结合”数学思想的应用.15.(4分)(2017•莱芜)直线y=kx+b与双曲线y=﹣6x交于A(﹣3,m),B(n,﹣6)两点,将直线y=kx+b向上平移8个单位长度后,与双曲线交于D,E两点,则S△ADE= 16.【考点】G8:反比例函数与一次函数的交点问题.【分析】利用待定系数法求出平移后的直线的解析式,求出点D 、E 的左边,再利用分割法求出三角形的面积即可.【解答】解:由题意A(﹣3,2),B (1,﹣6), ∵直线y =kx +b经过点A(﹣3,2),B(1,﹣6), ∴{−3k +b =2k +b =−6,解得{k =−2b =−4,∴y=﹣2x ﹣4,向上平移8个单位得到直线y =﹣2x +4,由{y =−6x y =−2x +4,解得{x =3y =−2和{x =−1y =6,不妨设D (3,﹣2),E (﹣1,6),∴S△AD E=6×8﹣12×4×2﹣12×6×4﹣12×8×4=16,故答案为16.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会利用分割法求三角形的面积.16.(4分)(2017•莱芜)二次函数y=a x2+bx +c(a <0)图象与x轴的交点A 、B的横坐标分别为﹣3,1,与y 轴交于点C,下面四个结论:①16a﹣4b+c<0;②若P(﹣5,y 1),Q(52,y 2)是函数图象上的两点,则y 1>y2;③a=﹣13c;④若△AB C是等腰三角形,则b=﹣2√73.其中正确的有 ①③ (请将结论正确的序号全部填上)【考点】H4:二次函数图象与系数的关系;H A:抛物线与x轴的交点;KH:等腰三角形的性质.【分析】①根据抛物线开口方向和与x 轴的两交点可知:当x=﹣4时,y <0,即16a ﹣4b +c<0;②根据图象与x 轴的交点A 、B的横坐标分别为﹣3,1确定对称轴是:x=﹣1,可得:(﹣4.5,y 3)与Q(52,y 2)是对称点,所以y 1<y 2;③根据对称轴和x=1时,y=0可得结论;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,先计算c的值,再联立方程组可得结论.【解答】解:①∵a<0,∴抛物线开口向下,∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴当x=﹣4时,y<0,即16a﹣4b+c<0;故①正确;②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,∴抛物线的对称轴是:x=﹣1,∵P(﹣5,y1),Q(52,y2),﹣1﹣(﹣5)=4,52﹣(﹣1)=3.5,由对称性得:(﹣4.5,y3)与Q(52,y2)是对称点,∴则y1<y2;故②不正确;③∵﹣b2a=﹣1,∴b=2a,当x=1时,y=0,即a+b+c=0, 3a+c=0,a=﹣13c;④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,当AB=BC=4时,∵AO=1,△BOC为直角三角形,又∵O C的长即为|c |, ∴c 2=16﹣9=7,∵由抛物线与y 轴的交点在y 轴的正半轴上, ∴c=√7,与b=2a 、a+b+c=0联立组成解方程组,解得b=﹣2√73;同理当AB=AC=4时∵A O=1,△AO C为直角三角形, 又∵O C的长即为|c |, ∴c 2=16﹣1=15,∵由抛物线与y 轴的交点在y 轴的正半轴上, ∴c =√15与b=2a、a +b +c=0联立组成解方程组,解得b =﹣2√153; 同理当AC=B C时在△AOC 中,AC 2=1+c 2, 在△B OC 中BC2=c 2+9, ∵AC=BC ,∴1+c2=c 2+9,此方程无实数解. 经解方程组可知有两个b值满足条件. 故⑤错误.综上所述,正确的结论是①③. 故答案是:①③.【点评】本题考查了等腰三角形的判定、方程组的解、抛物线与坐标轴的交点、二次函数y=ax 2+bx +c 的图象与系数的关系:当a <0,抛物线开口向下;抛物线的对称轴为直线x=﹣b2a;抛物线与y 轴的交点坐标为(0,c),与x 轴的交点为(x 1,0)、(x 2,0).17.(4分)(2017•莱芜)如图,在矩形ABCD中,BE⊥AC分别交AC、AD于点F、E,若AD=1,AB=CF,则AE=√5−1 2.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LB:矩形的性质.【分析】利用互余先判断出∠ABE=FCB,进而得出△ABE≌△FCB,即可得出BF=AE,BE=BC=1,再判断出∠BAF=∠AEB,进而得出△ABE∽△FBA,即可得出AE=AB2,最后用勾股定理即可得出结论.【解答】解:∵四边形ABCD是矩形,∴BC=AD=1,∠BAF=∠ABC=90°,∴∠ABE+∠CBF=90°,∵BE⊥AC,∴∠BFC=90°,∴∠BCF+∠CBF=90°,∴∠ABE=∠FCB,在△ABE和△FCB中,{∠EAB=∠BFC=90°AB=CF∠ABE=∠FCB,∴△ABE≌△FCB,∴BF=AE,BE=BC=1,∵BE⊥AC,∴∠BAF+∠ABF=90°,∵∠ABF+∠AEB=90°,∴∠BAF=∠AEB,∵∠BAE=∠AFB,∴△A BE∽△F BA,∴AB BF =BE AB , ∴AB AE =1AB, ∴AE =AB 2,在R t△ABE 中,BE =1,根据勾股定理得,A B2+AE2=BE 2=1, ∴AE +A E2=1, ∵AE >0,∴AE =√5−12.【点评】此题主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解本题的关键是判断出AE=AB 2.三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(6分)(2017•莱芜)先化简,再求值:(a +6aa−3)÷(a +9a+9a−3),其中a=√3﹣3.【考点】6D :分式的化简求值. 【分析】先将原分式化简成aa+3,再代入a 的值,即可求出结论.【解答】解:原式=a(a−3)+6aa−3÷a(a−3)+9a+9a−3,=a 2+3a a−3×a−3a 2+6a+9,=a(a+3)a−3×a−3(a+3), =aa+3. 当a=√3﹣3时,原式=aa+3=√3−3√3−3+3=√3−3√3=1﹣√3.【点评】本题考查了分式的化简求值,将原分式化简成aa+3是解题的关键.19.(8分)(2017•莱芜)为了丰富校园文化,某学校决定举行学生趣味运动会,将比赛项目确定为袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛五种,为了解学生对这五项运动的喜欢情况,随机调查了该校a名学生最喜欢的一种项目(每名学生必选且只能选择五项中的一种),并将调查结果绘制成如图不完整的统计图表:学生最喜欢的活动项目的人数统计表项目学生数(名)百分比(%)袋鼠跳4515夹球跑30c跳大绳7525绑腿跑b20拔河赛9030根据图表中提供的信息,解答下列问题:(1)a=300,b=60,c=10 .(2)请将条形统计图补充完整;(3)根据调查结果,请你估计该校3000名学生中有多少名学生最喜欢绑腿跑;(4)根据调查结果,某班决定从这五项(袋鼠跳、夹球跑、跳大绳、绑腿跑和拔河赛可分别记为A、B、C、D、E)中任选其中两项进行训练,用画树状图或列表的方法求恰好选到学生喜欢程度最高的两项的概率.【考点】X6:列表法与树状图法;V5:用样本估计总体;VA:统计表;VC:条形统计图.【分析】(1)根据学生数和相应的百分比,即可得到a的值,根据总人数乘以百分比,即可得到b的值,根据学生数除以总人数,可得百分比,即可得出c的值;(2)根据b的值,即可将条形统计图补充完整;(3)根据最喜欢绑腿跑的百分比乘以该校学生数,即可得到结果;(4)根据树状图或列表的结果中,选到“C”和“E”的占2种,即可得出恰好选到学生喜欢程度最高的两项的概率.【解答】解:(1)由题可得,a=45÷15%=300,b=300×20%=60,c=30300×100=10,故答案为:300,60,10;(2)如图:(3)3000×20%=600(名);(4)树状图为:共20种情况,其中选到“C”和“E”的有2种,∴恰好选到“C”和“E”的概率是220=110.【点评】此题考查了列表法与树状图法,扇形统计图,以及条形统计图的应用,熟练掌握运算法则是解本题的关键.20.(9分)(2017•莱芜)某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°.(1)求甲楼的高度及彩旗的长度;(精确到0.01m)(2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m)(cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)在直角三角形ABE中,利用锐角三角函数定义求出AE与BE的长即可;(2)过点F作FM⊥GD,交GD于M,在直角三角形GMF中,利用锐角三角函数定义表示出GM与GD,设甲乙两楼之间的距离为xm,根据题意列出方程,求出方程的解即可得到结果.【解答】解:(1)在Rt△ABE中,BE=AB•tan31°=31•tan31°≈18.60,AE=ABcos31°=31cos31°≈36.05,则甲楼的高度为18.60m,彩旗的长度为36.05m;(2)过点F作FM⊥GD,交GD于M,在Rt△GMF中,GM=FM•tan19°,在Rt△GDC中,DG=CD•tan40°,设甲乙两楼之间的距离为xm,FM=CD=x,根据题意得:xtan40°﹣xtan19°=18.60,解得:x=37.20,则乙楼的高度为31.25m,甲乙两楼之间的距离为37.20m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握直角三角形的性质是解本题的关键.21.(9分)(2017•莱芜)已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①所示,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②所示,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据等腰直角三角形的性质、全等三角形的判定定理证明Rt△B CD≌Rt△ACE,根据全等三角形的性质解答;(2)证明△EBD≌△ADF,根据全等三角形的性质证明即可.【解答】解:(1)AE=DB,AE⊥DB,证明:∵△ABC与△DEC是等腰直角三角形,∴AC=BC,EC=DC,在Rt△BCD和Rt△ACE中,{AC=BC∠ACE=∠BCD CE=CD,∴Rt△BCD≌Rt△ACE,∴AE=BD,∠AEC=∠BDC,∵∠BCD=90°,∴∠DHE=90°,∴AE⊥DB;(2)DE=AF,DE⊥AF,证明:设DE与AF交于N,由题意得,BE=AD,∵∠EBD=∠C+∠BDC=90°+∠BDC,∠ADF=∠BDF+∠BDC=90°+∠BDC,∴∠EBD=∠ADF,在△EBD和△ADF中,{BE=AD∠EBD=∠ADF DE=DF,∴△EBD≌△ADF,∴DE=AF,∠E=∠FAD,∵∠E=45°,∠EDC=45°,∴∠FAD=45°,∴∠AND=90°,即DE⊥AF.【点评】本题考查的是等腰直角三角形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.(10分)(2017•莱芜)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元.(1)改网店甲、乙两种口罩每袋的售价各多少元?(2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲种口罩的数量大于乙种口罩的45,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元?【考点】FH:一次函数的应用;9A :二元一次方程组的应用;CE :一元一次不等式组的应用.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可;(2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大于乙种口罩的45,得出不等式求出后,根据m 的取值,得到5种方案,设网店获利w元,则有w=(25﹣22.4)m +(20﹣18)(500﹣m)=0.6m +1000,故当m=227时,w 最大,求出即可.【解答】解:(1)设该网店甲种口罩每袋的售价为x元,乙种口罩每袋的售价为y 元,根据题意得:{x −y =52x +3y =110, 解这个方程组得:{x =25y =20, 故该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)设该网店购进甲种口罩m 袋,购进乙种口罩(500﹣m)袋,根据题意得{m >45(500−m)22.4m +18(500−m)≤10000, 解这个不等式组得:222,2<m≤227.3,因m为整数,故有5种进货方案,分别是:购进甲种口罩223袋,乙种口罩277袋;购进甲种口罩224袋,乙种口罩276袋;购进甲种口罩225袋,乙种口罩275袋;购进甲种口罩226袋,乙种口罩274袋;购进甲种口罩227袋,乙种口罩273袋;。
2010年山东省莱芜市中考数学真题试卷(Word 版含答案)数 学 试 题注意事项:1.答卷前考生务必在规定位置将姓名、准考证号等内容填写准确。
2.本试卷分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分,共120分。
考试时间为120分钟。
3.请将第Ⅰ卷选择题答案填写在第Ⅱ卷首答案栏内,填在其它位置不得分。
4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷一并收回。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项填写在答案栏的相应位置上,每小题选对得3分,选错、不选或选出的答案超过一个均记零分,共36分) 1.31-的倒数是A .3-B .31-C .31 D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅ C .22)21(21-=-- D .1)2160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是C .D .4.2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为 A .3.1×106元 B .3.11×104元 C .3.1×104元 D .3.10×105元 5.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a 6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是 A . B . C . D .10 -1 a b BA (第5题图) (第6题图)7.已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 8.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A .2.5B .5C .10D .9.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过 A .第一象限B .第二象限C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米)随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是 A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米(第9题图)(第12题图)试卷类型A莱芜市2010年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:第I 卷选择题答案栏二、填空题(本大题共5小题,只要求填写最后结果,每小题填对得4分,共20分)13.分解因式:=-+-x x x 232 .14.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 15.某公司在2009年的盈利额为200万元,预计2011年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元. 16.在平面直角坐标系中,以点)3,4(A 、)0,0(B 、)0,8(C 为顶点的三角形向上平移3个单位,得到△111C B A (点111C B A 、、分别为点C B A 、、的对应点),然后以点1C 为中心将△111C B A 顺时针旋转︒90,得到△122C B A (点22B A 、分别是点11B A 、的对应点),则点2A 的坐标是 . 17.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步得分评卷人骤) 18.(本题满分6分) 先化简,再求值:24)2122(+-÷+--x xx x ,其中34 +-=x .19.(本题满分8分)2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A :不了解,B :一般了解,C :了解较多,D :熟悉).请你根据图中提供的信息解答以下问题: (1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?得分评卷人得分评卷人座5 (第19题图)A 10%B 30% D C20.(本题满分9分)2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米) (参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)21.(本题满分9分) 在Rt △ACB 中,∠C =90°,AC =3cm ,BC =4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.得分评卷人得分评卷人得分评卷人C BA (第21题图)(第20题图)22.(本题满分10分)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?在 ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE .(1)如图①,试判断四边形EGFH 的形状,并说明理由;(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是 ; (3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是 ;(4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.HGF E O D C B A 图① HG F E O DCB A图②A BCDOE F G H 图③ABC D O EF G H图④ (第23题图)如图,在平面直角坐标系中,已知抛物线c bx ax y ++=2交x 轴于)0,6(),0,2(B A 两点,交y 轴于点)32,0(C .(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线x y 2=交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于点E 、F 两点,求劣弧的长;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分为1︰2两部分(第24题图)莱芜市2010年中等学校招生考试数学试题参考答案(A )评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步骤所对应的累计分数.本答案对每小题只给出一种或两种解法,对考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分不再给分.一、选择题(本大题共12个小题,每小题3分,共36分) 题号 1 2 3 4 5 6 7 89 10 11 12 答案A CBCD D B CDBA D 二、填空题(本大题共5个小题,每小题4分,共20分)13. 2)1(--x x ; 14. 2;15. 220; 16.)7,11( ; 17.210 三、解答题(本大题共7个小题,共64分)18.(本小题满分6分) 解:原式=24212)2)(2(+-÷+-+-x xx x x ………………………1分=xx x x -+⨯+-422162 ………………………2分 =)42(2)4)(4(-+-⨯+-+x x x x x ………………………4分=4--x ………………………5分当34+-=x 时,原式=4)34(-+--=434--=3-. ………………………6分 19.(本小题满分8分) 解:(1)5÷10%=50(人)………………………2分 (2)见右图 ………………………4分(3)360°×5020=144° ………………………6分5(4)51502015550=---=P . ………………………8分20.(本小题满分9分)解:过A 作AD ⊥CB ,垂足为点D . 1分在Rt △ADC 中,∵CD =36,∠CAD =60°. ∴AD =31233660tan ==︒CD ≈20.76. ……5分 在Rt △ADB 中,∵AD ≈20.76,∠BAD =37°.∴BD =37tan ⨯AD ≈20.76×0.75=15.57≈15.6(米). ………8分答:气球应至少再上升15.6米. …………………………9分 21.(本小题满分9分) 解:(1)在Rt △ACB 中,∵AC =3cm ,BC =4cm ,∠ACB =90°,∴AB =5cm . ……1分 连结CD ,∵BC 为直径,∴∠ADC =∠BDC =90°.∵∠A =∠A ,∠ADC =∠ACB ,∴Rt △ADC ∽Rt △ACB .∴AC AD AB AC =,∴592==AB AC AD . …………………………4分 (2)当点E 是AC 的中点时,ED 与⊙O 相切. ………………5分证明:连结OD ,∵DE 是Rt △ADC 的中线.∴ED =EC ,∴∠EDC =∠ECD . ∵OC =OD ,∴∠ODC =∠OCD . …………………7分 ∴∠EDO =∠EDC +∠ODC =∠ECD +∠OCD =∠ACB ∴ED 与⊙O 相切. …………………………9分 22.(本小题满分10分) 解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个. ………………1分 由题意得⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x …………………………3分解这个不等式组得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20. …………………………5分 当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个.……7分(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低, 最低费用是860×18+570×12=22320(元). …………………………10分 方法二:①方案一的费用是:860×18+570×12=22320(元); ②方案二的费用是:860×19+570×11=22610(元); ③方案三的费用是:860×20+570×10=22900(元)故方案一费用最低,最低费用是22320元. …………………………10分 23.(本小题满分10分)C C B A E解:(1)四边形EGFH 是平行四边形. …………………………1分 证明:∵ABCD的对角线AC 、BD 交于点O .∴点O ABCD 的对称中心.∴EO =FO ,GO =HO .∴四边形EGFH 是平行四边形. …………………………4分(2)菱形. …………………………5分(3)菱形. …………………………6分(4)四边形EGFH 是正方形. …………………………7分 证明:∵AC =BD 是矩形. 又∵AC ⊥BD , 是菱形.ABCD 是正方形,∴∠BOC =90°,∠GBO =∠FCO =45°.OB =OC .∵EF ⊥GH ,∴∠GOF =90°.∴∠BOG =∠COF .∴△BOG ≌△COF .∴OG =OF ,∴GH =EF . …………………………9分 由(1)知四边形EGFH 是平行四边形,又∵EF ⊥GH ,EF =GH .∴四边形EGFH 是正方形. …………………………10分24. (本小题满分12分)解:(1)∵抛物线c bx ax y ++=2经过点)0,2(A ,)0,6(B ,)320(,C .∴⎪⎩⎪⎨⎧==++=++320636024c c b a c b a , 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==3233463c b a . ∴抛物线的解析式为:32334632+-=x x y . …………………………3分 (2)易知抛物线的对称轴是4=x .把x =4代入y =2x 得y =8,∴点D 的坐标为(4,8). ∵⊙D 与x 轴相切,∴⊙D 的半径为8. …………………………4分 连结DE 、DF ,作DM ⊥y 轴,垂足为点M .在Rt △MFD 中,FD =8,MD =4.∴cos ∠MDF =21. ∴∠MDF =60°,∴∠EDF =120°. …………………………6分 ∴劣弧的长为:π=⨯π⨯3168180120. …………………………7分 (3)设直线AC 的解析式为y =kx +b . ∵直线AC 经过点)32,0(),0,2(C A .∴⎩⎨⎧==+3202b b k ,解得⎪⎩⎪⎨⎧=-=323b k .∴直线AC 的解析式为:323+-=x y . ………8分 设点)0)(3233463,(2<+-m m m m P ,PG 交直线AC 于N , 则点N 坐标为)323,(+-m m .∵GN PN S S G NA PNA ::=∆∆.∴①若PN ︰GN =1︰2,则PG ︰GN =3︰2,PG =23GN . 即32334632+-m m =)(32323+-m . 解得:m 1=-3, m 2=2(舍去). 当m =-3时,32334632+-m m =3215. ∴此时点P 的坐标为)3215,3(-. …………………………10分 ②若PN ︰GN =2︰1,则PG ︰GN =3︰1, PG =3GN . 即32334632+-m m =)(3233+-m . 解得:121-=m ,22=m (舍去).当121-=m 时,32334632+-m m =342. ∴此时点P 的坐标为)342,12(-.综上所述,当点P 坐标为)3215,3(-或)342,12(-时,△PGA 的面积被直线AC 分成1︰2两部分. …………………12分。
绝密★启用前 试卷类型A莱芜市2015年初中学业水平测试数 学 试 题第I 卷选择题答案栏第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题选对得3分,共36分。
) 1.31-的倒数是A .3-B .31-C .31 D .32.下列计算结果正确的是A .923)(a a =-B .632a a a =⋅ C .22)21(21-=-- D .1)2160(cos 0=-3.在下列四个图案中既是轴对称图形,又是中心对称图形的是C .D .4.2010年4月20日晚,“支援青海玉树抗震救灾义演晚会”在莱芜市政府广场成功举行,热心企业和现场观众踊跃捐款31083.58元.将31083.58元保留两位有效数字可记为 A .3.1×106元 B .3.11×104元 C .3.1×104元 D .3.10×105元 5.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是A .0>abB .0>-b aC .0>+b aD .0||||>-b a 6.右图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是10 -1 a b BA (第5题图) (第6题图)A .B .C .D .7.已知反比例函数xy 2-=,下列结论不正确...的是 A .图象必经过点(-1,2) B .y 随x 的增大而增大 C .图象在第二、四象限内 D .若x >1,则y >-2 8.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为A .2.5B .5C .10D .159.二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过 A .第一象限B .第二象限C .第三象限D .第四象限10.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为A .4B .2C . 2D . ±211.一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .1212.在一次自行车越野赛中,甲乙两名选手行驶的路程y (千米) 随时间x (分)变化的图象(全程)如图,根据图象判定下 列结论不正确...的是 A .甲先到达终点B .前30分钟,甲在乙的前面C .第48分钟时,两人第一次相遇D .这次比赛的全程是28千米第Ⅱ卷(非选择题 共84分)二、填空题(本大题共5小题,只要求填写最后结果,每小题填对得4分,共20分) 13.分解因式:=-+-x x x 232 .14.有一组数据如下:2,3,a ,5,6,它们的平均数是4,则这组数据的方差是 . 15.某公司在2009年的盈利额为200万元,预计2011年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元. 16.在平面直角坐标系中,以点)3,4(A 、)0,0(B 、)0,8(C 为顶点的三角形向上平移3个单位,得到△111C B A (点111C B A 、、分别为点C B A 、、的对应点),然后以点1C 为中心将△111C B A 顺时针旋转︒90,得到△122C B A (点22B A 、分别是点11B A 、的对应点),则点2A 的坐标是 .(第9题图)(第12题图)17.已知:3212323=⨯⨯=C ,1032134535=⨯⨯⨯⨯=C ,154321345646=⨯⨯⨯⨯⨯⨯=C ,…, 观察上面的计算过程,寻找规律并计算=610C .三、解答题(本大题共7小题,共64分,解答要写出必要的文字说明、证明过程或推演步骤)18.(本题满分6分) 先化简,再求值:24)2122(+-÷+--x xx x ,其中34 +-=x .19.(本题满分8分)2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A :不了解,B :一般了解,C :了解较多,D :熟悉).请你根据图中提供的信息解答以下问题: (1)求该班共有多少名学生;(2)在条形统计图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?20.(本题满分9分)2009年首届中国国际航空体育节在莱芜雪野举办,期间在市政府广场进行了热气球飞行表演.如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B 的仰角是37°,底部C 的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan ,80.037cos ,60.037sin ≈︒≈︒≈︒73.13≈)5 (第19题图)A 10%B 30% D C21.(本题满分9分)在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问当点E在什么位置时,直线ED与⊙O相切?请说明理由.22.(本题满分10分)为打造“书香校园”,某学校计划用不超过1900本科技类书籍和1620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)问符合题意的组建方案有几种?请你帮学校设计出来;(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明在(1)中哪种方案费用最低?最低费用是多少元?23.(本题满分10分)在中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.C B(第21题图)HGEODAHGEODA A DOEGHA DOEG H24.(本题满分12分)如图,在平面直角坐标系中,已知抛物线c bx ax y ++=2交x 轴于)0,6(),0,2(B A 两点,交y 轴于点)32,0(C .(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线x y 2=交于点D ,作⊙D 与x 轴相切,⊙D 交y 轴于点E 、F 两点,求劣弧EF 的长;(3)P 为此抛物线在第二象限图像上的一点,PG 垂直于x 轴,垂足为点G ,试确定P 点的位置,使得△PGA 的面积被直线AC 分为1︰2两部分(第24题图)莱芜市2015年初中学业水平测试数 学 试 题 答 案二、填空题(本大题共5个小题,每小题4分,共20分)13. 2)1(--x x ; 14. 2;15. 220; 16.)7,11( ; 17.210三、解答题(本大题共7个小题,共64分) 18.(本小题满分6分) 解:原式=24212)2)(2(+-÷+-+-x xx x x ………………………1分 =xx x x -+⨯+-422162 ………………………2分 =)42(2)4)(4(-+-⨯+-+x x x x x ………………………4分=4--x ………………………5分当34+-=x 时,原式=4)34(-+--=434--=3-. ………………………6分19.(本小题满分8分)解:(1)5÷10%=50(人)………………………2分 (2)见右图 ………………………4分(3)360°×5020=144° ………………………6分(4)51502015550=---=P . ………………………8分20.(本小题满分9分) 解:过A 作AD ⊥CB ,垂足为点D . ………………………1分 在Rt △ADC 中,∵CD =36,∠CAD ∴AD =31233660tan ==︒CD ≈20.76. ……5分 在Rt △ADB 中,∵AD ≈20.76,∠BAD =37°.∴BD =37tan ⨯AD ≈20.76×0.75=15.57≈15.6(米). ………8分5 C答:气球应至少再上升15.6米. …………………………9分 21.(本小题满分9分) 解:(1)在Rt △ACB 中,∵AC =3cm ,BC =4cm ,∠ACB =90°,∴AB =5cm . ……1分 连结CD ,∵BC 为直径,∴∠ADC =∠BDC =90°.∵∠A =∠A ,∠ADC =∠ACB ,∴Rt △ADC ∽Rt △ACB .∴ACADAB AC =,∴592==AB AC AD . …………………………4分 (2)当点E 是AC 的中点时,ED 与⊙O 相切.………………5分证明:连结OD ,∵DE 是Rt △ADC 的中线.∴ED =EC ,∴∠EDC =∠ECD . ∵OC =OD ,∴∠ODC =∠OCD . …………………7分 ∴∠EDO =∠EDC +∠ODC =∠ECD +∠OCD =∠ACB ∴ED 与⊙O 相切. …………………………9分 22.(本小题满分10分) 解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个. ………………1分 由题意得⎩⎨⎧≤-+≤-+16203060501900303080)()(x x x x …………………………3分解这个不等式组得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20. …………………………5分 当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案:方案一,组建中型图书角18个,小型图书角12个;方案二,组建中型图书角19个,小型图书角11个;方案三,组建中型图书角20个,小型图书角10个.……7分(2)方法一:由于组建一个中型图书角的费用大于组建一个小型图书角的费用,因此组建中型图书角的数量越少,费用就越低,故方案一费用最低, 最低费用是860×18+570×12=22320(元). …………………………10分 方法二:①方案一的费用是:860×18+570×12=22320(元); ②方案二的费用是:860×19+570×11=22610(元); ③方案三的费用是:860×20+570×10=22900(元)故方案一费用最低,最低费用是22320元. …………………………10分 23.(本小题满分10分) 解:(1)四边形EGFH 是平行四边形. …………………………1分 的对角线AC 、BD 交于点O . ∴点O 的对称中心. ∴EO =FO ,GO =HO .∴四边形EGFH 是平行四边形. …………………………4分 (2)菱形. …………………………5分 (3)菱形. …………………………6分 (4)四边形EGFH 是正方形. …………………………7分 ∵AC =BD 是矩形. 又∵AC ⊥BD , ABCD ABCD 是正方形,∴∠BOC =90°,∠GBO =∠FCO =45°.OB =OC .∵EF ⊥GH ,∴∠GOF =90°.∴∠BOG =∠COF .∴△BOG ≌△COF .∴OG =OF ,∴GH =EF . …………9分C B E由(1)知四边形EGFH 是平行四边形,又∵EF ⊥GH ,EF =GH .∴四边形EGFH 是正方形. ……………10分 24. (本小题满分12分)解:(1)∵抛物线c bx ax y ++=2经过点)0,2(A ,)0,6(B ,)320(,C . ∴⎪⎩⎪⎨⎧==++=++320636024c c b a c b a , 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==3233463c b a .∴抛物线的解析式为:32334632+-=x x y . …………………………3分 (2)易知抛物线的对称轴是4=x .把x =4代入y =2x 得y =8,∴点D 的坐标为(4,8).∵⊙D 与x 轴相切,∴⊙D 的半径为8. …………………………4分 连结DE 、DF ,作DM ⊥y 轴,垂足为点M . 在Rt △MFD 中,FD =8,MD =4.∴cos ∠MDF =21. ∴∠MDF =60°,∴∠EDF =120°. …………………………6分 ∴劣弧EF 的长为:π=⨯π⨯3168180120. …………………………7分 (3)设直线AC 的解析式为y =kx +b . ∵直线AC 经过点)32,0(),0,2(C A .∴⎩⎨⎧==+3202b b k ,解得⎪⎩⎪⎨⎧=-=323b k .∴直线AC 的解析式为:323+-=x y . ………8分设点)0)(3233463,(2<+-m m m m P ,PG 交直线AC 于N则点N 坐标为)323,(+-m m .∵GN PN S S GNA PNA ::=∆∆.∴①若PN ︰GN =1︰2,则PG ︰GN =3︰2,PG =23GN .即32334632+-m m =)(32323+-m . 解得:m 1=-3, m 2=2(舍去). 当m =-3时,32334632+-m m =3215. ∴此时点P 的坐标为)3215,3(-. …………………………10分②若PN ︰GN =2︰1,则PG ︰GN =3︰1, PG =3GN . 即32334632+-m m =)(3233+-m .解得:121-=m ,22=m (舍去).当121-=m 时,32334632+-m m =342. ∴此时点P 的坐标为)342,12(-. 综上所述,当点P 坐标为)3215,3(-或)342,12(-时,△PGA 的面积被直线AC 分成1︰2两部分. …………………12分。
2016年山东省莱芜市中考数学试卷一、选择题1. 4的算术平方根为()A.﹣2 B.2 C.±2 D.2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2a C.3a4•a2=3a8D.(a3b2)2=a5b43.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是()A.B.C.D.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是()A.76° B.81° C.92° D.104°6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3) B.y=﹣2(x﹣3)C.y=﹣2x+3 D.y=﹣2x﹣37.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A. =B. =C. =D. =8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4 C.2 D.29.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形10.已知△ABC 中,AB=6,AC=8,BC=11,任作一条直线将△ABC 分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A .3条B .5条C .7条D .8条11.如图,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC ﹣CD ﹣DA 运动,到达点A 停止运动,另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动,设点M 运动时间为x (s ),△AMN 的面积为y (cm 2),则y 关于x 的函数图象是( )A .B .C .D .12.已知四边形ABCD 为矩形,延长CB 到E ,使CE=CA ,连接AE ,F 为AE 的中点,连接BF ,DF ,DF 交AB 于点G ,下列结论:(1)BF ⊥DF ;(2)S △BDG =S △ADF ;(3)EF 2=FG •FD ;(4)=其中正确的个数是( )A .1B .2C .3D .4二、填空题(本题共5小题,每小题4分,共20分)13.0+﹣()﹣1﹣|tan45°﹣3|= .14.若一次函数y=x+3与y=﹣2x 的图象交于点A ,则A 关于y 轴的对称点A′的坐标为 .15.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为.16.如图,将Rt△ABC沿斜边AC所在直线翻折后点B落到点D,过点D作DE⊥AB,垂足为E,如果AE=3EB,EB=7,那么BC= .17.在Rt△ABC中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B放在原点,点A放在y轴正半轴上,当点B在x轴上向右移动时,点A也随之在y轴上向下移动,当点A到达原点时,点B停止移动,在移动过程中,点C到原点的最大距离为.三、解答题(本大题共7小题,共64分)18.先化简,再求值:(a﹣)÷,其中a满足a2+3a﹣1=0.19.企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为人,请补全条形统计图;(2)统计的捐款金额的中位数是元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?20.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.(1)求证:GH=GF;(2)试说明∠FGH与∠BAC互补.22.为迎接“国家卫生城市”复检,某市环卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元;购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱各多少元?(2)现需要购买A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买A型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买A型和B型垃圾箱各多少个?最低费用是多少元?23.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH的值.24.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC 与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.2016年山东省莱芜市中考数学试卷参考答案与试题解析一、选择题1.4的算术平方根为()A.﹣2 B.2 C.±2 D.【考点】算术平方根.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2,故选:B.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.下列运算正确的是()A.a7÷a4=a3B.5a2﹣3a=2a C.3a4•a2=3a8D.(a3b2)2=a5b4【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】分别利用单项式乘以单项式以及单项式除以单项式、积的乘方运算法则分别化简得出答案.【解答】解:A、a7÷a4=a3,正确;B、5a2﹣3a,无法计算,故此选项错误;C、3a4•a2=3a6,故此选项错误;D、(a3b2)2=a6b4,故此选项错误;故选:A.【点评】此题主要考查了幂的运算性质以及整式的加减运算,正确掌握相关性质是解题关键.3.如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若a+c=0,则b+d()A.大于0 B.小于0 C.等于0 D.不确定【考点】数轴.【分析】由a+c=0可知a与c互为相反数,所以原点是AC的中点,利用b、d与原点的距离可知b+d 与0的大小关系.【解答】解:∵a+c=0,∴a,c互为相反数,∴原点O是AC的中点,∴由图可知:点D到原点的距离大于点B到原点的距离,且点D、B分布在原点的两侧,故b+d<0,故选(B).【点评】本题考查数轴、相反数、有理数加法法则,属于中等题型.4.投掷一枚均匀的骰子,掷出的点数是3的倍数的概率是()A.B.C.D.【考点】概率公式.【分析】根据题意,分析可得掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,由概率公式可得答案.【解答】解:根据题意,掷一枚骰子,共6种情况,其中是3的倍数的有3、6,2种情况,故其概率为;故选C.【点评】本题考查概率的求法,其计算方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC的度数是()A.76° B.81° C.92° D.104°【考点】三角形内角和定理.【专题】计算题;三角形.【分析】由题意利用三角形内角和定理求出∠ABC度数,再由BD为角平分线求出∠ABD度数,根据外角性质求出所求角度数即可.【解答】解:∵△ABC中,∠A=46°,∠C=74°,∴∠ABC=60°,∵BD为∠ABC平分线,∴∠ABD=∠CBD=30°,∵∠BDC为△ABD外角,∴∠BDC=∠A+∠ABD=76°,故选A【点评】此题考查了三角形内角和定理,以及外角性质,熟练掌握内角和定理是解本题的关键.6.将函数y=﹣2x的图象向下平移3个单位,所得图象对应的函数关系式为()A.y=﹣2(x+3) B.y=﹣2(x﹣3)C.y=﹣2x+3 D.y=﹣2x﹣3【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则进行解答即可.【解答】解:把函数y=﹣2x的图象向下平移3个单位后,所得图象的函数关系式为y=﹣2x﹣3.故选D.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移时“上加下减,左加右减”的法则是解答此题的关键.7.甲、乙两个转盘同时转动,甲转动270圈时,乙恰好转了330圈,已知两个转盘每分钟共转200圈,设甲每分钟转x圈,则列方程为()A. =B. =C. =D. =【考点】由实际问题抽象出分式方程.【分析】根据“甲转动270圈和乙转了330圈所用的时间相等”列出方程即可;【解答】解:设甲每分钟转x圈,则乙每分钟转动(200﹣x)圈,根据题意得: =,故选D.【点评】本题考查了分式方程的知识,解题的关键是能够从实际问题中找到等量关系,难度不大.8.用面积为12π,半径为6的扇形围成一个圆锥的侧面,则圆锥的高是()A.2B.4 C.2 D.2【考点】圆锥的计算.【分析】根据题意可以求得围成圆锥底面圆的周长和半径,从而可以解答本题.【解答】解:由题意可得,围成的圆锥底面圆的周长为:=4π,设围成的圆锥底面圆的半径为r,则2πr=4π,解得,r=2,∴则圆锥的高是:,故选B.【点评】本题考查圆锥的计算,解题的关键是明确扇形弧长公式,圆锥的底面圆的周长等于侧面扇形的弧长.9.正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形【考点】正多边形和圆.【分析】设AB是正多边形的一边,OC⊥AB,在直角△AOC中,利用三角函数求得∠AOC的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,即可求得边数.【解答】解:正多边形的内切圆与外接圆的周长之比为:2,则半径之比为:2,设AB是正多边形的一边,OC⊥AB,则OC=,OA=OB=2,在直角△AOC中,cos∠AOC==,∴∠AOC=30°,∴∠AOC=60°,则正多边形边数是: =6.故选:B.【点评】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.10.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有()A.3条B.5条C.7条D.8条【考点】等腰三角形的性质.【分析】分别以A、B、C为等腰三角形的顶点,可画出直线,再分别以AB、AC、BC为底的等腰三角形,可画出直线,综合两种情况可求得答案.【解答】解:分别以A、B、C为等腰三角形的顶点的等腰三角形有4个,如图1,分别为△ABD、△ABE、△ABF、△ACG,∴满足条件的直线有4条;分别以AB、AC、BC为底的等腰三角形有3个,如图2,分别为△ABH、△ACM、△BCN,∴满足条件的直线有3条,综上可知满足条件的直线共有7条,故选C.【点评】本题主要考查等腰三角形的性质,正确画出图形是解题的关键.11.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A 停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.【解答】解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3﹣x,则=AN•BM,S△ANM∴y=•(3﹣x)•3x=﹣x2+x,故C选项错误;当1≤x ≤2时,M 点在CD 边上,则S △ANM =AN •BC ,∴y=(3﹣x )•3=﹣x+,故D 选项错误;当2≤x ≤3时,M 在AD 边上,AM=9﹣x ,∴S △ANM =AM •AN ,∴y=•(9﹣3x )•(3﹣x )=(x ﹣3)2,故B 选项错误;故选(A ).【点评】本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.利用数形结合,分类讨论是解决问题的关键.12.已知四边形ABCD 为矩形,延长CB 到E ,使CE=CA ,连接AE ,F 为AE 的中点,连接BF ,DF ,DF 交AB 于点G ,下列结论:(1)BF ⊥DF ;(2)S △BDG =S △ADF ;(3)EF 2=FG •FD ;(4)=其中正确的个数是( )A .1B .2C .3D .4【考点】相似三角形的判定与性质;矩形的性质.【分析】利用矩形的性质和直角三角形的性质得出结论判断出△BDF ≌△ACF ,借助直角三角形的斜边大于直角边,再用面积公式判断出面积大小,判断出△AFG ∽△DFA ,△BFG ∽△DFB ,即可判断出结论.【解答】解:如图1,连接CF ,设AC 与BD 的交点为点O ,∵点F 是AE 中点,∴AF=EF ,∵CE=CA ,∴CF ⊥AE ,∵四边形ABCD 是矩形,∴AC=BD ,∴OA=OB ,∴∠OAB=∠OBA ,∵点F 是Rt △ABE 斜边上的中点,∴AF=BF ,∴∠BAF=∠FBA ,∴∠FAC=∠FBD ,在△BDF 和△ACF 中,,∴△BDF ≌△ACF ,∴∠BFD=∠AFC=90°,∴BD ⊥DF ,所以①正确;过点F 作FH ⊥AD 交DA 的延长线于点H ,在Rt △AFH 中,FH <AF ,在Rt △BFG 中,BG >BF ,∵AF=BF ,∴BG >FH ,∵S △ADF =FH ×AD ,S △BDG =BG ×AD ,∴S △BDG >S △ADF ,所以②错误;∵∠ABF+∠BGF=∠ADG+∠AGD=90°,∴∠ABF=∠ADG ,∵∠BAF=∠FBA ,∴∠BAF=∠ADG ,∵∠AFG=∠DFA ,∴△AFG ∽△DFA ,∴,∴AF 2=FG •FD ,∵EF=AF ,∴EF 2=FG •FD ,所以③正确;∵BF=EF ,∴BF 2=FG •FD ,∴,∵∠BFG=∠DFB ,∴△BFG ∽△DFB ,∴∠ABF=∠BDF ,∵∠BAF=∠ABF ,∠BAF=∠ADC∴∠ADC=∠BDF ,∴,∵BD=AC ,AD=BC ,∴,所以④正确,故选C .【点评】此题是相似三角形的性质和判定,全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,三角形内角平分线定理,解本题的是△BDF ≌△ACF .二、填空题(本题共5小题,每小题4分,共20分)13.0+﹣()﹣1﹣|tan45°﹣3|= ﹣1 .【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,立方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=1+3﹣3﹣2=﹣1.故答案为:﹣1【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.14.若一次函数y=x+3与y=﹣2x的图象交于点A,则A关于y轴的对称点A′的坐标为(1,2).【考点】两条直线相交或平行问题.【分析】直接联立函数解析式求出A点坐标,再利用关于y轴对称点的性质得出答案.【解答】解:∵一次函数y=x+3与y=﹣2x的图象交于点A,∴x+3=﹣2x,解得:x=﹣1,则y=2,故A点坐标为:(﹣1,2),∴A关于y轴的对称点A′的坐标为:(1,2).故答案为:(1,2).【点评】此题主要考查了一次函数的交点问题以及关于y轴对称点的性质,正确得出A点坐标是解题关键.15.如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为8 .【考点】反比例函数系数k的几何意义;待定系数法求反比例函数解析式.【分析】先设点D坐标为(a,b),得出点B的坐标为(2a,2b),A的坐标为(4a,b),再根据△AOD的面积为3,列出关系式求得k的值.【解答】解:设点D坐标为(a,b),∵点D为OB的中点,∴点B的坐标为(2a,2b),∴k=4ab,又∵AC⊥y轴,A在反比例函数图象上,∴A的坐标为(4a,b),∴AD=4a﹣a=3a,∵△AOD的面积为3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=8.故答案为:8【点评】本题主要考查了反比例函数系数k的几何意义,以及运用待定系数法求反比例函数解析式,根据△AOD的面积为3列出关系式是解题的关键.16.如图,将Rt△ABC沿斜边AC所在直线翻折后点B落到点D,过点D作DE⊥AB,垂足为E,如果AE=3EB,EB=7,那么BC= 4.【考点】翻折变换(折叠问题).【分析】根据相似三角形的判定和性质、以及勾股定理解答即可.【解答】解:∵DE⊥AB,∠B=90°,∴DE∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴DH=DC,∵DE∥BC,∴△AFH∽△ABC,∴,设EH=3x,BC=DC=DH=4x,∴DE=7x,∵AE=3EB,EB=7,∴AE=21,∵AD=AB=AE+BE=7+21=28,在Rt△ADE中,DE=,∴7x=7,∴x=,∴BC=4.故答案为:4.【点评】此题考查相似三角形的判定和性质,证明DH=DC是解题关键.17.在Rt △ABC 中,∠ABC=90°,AB=4,BC=2.如图,将直角顶点B 放在原点,点A 放在y 轴正半轴上,当点B 在x 轴上向右移动时,点A 也随之在y 轴上向下移动,当点A 到达原点时,点B 停止移动,在移动过程中,点C 到原点的最大距离为 2+2 .【考点】轨迹;坐标与图形性质. 【分析】根据题意首先取A 1B 1的中点E ,连接OE ,C 1E ,当O ,E ,C 1在一条直线上时,点C 到原点的距离最大,进而求出答案.【解答】解:如图所示:取A 1B 1的中点E ,连接OE ,C 1E ,当O ,E ,C 1在一条直线上时,点C 到原点的距离最大,在Rt △A 1OB 1中,∵A 1B 1=AB=4,点OE 为斜边中线,∴OE=B 1E=A 1B 1=2,又∵B 1C 1=BC=2,∴C 1E==2,∴点C 到原点的最大距离为:OE+C 1E=2+2.故答案为:2+2.【点评】此题主要考查了轨迹以及勾股定理等知识,正确得出C 点位置是解题关键.三、解答题(本大题共7小题,共64分)18.先化简,再求值:(a ﹣)÷,其中a 满足a 2+3a ﹣1=0.【考点】分式的化简求值.【分析】根据题意得到a 2+3a=1,根据分式的通分、约分法则把原式化简,代入计算即可.【解答】解:∵a2+3a﹣1=0,∴a2+3a=1原式=×=(a+1)(a+2)=a2+3a+2=3.【点评】本题考查的是分式的化简求值,掌握分式的通分、约分法则是解题的关键.19.(8分)企业举行“爱心一日捐”活动,捐款金额分为五个档次,分别是50元,100元,150元,200元,300元.宣传小组随机抽取部分捐款职工并统计了他们的捐款金额,绘制成两个不完整的统计图,请结合图表中的信息解答下列问题:(1)宣传小组抽取的捐款人数为50 人,请补全条形统计图;(2)统计的捐款金额的中位数是150 元;(3)在扇形统计图中,求100元所对应扇形的圆心角的度数;(4)已知该企业共有500人参与本次捐款,请你估计捐款总额大约为多少元?【考点】条形统计图;用样本估计总体;扇形统计图;中位数.【分析】(1)根据题意即可得到结论;求得捐款200元的人数即可补全条形统计图;(2)根据中位数的定义即可得到结论;(3)用周角乘以100元所占的百分比即可求得圆心角;(4)根据题意即可得到结论.【解答】解:(1)50,补全条形统计图,故答案为:50;(2)150,故答案为:150;(3)×360°=72°.(4)(50×4+100×10+150×12+200×18+300×6)×500=100(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为3.6米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.6米,看台最低点A与旗杆底端D之间的距离为16米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)根据正弦的定义计算即可;(2)作FP⊥ED于P,根据正切的定义求出AC,根据正切的概念求出EP,计算即可.【解答】解:(1)在Rt△ABC中,AB==6米;(2)AC==4.8米,则CD=4,.8+16=20.8米,作FP⊥ED于P,∴FP=CD=20.8,∴EP=FP×tan∠EFP=13.52,DP=BF+BC=5.2,ED=EP+PD=18.72,EG=ED﹣GH﹣HD=16.52,则红旗升起的平均速度为:16.52÷30=0.55,答:红旗升起的平均速度为0.55米/秒.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.21.如图,△ABC为等腰三角形,AB=AC,D为△ABC内一点,连接AD,将线段AD绕点A旋转至AE,使得∠DAE=∠BAC,F,G,H分别为BC,CD,DE的中点,连接BD,CE,GF,GH.(1)求证:GH=GF;(2)试说明∠FGH与∠BAC互补.【考点】旋转的性质;全等三角形的判定与性质;等腰三角形的性质;三角形中位线定理.【分析】(1)首先得出△ABD≌△ACE(SAS),进而利用三角形中位线定理得出GH=GF;(2)利用全等三角形的性质结合平行线的性质得出∠FGH=∠DGF+∠HGD进而得出答案.【解答】证明:(1)∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,∴△ABD≌△ACE(SAS),∴BD=CE,∵F,G,H分别为BC,CD,DE的中点,∴GH∥GF,且GH=CE,GF=BD,∴GH=GF;(2)∵△ABD≌△ACE,∴∠ABD=∠ACE,∵HG∥CE,GE∥BD,∴∠HGD=∠ECD,∠GFC=∠DBC,∴∠HGD=∠ACD+∠ECA=∠ACD+∠ABD,∠DGF=∠GFC+∠GCF=∠DBC+∠GCF,∴∠FGH=∠DGF+∠HGD=∠DBC+∠GCF+∠ACD+∠ABD=∠ABC+∠ACB=180°﹣∠BAC,∴∠FGH与∠BAC互补.【点评】此题主要考查了全等三角形的判定与性质以及三角形中位线定理,正确得出△ABD≌△ACE 是解题关键.22.为迎接“国家卫生城市”复检,某市环卫局准备购买A、B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元;购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)每个A型垃圾箱和B型垃圾箱各多少元?(2)现需要购买A,B两种型号的垃圾箱共300个,分别由甲、乙两人进行安装,要求在12天内完成(两人同时进行安装).已知甲负责A型垃圾箱的安装,每天可以安装15个,乙负责B型垃圾箱的安装,每天可以安装20个,生产厂家表示若购买A型垃圾箱不少于150个时,该型号的产品可以打九折;若购买B型垃圾箱超过150个时,该型号的产品可以打八折,若既能在规定时间内完成任务,费用又最低,应购买A型和B型垃圾箱各多少个?最低费用是多少元?【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设每个A型垃圾箱和B型垃圾箱分别为x元和y元,利用两次购买的费用列方程,然后解方程组即可;(2)设购买A型垃圾箱m个,则购买B型垃圾箱(300﹣m)个,购买垃圾箱的费用为w元,利用工作效率和总工作时间可得到60≤m≤180,然后讨论:若60≤m<150得到w=4m+28800,若150≤m≤180得w=﹣30m+3600,再利用一次函数的性质求出两种情况下的w的最小值,于是比较大小可得到满足条件的购买方案.【解答】解:(1)设每个A型垃圾箱和B型垃圾箱分别为x元和y元,根据题意得,解得,∴每个A型垃圾箱和B型垃圾箱分别为100元和120元;(2)设购买A型垃圾箱m个,则购买B型垃圾箱(300﹣m)个,购买垃圾箱的费用为w元,根据题意得,解得60≤m≤180,若60≤m<150,w=100m+120×0.8×(300﹣m)=4m+28800,当m=60时,w最小,w的最小值=4×60+28800=29040(元);若150≤m≤180,w=100×0.9×m+120×(300﹣m)=﹣30m+3600,当m=1800,w最小,w的最小值=﹣30×180+36000=30600(元);∵29040<30600,∴购买A型垃圾箱60个,则购买B型垃圾箱240个时,既能在规定时间内完成任务,费用又最低,最低费用为29040元.【点评】本题考查了一元一次不等式组的应用:分析题意,找出不等关系;设未知数,列出不等式组;解不等式组;从不等式组解集中找出符合题意的答案;作答.也考查了二元一次方程组合一次函数的性质.23.已知AB、CD是⊙O的两条弦,直线AB、CD互相垂直,垂足为E,连接AC,过点B作BF⊥AC,垂足为F,直线BF交直线CD于点M.(1)如图1,当点E在⊙O内时,连接AD,AM,BD,求证:AD=AM;(2)如图2,当点E在⊙O外时,连接AD,AM,求证:AD=AM;(3)如图3,当点E在⊙O外时,∠ABF的平分线与AC交于点H,若tan∠C=,求tan∠ABH的值.【考点】圆的综合题.【分析】(1)根据垂直的定义和垂直平分线的判定好小子即可求解;(2)如图2,连结BD,先证明四边形ABDC是圆内接四边形,根据圆内接四边形的性质和垂直平分线的性质即可求解;(3)如图3,过点H作HN⊥AB,垂足为N,在Rt△ABF中和在Rt△BNH中,根据三角函数的定义即可求解.【解答】(1)证明:∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∴∠EBM+∠BME=90°,∠ABF+∠BAF=90°,∴∠BME=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;(2)证明:如图2,连结BD,∵AB⊥CD,BF⊥AC,∴∠BEM=∠BFA=90°,∵∠EBM=∠FBA,∴∠BME=∠BAF,∴四边形ABDC是圆内接四边形,∴∠BDM=∠BAC,∴∠BDM=∠BMD,∴BD=BM,∵AB⊥CD,∴AB是MD的垂直平分线,∴AD=AM;(3)解:如图3,过点H作HN⊥AB,垂足为N.易知∠AHN=∠ABF=∠C,在Rt△ANH中,设HM=3m,∵tan∠AHN=tan∠C==,∴AN=4m,∴AH=5m,∵BH平分∠ABF,∴HN=HF=3m,∴AF=AH+HF=8m,在Rt△ABF中,∵tan∠ABF=tan∠C==,∴BF=6m,∴AB=10m,∴BN=AB﹣AN=6m,∴在Rt△BNH中,tan∠NBH===,∴tan∠ABH=.【点评】本题考查了圆的综合,涉及了圆内接四边形的判定与性质、等腰三角形的判定与性质及垂直平分线的性质,三角函数,解答本题的关键是掌握数形结合思想运用.24.如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0),B(4,0),C(﹣2,﹣3),直线BC 与y轴交于点D,E为二次函数图象上任一点.(1)求这个二次函数的解析式;(2)若点E在直线BC的上方,过E分别作BC和y轴的垂线,交直线BC于不同的两点F,G(F在G的左侧),求△EFG周长的最大值;(3)是否存在点E,使得△EDB是以BD为直角边的直角三角形?如果存在,求点E的坐标;如果不存在,请说明理由.【考点】二次函数综合题.【分析】(1)如图1,运用待定系数法求这个二次函数的解析式;(2)如图2,先求直线BC的解析式为y=x﹣2,设出点E的坐标,写出点G的坐标(﹣m2+3m+8,﹣ m2+m+2),求出EG的长,证明∴△EFG∽△DOB,根据相似三角形周长的比等于相似比表示△EFG周长═(﹣m2+2m+8)= [﹣(m﹣1)2+9],根据二次函数的顶点确定其最值;(3)分三种情况讨论:分别以三个顶点为直角时,列方程组,求出点E的坐标,根据两垂直直线的一次项系数为负倒数得出结论.【解答】解:(1)如图1,把A(﹣1,0),B(4,0),C(﹣2,﹣3)代入y=ax2+bx+c中,得:,解得:,则二次函数的解析式y=﹣x2+x+2;(2)如图2,设直线BC的解析式为y=kx+b,把B(4,0),C(﹣2,﹣3)代入y=kx+b中得:,解得:,∴直线BC的解析式为y=x﹣2,设E(m,﹣ m2+m+2),﹣2<m<4,∵EG⊥y轴,∴E和G的纵坐标相等,∵点G在直线BC上,当y=﹣m2+m+2时,﹣ m2+m+2=x﹣2,x=﹣m2+3m+8,则G(﹣m2+3m+8,﹣ m2+m+2),∴EG=﹣m2+3m+8﹣m=﹣m2+2m+8,∵EG∥AB,∴∠EGF=∠OBD,∵∠EFG=∠BOD=90°,∴△EFG∽△DOB,∴=,∵D(0,﹣2),B(4,0),∴OB=4,OD=2,∴BD==2,∴=﹣,∴△EFG的周长=(﹣m2+2m+8),= [﹣(m﹣1)2+9],∴当m=1时,△EFG周长最大,最大值是;(3)存在点E,分两种情况:①若∠EBD=90°,则BD⊥DE,如图3,设BD的解析式为:y=kx+b,把B(4,0)、D(0,﹣2)代入得:,解得:,∴BD的解析式为:y=x﹣2,∴设直线EB的解析式为:y=﹣2x+b,把B(4,0)代入得:b=8,∴直线EB的解析式为:y=﹣2x+8,∴,﹣x2+x+2=﹣2x+8,解得:x1=3,x2=4(舍),当x=3时,y=﹣2×3+8=2,∴E(3,2),②当BD⊥DE时,即∠EDB=90°,如图4,同理得:DE的解析式为:y=﹣2x+b,把D(0,﹣2)代入得:b=﹣2,∴DE的解析式为:y=﹣2x﹣2,∴,解得:,∴E(8,﹣18)或(﹣1,0),③当∠DEB=90°时,以BD为直径画圆,如图5,发现与抛物线无交点,所以此种情况不存在满足条件的E点;综上所述,点E(3,2)或(8,﹣18)或(﹣1,0),故存在满足条件的点E,点E的坐标为(3,2)或(﹣1,0)或(8,18).【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数、一次函数的解析式;根据两直线垂直,则一次项系数为负倒数,利用一条直线求另一条直线的解析式;若三角形直角三角形时,要采用分类讨论的思想,分三种情况进行讨论,利用勾股定理或解析式或相似求出点E的坐标.。