21.2.4根与系数的关系
- 格式:doc
- 大小:64.50 KB
- 文档页数:2
21.2.4 一元二次方程根与系数关系一、内容和内容解析1.内容一元二次方程根与系数的关系.2.内容解析一元二次方程的根与系数关系反映了一元二次方程的根与它的系数之间的一种确定关系.利用这一关系可以解决许多问题,同时它在高中数学的学习中有着更加广泛的应用.实际上,一元n 次方程的根与系数之间也有确定的数量关系,我们把它称之为韦达定理,一元二次方程的根与系数关系是韦达定理在n =2时的特例.一元二次方程()200ax bx c a ++=≠的求根公式x =,反映了方程的根的值是由系数a 、b 、c 所决定的,从一方面反映了根与系数之间的联系;而本节课中的12b x x a +=-,12c x x a⋅=是从另一方面更简洁地反映了一元二次方程的根与系数之间的联系.本节课从思考一元二次方程的根与方程中的系数之间的关系开始,由特殊到一般,先让学生思考二次项系数为1的情形,然后再思考并证明一般形式时的根与系数的关系.本节课为选学内容.基于以上分析,确定本课的教学重点:一元二次方程根与系数关系的探索及简单应用.二、目标和目标解析1.目标(1)了解一元二次方程的根与系数关系,能进行简单应用.(2)在一元二次方程根与系数关系的探究过程中,感受由特殊到一般的认识方法.2.目标解析达成目标(1)的标志是:学生能说出一元二次方程的根与系数关系,并能利用根与系数关系求出两根之和、两根之积.达成目标(2)的标志是:学生能够借助问题的引导,发现、归纳并证明一元二次方程根与系数的关系.三、教学问题诊断分析一元二次方程的根与系数关系是在学生已经学习了一元二次方程的解法的基础上,对一元二次方程根与系数之间的关系进行再探究.如果让学生思考一元二次方程()200ax bx c a ++=≠的两个根与系数之间有怎样的关系,学生会回答出求根公式x =,而不会想到两根之和、两根之积与系数之间的关系。
因此,先引导学生从特殊的一元二次方程得到两根之和、两根之积与系数之间关系的猜想,再推广到一般,探索一元二次方程根与系数关系.另外,在计算两根之积时,能否观察出式子中具有平方差公式的结构,并运用平方差公式正确进行计算,也是一部分学生的难点.本节课的教学难点是:发现一元二次方程根与系数关系的过程.四、教学过程设计1.复习一元二次方程一般形式及求根公式问题1 一元二次方程的根与方程中的系数之间有怎样的关系?师生活动:学生回顾一元二次方程的一般形式及求根公式.设计意图:复习一元二次方程的一般形式及求根公式,使学生进一步明确求根公式是方程的根与系数之间的一种关系,为推导根与系数之间的关系作好准备.2.猜想二次项系数为1时的根与系数关系问题 2 方程()()120x x x x --=(1x ,2x 为已知数)的两根是什么?将方程化为20x px q ++=的形式,你能看出1x ,2x 与p ,q 之间的关系吗?师生活动:学生独立思考,得出方程两根为1x ,2x ,通过将()()120x x x x --=的左边展开,化为一般形式,得到方程()212120x x x x x x -++=.发现这个方程的二次项系数为1,一次项系数()12p x x =-+,常数项12q x x =.学生独立观察并讨论后,发现这两个方程的两根之和是12x x p +=-,两根之积是12x x q =.设计意图:通过教师引导和点拨,让学生在二次项系数为1的方程中发现一元二次方程根与系数关系.3.猜想、验证一元二次方程根与系数关系问题3 一元二次方程20ax bx c ++=中,二次项系数a 未必是1,它的两个根的和、积与系数又有怎样的关系呢?师生活动:学生独立思考后,教师追问:如何探究这两者之间的关系呢?(利用一元二次方程的一般形式和求根公式)学生独立完成证明过程,然后再全班交流。