沪科版初二数学下册《第18章达标检测卷》(附答案)
- 格式:doc
- 大小:212.25 KB
- 文档页数:10
第18章勾股定理一、选择题1.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是().A. 1、2、3B. 2、3、4 C. 3、4、5 D. 4、5、62.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A. 斜边长为25B. 三角形周长为25 C. 斜边长为5 D. 三角形面积为203.如图,已知O为圆锥的顶点,MN为圆锥底面的直径,一只蜗牛从M点出发,绕圆锥侧面爬行到N点时,所爬过的最短路线的痕迹(虚线)在侧面展开图中的位置是()A.B.C.D.4.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用()A. 9mB. 7 mC. 5mD. 3m5.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD= ,则BC的长为()A. ﹣1 B. +1C. ﹣1 D. +16.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B 在围成的正方体中的距离是()A. 0B.1 C.D.7.适合下列条件的△ABC中,直角三角形的个数为()①a=3,b=4,c=5;②a=6,∠A=45°;③a=2,b=2,c=2 ;④∠A=38°,∠B=52°.A. 1个 B. 2个 C. 3个 D. 4个8.如图字母B所代表的正方形的面积是()A. 12B. 13 C. 144D. 1949.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A. 24cm2B. 36cm2C. 48cm2D. 60cm210.如图,长方体的长为15宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.3211.如图,点A和点B分别是棱长为20cm的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B处爬行,所走最短路程是(◆)A. 40cm B. cmC. 20cm D. cm二、填空题12.如图,有一圆柱体,它的高为8cm,底面周长为12cm.在圆柱的下底面A点处有一个蜘蛛,它想吃到上底面上与A点相对的B点处的苍蝇,需要爬行的最短路径是________ cm.13.请写出两组勾股数:________、________.14.如图是一块长、宽、高分别是6cm、4cm和3cm的长方体木块,一只蚂蚁要从顶点A出发,沿长方体的表面爬到和A相对的顶点B处吃食物,那么它需要爬行的最短路线的长是________.15. 北京召开的国际数学家大会会徽取材于我国古代数学家赵爽弦图它是由四全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,下列说法:①a2+b2=13;②b2=1;③a2﹣b2=12;④ab=6.其中正确结论序号是________16.已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距________ km.17.一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________18.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为________ .19.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!20.如图,长为12cm的弹性皮筋直放置在x轴上,固定两端A和B,然后把中点C向上拉升8cm至D点,则弹性皮筋被拉长了________.21. 在北京召开的国际数学大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图),如果大正方形的面积是25,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,那么(a+b)2的值为________三、解答题22.如图所示,有一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,则这块地的面积.23.如图,四边形ABCD中,∠B=90°,AB=6,BC=8,CD=24,AD=26,求四边形ABCD的面积.24.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.作AD⊥BC于D,设BD=x,用含x的代数式表示CD→根据勾股定理,利用AD作为“桥梁”,建立方程模型求出x→利用勾股定理求出AD的长,再计算三角形的面积.25.我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)2,也可表示为c3+4(ab),即(a+b)2=c2+4(ab)由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数学家大会会标)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+2y)2=x2+4xy+4y2.参考答案一、选择题C CD D D C C C A B C二、填空题12. 1013. 3、4、5;6、8、1014.15. ①④16. 5km17. 12米18. 42或3219. 420. 8cm21. 49三、解答题22. 解:如图,连接AC.在△ACD中,∵AD=4米,CD=3米,∠ADC=90°,∴AC=5米,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积= ×5×12﹣×3×4=24(平方米).23. 解:连结AC,在△ABC中,∵∠B=90°,AB=6,BC=8,∴AC= =10,S△ABC= AB•BC= ×6×8=24,在△ACD中,∵CD=24,AD=26,AC=10,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD= AC•CD= ×10×24=120.∴四边形ABCD的面积=S△ABC+S△ACD=24+120=144.24. 解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则有CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2, AD2=AC2﹣CD2=132﹣(14﹣x)2,∴152﹣x2=132﹣(14﹣x)2,解之得:x=9,∴AD=12,∴S△ABC= BC•AD= ×14×12=8425. (1)解:S阴影=4×ab,S阴影=c2﹣(a﹣b)2,∴4×ab=c2﹣(a﹣b)2,即2ab=c2﹣a2+2ab﹣b2,则a2+b2=c2;(2)解:如图所示,大正方形的面积为x2+4y2+4xy,也可以为(x+2y)2,则(x+2y)2=x2+4xy+4y2.。
沪科版八年级数学下册第18章测试题及答案18.1勾股定理1.在Rt△ABC中,∠C=90°且c=13,a=12,则b=().A.11 B.8 C.5 D.32.下列说法正确的是()A.若a,b,c是△ABC的三边,则a2+b2=c2B.若a,b,c是Rt△ABC的三边,则a2+b2=c2C.若a,b,c是Rt△ABC的三边,∠A=90°,则a2+b2=c2D.若a,b,c是Rt△ABC的三边,∠C=90°,则a2+b2=c23.如图18-1-1所示,字母S所表示的正方形的面积是(图中的数字表示正方形的面积)()图18-1-1A.12 B.13 C.144 D.1944.在Rt△ABC中,∠C=90°,若AB=10,BC=8,则AC的值是()A.5 B.6 C.7 D.85.如图18-1-2所示,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为()图18-1-2A.5 B.6C.7 D.256.如图18-1-3,点A表示的实数是()图18-1-3A. 3B. 5 C.- 3 D.- 57.如图18-1-4是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是________.图18-1-48.曾任美国总统的加菲尔德在《新英格兰教育日志》上发表了他提出的一个勾股定理的证明方法.如图18-1-5,这就是他用两个全等的直角三角形拼出的图形.图形整体上是一个直角梯形.所以它的面积有两种表示方法.既可以表示为________,又可以表示为______________.对比两种表示方法可得________________.化简,可得a2+b2=c2.他的这个证明也就成了数学史上的一段佳话.图18-1-59.在Rt△ABC中,∠C=90°,(1)若a=8,b=15,则c=________;(2)若c=41,b=9,则a=________;(3)若a=7,c=25,则b=________.10.若直角三角形的两直角边长为a,b,且满足a2-6a+9+|b-4|=0,则该直角三角形的斜边长为________.11.若一个矩形的一条边长为4 cm,一条对角线长为5 cm,则它的面积为________cm2.12.如图18-1-6,在Rt△ABC中,∠C=90°,D为BC上一点,AC=5,AB=13,BD=8,求线段AD的长度.图18-1-613.在Rt△ABC中,∠C=90°,∠A的对边为a,∠B的对边为b,斜边为c.(1)已知a∶b=1∶2,c=5,求a;(2)已知b=15,∠A=30°,求a,c.14.小强量得家里新购置的彩电荧光屏的长为58厘米,宽为46厘米,则这台电视机的尺寸(屏幕的对角线长度为电视机的尺寸)最有可能是().A.9英寸(23厘米) B.21英寸(54厘米)C.29英寸(74厘米) D.34英寸(87厘米)15.在△ABC中,∠C=90°,周长为60,斜边与一直角边之比是13∶5,则这个三角形三边长分别是().A.5,4,3 B.13,12,5C.10,8,6 D.26,24,1016.如图18-1-7所示,一段楼梯,高BC是2 m,斜边AB为4 m,在楼梯上铺红地毯,至少需要().图18-1-7A.4 m B.6 mC.(2+D.(4+17.如图18-1-8,在Rt△ABC中,∠C=90°,D为AC上一点,且DA=DB=5.又△DAB的面积为10,那么DC的长是().图18-1-8A.4 B.3 C.5 D.4.518.图18-1-9为长方形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B 的距离为__________ mm.图18-1-919.如图18-1-10,一直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD 折叠,使它落在斜边AB上,且与AE重合,则CD=__________.图18-1-1020.在一棵树的10 m高处有两只猴子,其中一只猴子爬下树走到离树20 m的池塘A处,另一只爬到树顶后直接跃向池塘的A处,如果两只猴子所经过的路程相等,试问这棵树有多高?21.如图图18-1-11,在△ABC中,AB=AC,D点在CB的延长线上,求证:AD2-AB2=BD·CD.图18-1-11参考答案1.答案:C点拨:根据勾股定理求出b=5,故选C.2.D[解析] 根据勾股定理,直角三角形两直角边的平方和等于斜边的平方.在确定三角形是直角三角形,且能确定直角边、斜边时,才能有确定的等式,本题D选项中∠C=90°,c是斜边,a2+b2=c2正确.故选D.3.C[解析] 根据勾股定理,得图形上所给的面积关系:以两条直角边为边向三角形外所作正方形的面积和等于以斜边为边向三角形外所作正方形的面积,因此25+S=169,S=144.故选C..4.B5.A6.D7.10[解析] 根据勾股定理的几何意义,可得A,B的面积和为S1,C,D的面积和为S2,S1+S2=S3,所以S3=2+5+1+2=10.故答案是10.8.12(a+b)(a+b)12(ab×2+c2)12(a+b)(a+b)=12(ab×2+c2)9.(1)17(2)40(3)24[解析] 根据勾股定理,得(1)c=a2+b2=82+152=289=17;(2)a=c2-b2=412-92=1600=40;(3)b=c2-a2=252-72=576=24.10.5[解析] 由已知条件,根据非负数的性质得a2-6a+9=0,b-4=0,解得a=3,b=4,由勾股定理可求出斜边长为5.11.1212.解:∵在Rt△ABC中,AB2=AC2+BC2,∴BC=AB2-AC2=132-52=12,∴CD=BC-BD=12-8=4.在Rt△ACD中,AD=AC2+CD2=52+42=41.13.答案:分析:(1)根据勾股定理列方程求解;(2)由30°角所对的直角边是斜边的一半,设a=x(x >0),那么c=2x,根据勾股定理列方程求解.解:(1)设a=x(x>0),那么b=2x,由勾股定理可知x2+(2x)2=52,解得x,即a.(2)设a=x(x>0),那么c=2a=2x.由勾股定理可知,x2+b2=(2x)2,即x2+152=(2x)2,解得x=所以a=c=14.答案:C点拨:实质是已知直角三角形的一条直角边长为58,另一条直角边长是46,求斜边.因74.03(cm),所以选C.15. 答案:D 点拨:根据斜边与一直角边之比是13∶5,求出另一条直角边所占的比例是12份,60÷(13+12+5)=2,所以各边长分别是13×2=26,12×2=24,5×2=10,故选D.16. 答案:C 点拨:我们把楼梯想象为由一根绳子围成的图形,将它拉成为一个长和宽分别为直角边AC 和BC 的长方形,所以地毯的总长实质就是长方形的长和宽之和.(也可根据平移思想)在Rt △ABC 中,∠C =90°,由勾股定理,得AB 2=AC 2+BC 2,∴42=AC 2+22,∴AC =∴(2BC AC +=+,∴至少需要(2+地毯.17. 答案:B 点拨:根据△ABD 的面积知,1102AD BC =,可求出BC =4.在Rt △BCD 中,由勾股定理直接求出DC =3.故选B.18. 答案:150 点拨:根据勾股定理,AB 2=AC 2+BC 2,由AC =150-60=90,BC =180-60=120,得AB 2=902+1202=22 500=1502,即AB =150 mm.19. 答案:3 cm 点拨:由△ACD ≌△AED ,得AC =AE =6 cm ,CD =ED .由勾股定理知AB =10 cm.设CD 长为x cm ,则DE 为x cm ,BD 为(8-x ) cm ,BE =4 cm.在Rt △DBE 中,x 2+42=(8-x )2,x =3.20. 答案:分析:如答图所示,一只猴子经过的路径是B →C →A ,共走了10+20=30(m),另一只猴子经过的路径是B →D →A ,也走了30 m ,且树垂直于地面,于是此问题转化到直角三角形中,可利用勾股定理解决.第20题答图解:如图所示,设BD =x , 则CD =BD +BC =x +10. ∴BC +CA =BD +DA =30, ∴AD =30-BD =30-x .在Rt △ADC 中,AD 2=CD 2+AC 2, ∴(30-x )2=(x +10)2+202, 解得x =5.∴CD =x +10=15(m). 答:这棵树高15 m.21. 答案:分析:根据勾股定理尝试将AD 2,AB 2向线段BD ,BC ,CD 转化,因此过A 点作CD 的垂线AE ,如图,得AD 2=AE 2+DE 2,AB 2=AE 2+BE 2,借助于等式变换消去AE 2,根据和差关系得出结论.证明:过A作AE⊥BC于E.第21题答图∵AB=AC,∴BE=CE.在Rt△ADE中,AD2=AE2+DE2.在Rt△ABE中,AB2=AE2+BE2,∴AD2-AB2=(AE2+DE2)-(AE2+BE2)=DE2-BE2=(DE+BE)·(DE-BE)=(DE+CE)·(DE-BE)=BD·CD.18.2勾股定理的逆定理1.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,2,32.在△ABC中,已知AB=8,BC=15,AC=17,则下列结论中,错误的是()A.△ABC是直角三角形,且AC为斜边B.△ABC是直角三角形,且∠B=90°C.△ABC的面积为60D.△ABC是直角三角形,且∠A=90°3.如图18-2-1所示,小明家里刚铺了正方形地砖,他把其中的三个顶点A,B,C连成了三角形,则这个三角形是()图18-2-1A .直角三角形B .锐角三角形C .钝角三角形D .以上都不对4.如图18-2-2,以△ABC 的三边为边分别向外作正方形,它们的面积分别是S1,S2,S3.如果S1+S2=S3,那么△ABC 的形状是________三角形.图18-2-25.若三角形的三边长分别为41,9,40,则这个三角形最大角的度数是________. 6.在下列各组数中,是勾股数的一组是( ) A .0.3,0.4,0.5 B .6,8,10 C.35,45,1 D .4,5,67.请完成以下未完成的勾股数:(1)7,________,24;(2)8,________,17.8.请写出三组以整数为边长的直角三角形的三边长:__________;__________;__________. 9.在△ABC 中,AB =12 cm ,BC =16 cm ,AC =20 cm ,则S △ABC 等于( ) A .96 cm 2 B .120 cm 2 C .160 cm 2 D .200 cm 210.某数学兴趣小组在一次数学课外活动时测得一块三角形稻田的三边长分别为14 m ,48 m ,50 m ,则这块稻田的面积为________.11.如图18-2-3,在四边形ABCD 中,AD ⊥DC ,AD =8,DC =6,CB =24,AB =26,则四边形ABCD 的面积为________.图18-2-312.如图18-2-4,在△ABC 中,CD 是AB 边上的高,AC =12,BC =5,BD =2513.(1)求AD 的长;(2)判断△ABC 是否是直角三角形.图18-2-413.如图18-2-5,正方形ABCD 由9个边长为1的小正方形组成,每个小正方形的顶点都叫格点,连接AE ,AF ,则∠EAF 的度数是( )图18-2-5A .30°B .45°C .60°D .35°14.如图18-2-6,在4×5的网格中,A ,B 为两个格点,再选一个格点C ,使∠ACB 为直角,则满足条件的点C 的个数为( )图18-2-6A .3B .4C .5D .615.如图18-2-7所示,在一块地中,∠ADC =90°,AD =12 m ,CD =9 m ,AB =39 m ,BC =36 m .求这块地的面积.图18-2-716.如图18-2-8所示,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC =14BC.求证:∠EFA =90°.图18-2-817.已知△ABC 的三边长分别为m 2+n 2,m 2-n 2,2mn. (1)当m =2,n =1时,△ABC 是否为直角三角形?请说明理由; (2)当m =3,n =2时,△ABC 是否为直角三角形?请说明理由;(3)当m,n为任意正整数时(m>n),你能说明△ABC为直角三角形吗?18.夏老师在一次“探究性学习”课中,设计了如下数表:(1)请你分别探究a,b,c与n之间的关系,并且用含n(n>1)的式子表示:a=________,b=________,c=________;(2)猜想以a,b,c为三边的三角形是否为直角三角形,并证明你的猜想.参考答案1.B2.D [解析] 由82+152=172,可知AB 2+BC 2=AC 2,所以△ABC 是直角三角形,AC 为斜边,∠B =90°,AB ,BC 为直角边,S △ABC =12AB·BC =60.因此,A ,B ,C 项均正确,D 项错误.3.A [解析] 先利用勾股定理求得这个三角形三边的长,再利用直角三角形的判别条件进行判断. 4.直角 [解析] ∵S 1+S 2=S 3,S 1=AB 2,S 2=BC 2,S 3=AC 2,∴AB 2+BC 2=AC 2,∴△ABC 是直角三角形.5.90°6.B [解析] 一组勾股数必须同时满足两个条件:①两个较小数的平方和等于最大数的平方;②这三个数都是正整数.符合条件的只有B 项.故选B.7.25 158.3,4,5 6,8,10 5,12,139.A [解析] 因为122+162=202,所以此三角形是直角三角形,故其面积=12×12×16=96(cm 2).10.336 m 2 [解析] 首先利用勾股定理的逆定理判断出该三角形是直角三角形,然后利用面积公式进行计算(直角三角形的面积=两条直角边乘积的一半).11.144 [解析] 连接AC.由勾股定理可求得AC =10.通过计算可知:AB 2=AC 2+BC 2,所以∠ACB 是直角,分别求两个直角三角形的面积,即可得答案为144.12.解:(1)在Rt △CDB 中,CD 2=52-(2513)2,在Rt △CAD 中,AD 2=AC 2-CD 2=122-52+(2513)2,∴AD =14413=11113.(2)AB =AD +BD =11113+2513=13,∵AB 2=132=169,AC 2=122=144, BC 2=52=25,∴AB2=AC2+BC2,∴△ABC是直角三角形.13.B[解析] 连接EF.根据勾股定理可以得到AE=EF=5,AF=10.∵(5)2+(5)2=(10)2,∴AE2+EF2=AF2,∴△AEF是等腰直角三角形,∴∠EAF=45°.第13题答图14.D[解析] 如图,根据勾股定理知AB2=12+32=10.∵12+32=10,(2)2+(2 2)2=10,(5)2+(5)2=10,∴符合条件的点C有6个.故选D.第14题答图15.[解析] 连接AC,由∠ADC=90°,根据勾股定理可求出AC,再由勾股定理的逆定理判断出∠ACB =90°,从而求出面积.解:连接AC,在Rt△ACD中,由勾股定理得AC2=AD2+DC2,即AC2=122+92=225,∴AC=15.在△ABC中,AC2+BC2=152+362=392,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴S=S△ABC-S△ADC=12×15×36-12×12×9=216(m2).∴这块地的面积为216 m2.16.[解析] 要证明∠EFA=90°,在所学的现有知识的基础上,设法证明AF2+EF2=AE2成立,这里设CE=k,用k表示出AE2,EF2,AF2,再判断即可.证明:设EC=k,∴BC=4EC=4k,BE=3k,AD=DC=4k.∵F是DC的中点,∴DF=FC=2k,∴AE2=AB2+BE2=(4k)2+(3k)2=25k2,AF2=DA2+DF2=(4k)2+(2k)2=20k2,EF2=CF2+EC2=(2k)2+k2=5k2.∴AF2+EF2=AE2,∴△AEF是直角三角形,∴∠EFA=90°.17.解:(1)△ABC是直角三角形.理由:∵当m=2,n=1时,(m2+n2)2=25,(m2-n2)2=9,(2mn)2=16,∴(m2-n2)2+(2mn)2=(m2+n2)2,∴△ABC是直角三角形.(2)△ABC是直角三角形.理由:当m=3,n=2时,仍有(m2-n2)2+(2mn)2=(m2+n2)2,∴△ABC是直角三角形.(3)∵(m2-n2)2+(2mn)2=m4+n4+2m2n2=(m2+n2)2,∴当m,n为任意正整数时(m>n),△ABC都是直角三角形.18.解:(1)观察表格可知:a=n2-1,b=2n,c=n2+1.(2)猜想:以a,b,c为三边的三角形是直角三角形.证明:∵(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1,(n2+1)2=n4+2n2+1,∴a2+b2=c2,∴以a,b,c为三边的三角形是直角三角形.。
第18章勾股定理一、选择题(本大题共8小题,每小题4分,共32分)1.下列各组数中是勾股数的是()A.0.3,0.4,0.5B.1.5,2,2.5C.6,8,13D.9,12,152.已知一个直角三角形的两边长分别为3和5,则第三边长是 ()A.5B.4C.D.4或3.如图1,AB=AC,则数轴上点C所表示的数为()图1A.+1B.-1C.-+1D.--14.如图2,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度(滑轮上方的部分忽略不计)为()图2A.12 mB.13 mC.16 mD.17 m5.已知△ABC的三边长为a,b,c,下列条件能判定△ABC为直角三角形的是()A.a∶b∶c=1∶1∶B.a∶b∶c=1∶1∶C.a∶b∶c=2∶2∶3D.a∶b∶c=∶2∶6.如图3,西安路与南京路平行,并且均与八一街垂直,曙光路与环城路垂直.如果小红站在南京路与八一街的交叉口,准备去书店(点A处),按图中的街道行走,最近的路程为()图3A.600 mB.500 mC.400 mD.300 m7.如图4,在Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC边的中点D重合,折痕为MN,则线段BN的长为()图4A.B.C.4 D.58.如图5,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2……按照此规律继续下去,则S2020的值为()图5A.2017B.2018C.2019D.2018二、填空题(本大题共5小题,每小题4分,共20分)9.如6,小明和小华同时从A处分别向北偏东30°和南偏东60°方向出发,他们的速度分别是3 m/s和4 m/s,则20 s后他们之间的距离为.图610.如图7,在△ABC中,AB=AC=41 cm,BC=80 cm,AD平分∠BAC交BC于点D,则S△ABC=.图711.如图8,直线l过正方形ABCD的顶点B,点A,C到直线l的距离AE,CF分别为5和3,则正方形ABCD的面积是.图812.图9是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD 和四边形EFGH都是正方形,如果AB=10,EF=2,那么AH等于.图913.如图10,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC扩充为等腰三角形ABD,且扩充部分是以AC为直角边的直角三角形,则CD的长为.图10三、解答题(本大题共4小题,共48分)14.(10分)有四根小木棒,它们的长度分别为5 cm,8 cm,12 cm,13 cm,从中选出三根作为一个三角形的三边,如果所构成的三角形为直角三角形,请回答下列问题:(1)你所选三根木棒的长度分别为多少?请说明理由;(2)求你所构成的直角三角形斜边上的高.15.(12分)如图11,在离水面高度为5 m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13 m,此人以0.5 m/s的速度收绳,10 s后船移动到点D的位置,则船向岸边移动了多少米?(假设绳子是直的,结果保留根号)图1116.(12分)如图12,在长方形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,求AP的长.图1217.(14分)在△ABC中,BC=a,AC=b,AB=c.若∠C=90°,如图13①所示,根据勾股定理有a2+b2=c2.若△ABC不是直角三角形,如图②③所示,请你类比勾股定理,试猜想a2+b2与c2的大小关系,并证明你的结论.图13详解详析1.[答案] D2.[解析] D∵这个直角三角形的两边长分别为3和5,∴分两种情况:①若5是此直角三角形的斜边长,则另一直角边的长为-=4;②若3和5是此直角三角形的直角边长,则斜边长为=.故选D.3.[答案] B4.[解析] D如图所示,过点B作BC⊥AE于点C,则BC=DE=8.设AE=x,则AB=x,AC=x-2.在Rt△ABC中,AC2+BC2=AB2,即(x-2)2+82=x2,解得x=17.故选D.5.[答案] B6.[答案] B7.[解析] C设BN=x,由折叠的性质可得DN=AN=9-x.∵D是BC的中点,∴BD=3.在Rt△DNB 中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选C.8.[解析] A∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察发现规律:S1=22=4,S2=S1=2,S3=S2=1,S4=S3=,…,∴S n=n-3,当n=2020时,S2020=2020-3=2017.故选A.9.[答案] 100 m[解析] 小明和小华出发的方向成90°角,20 s后小明走了60 m,小华走了80 m,根据勾股定理,得他们之间的距离是=100(m).10.[答案] 360 cm2[解析] 由等腰三角形“三线合一”的性质,知AD⊥BC,且BD=CD.在Rt△ABD中,∵AB=41,BD=BC=40,∴AD=-=-=9,∴S△ABC=BC·AD=×80×9=360(cm2). 11.[答案] 34[解析] ∵四边形ABCD为正方形,∴AB=BC,∠ABC=90°.∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠BAE+∠ABE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF.在△ABE和△BCF中,,,,∴△ABE≌△BCF,∴AE=BF=5,BE=CF=3.根据勾股定理,得AB==, 则正方形ABCD的面积为34.12.[答案] 613.[答案] 3或或2[解析] 分三种情况:①若AD=AB,如图①所示,CD=BC=3;②若AD=BD,如图②所示.设CD=x,则AD=x+3.在Rt△ADC中,由勾股定理,得(x+3)2=x2+42,解得x=,∴CD=;③若BD=AB,如图③所示.在Rt△ABC中,AB==5,∴BD=5,∴CD=5-3=2.综上所述,CD的长为3或或2.14.解:(1)所选三根木棒的长度分别为5 cm,12 cm,13 cm.理由如下:四根木棒,任取三根,有四种组合,即5 cm,8 cm,12 cm;5 cm,12 cm,13 cm;5 cm,8 cm,13 cm;8 cm,12 cm,13 cm.∵5+8>12,5+12>13,5+8=13(无法构成三角形),8+12>13,∴可组成三个三角形.又∵52=25,82=64,122=144,132=169,52+122=169=132,∴根据勾股定理的逆定理,可知长为 5 cm,12 cm,13 cm的三根木棒可构成一个直角三角形.(2)设此直角三角形斜边上的高为x cm,则×13x=×5×12,即13x=60,解得x=.所以所构成的直角三角形斜边上的高是cm.15.解:∵在Rt△ABC中,∠CAB=90°,BC=13 m,AC=5 m,∴AB=-=12(m).∵此人以0.5 m/s的速度收绳,10 s后船移动到点D的位置,∴CD=13-0.5×10=8(m),∴AD=-=-=(m),∴BD=AB-AD=(12-)m.答:船向岸边移动了(12-)m.16.解:如图所示,设BE与CD交于点G.∵四边形ABCD是长方形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8.根据题意,得△EBP≌△ABP,∴EP=AP,∠E=∠A=90°,EB=AB=8.在△ODP和△OEG中,∵, ,,∴△ODP≌△OEG,∴OP=OG,PD=GE,∴DG=EP.设AP=EP=x,则PD=GE=6-x,DG=x,∴CG=8-x,BG=8-(6-x)=2+x.根据勾股定理,得BC2+CG2=BG2,即62+(8-x)2=(2+x)2,解得x=4.8,∴AP=4.8.17.解:图②中,a2+b2>c2.证明:过点A作AD⊥BC于点D.设CD=x,则在Rt△ABD和Rt△ACD中,b2-x2=AD2=c2-(a-x)2, 整理,得a2+b2=c2+2ax.∵2ax>0,∴a2+b2>c2.图③中,a2+b2<c2.证明:过点B作BD⊥AC,交AC的延长线于点D.设CD=x,则在Rt△ADB和Rt△BDC中,c2-(b+x)2=BD2=a2-x2,整理,得a2+b2=c2-2bx.∵2bx>0,∴a2+b2<c2.。
八年级数学下册第18章 勾股定理同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,“赵爽弦图”是吴国的赵爽创制的.以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中90ABC ∠=︒,13cm AC =,5cm AB =,则阴影部分的面积是( )2cmA .169B .25C .49D .642、如图,将长方形纸片ABCD 沿AE 折叠,使点D 恰好落在BC 边上点F 处,若AB =3,AD =5,则EC 的长为( )A .1B .53 C .32 D .433、在ABC 中,A ∠,B ,C ∠的对边分别是a ,b ,c ,且222a c b -=,则( )A .90A ∠=︒B .90B ∠=︒C .90C ∠=︒D .不确定哪个角是直角4、在下列四组数中,不是..勾股数的一组是( ) A .15,8,7 B .4,5,6 C .24,25,7 D .5,12,135、梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是( )A .6米B .7米C .8米D .9米6、下列三个数为边长的三角形不是直角三角形的是( )A .3,3,B .4,8,C .6,8,10D .5,5,7、如图,在ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为D .如果6AC =,3BC =,则BD 的长为( )A .2B .32C .D 8、下列事件中,属于必然事件的是( )A .13人中至少有2个人生日在同月B .任意掷一枚质地均匀的硬币,落地后正面朝上C .从一副扑克牌中随机抽取一张,抽到的是红桃AD .以长度分别是3cm ,4cm ,6cm 的线段为三角形三边,能构成一个直角三角形9、小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m ,当他把绳子的下端拉开8m后,下端刚好接触到地面,则学校旗杆的高度为()A.10m B.12m C.15m D.18m10、如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的点B'B C'=,则AM的长为()处,点A的对应点为点A',3A.1.8 B.2 C.2.3 D第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知三角形的三边分别是6,8,10,则最长边上的高等于______.2、如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC=6,BC=8时,则阴影部分的面积为_____.3、如图,在四边形ABCE中,∠B=∠A,∠E=90°,点D在AB上,AD∶BD=5∶11,连接CD,若点D在CE的垂直平分线上且满足∠A=2∠BDC,CE=10,则线段AB的长为______.4、如图,在ACB △和DCE 中,90ACB DCE ∠=∠=︒,CA CB =,CD CE =,点A 在边DE 上,若23DE =,8AD =,则2AC =______.5、如图,直线l :y =﹣43x ,点A 1坐标为(﹣3,0).经过A 1作x 轴的垂线交直线l 于点B 1,以原点O 为圆心,OB 1长为半径画弧交x 轴负半轴于点A 2,再过点A 2作x 轴的垂线交直线l 于点B 2,以原点O 为圆心,OB 2长为半径画弧交x 轴负半轴于点A 3,…,按此做法进行下去,点A 2021的坐标为_____.三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,已知直线AC :y =2x -6,交直线AO :y =12x 于点A .(1)直接写出点A 的坐标________;(2)若点E 在直线AC 上,当S △AOE =6时,求点E 的坐标;(3)如图2,若点B 在x 轴正半轴上,当△BOC 的面积等于△AOC 的面积一半时,求∠ACO +∠BCO 的大小.2、如图,ABC 中,,120AB AC BAC =∠=︒,M 是BC 的中点,MN AB ⊥,垂足为点N ,D 是BM 的中点,连接AD ,过点B 作BC 的垂线交AD 的延长线于点E ,若BE =BN 的长为________.3、点P 为等边ABC 的边AB 延长线上的动点,点B 关于直线PC 的对称点为D ,连接AD .(1)如图1,若2BP AB ==,依题意补全图形,并直接写出线段AD 的长度;(2)如图2,线段AD 交PC 于点E ,①设BCP α∠=,求AEC ∠的度数;②求证:AE CE DE =+.4、已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,(1)求AC 的长;(2)求证:△ACD 是直角三角形;(3)四边形ABCD 的面积.5、在长方形ABCD 中,截取如图所示的阴影部分,已知EC =5,CF =FG =4,EG =3,∠EGF =90°.(1)连接EF ,求证:∠FEC =90°;(2)求出图中阴影部分的面积.-参考答案-一、单选题1、C【分析】先利用勾股定理求出12BC =,再利用大正方形的面积减去四个全等直角三角形的面积即可得.【详解】解:90ABC ∠=︒,13cm AC =,5cm AB =,12(cm)BC ∴, 则阴影部分的面积是211313451249(cm )2⨯-⨯⨯⨯=,故选:C .【点睛】本题考查了勾股定理、全等三角形的性质,熟练掌握勾股定理是解题关键.2、D【分析】由翻折可知:AD =AF =5.DE =EF ,设EC =x ,则DE =EF =3−x .在Rt △ECF 中,利用勾股定理构建方程即可解决问题.【详解】解:∵四边形ABCD 是矩形,∴AD =BC =5,AB =CD =3,∴∠B =∠BCD =90°,由翻折可知:AD =AF =5,DE =EF ,设EC =x ,则DE =EF =3−x .在Rt △ABF 中,BF 4,∴CF =BC −BF =5−4=1,在Rt △EFC 中,EF 2=CE 2+CF 2,∴(3−x )2=x 2+12,∴x =43, ∴EC =43.故选:D .【点睛】本题考查了折叠的性质,矩形的性质,勾股定理,熟练掌握方程的思想方法是解题的关键.3、A【分析】根据题意直接利用勾股定理的逆定理进行判断即可得出答案.【详解】解:∵在ABC 中,A ∠,B ,C ∠的对边分别是a ,b ,c ,且222a c b -=,∴222b c a +=.∴b 、c 是两直角边,a 是斜边,∴90A ∠=︒.故选:A .【点睛】本题考查勾股定理的逆定理.注意掌握如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形.4、B【分析】利用勾股数的定义(勾股数就是可以构成一个直角三角形三边的一组正整数),最大数的平方=最小数的平方和,直接判断即可.【详解】解:A、222+=,故A不符合题意.8715B、222+≠,故B符合题意.456C、222+=,故C不符合题意.72425D、222+=,故D不符合题意.51213故选:B.【点睛】本题主要是考查了勾股数的判别,熟练掌握勾股数的定义,是求解该题的关键.5、C【分析】根据题意画出图形,再根据勾股定理进行解答即可.【详解】解:如图所示:AB=10米,BC=6米,由勾股定理得:AC米.故选:C.【点睛】本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.6、D【分析】根据勾股定理的逆定理,若两条短边的平方和等于最长边的平方,那么就能够成直角三角形来判断.【详解】解:A 、32+32=(2,能构成直角三角形,故此选项不合题意;B 、42+(2=82,能构成直角三角形,故此选项不符合题意;C 、62+82=102,能构成直角三角形,故此选项不合题意;D 、52+52≠(2,不能构成直角三角形,故此选项符合题意.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7、D【分析】先根据勾股定理求出AB ,再利用三角形面积求出BD 即可.【详解】解:∵90ABC ∠=︒,6AC =,3BC =,∴根据勾股定理AB ==,∵BD AC ⊥,∴S △ABC =1122AB BC AC BD ⋅=⋅,即113622BD ⨯=⨯⋅,解得:BD =故选择D .【点睛】 本题考查直角三角形的性质,勾股定理,三角形面积等积式,掌握直角三角形的性质,勾股定理,三角形面积等积式是解题关键.8、A【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】解:A. 13人中至少有2个人生日在同月,是必然事件,故该选项符合题意;B. 任意掷一枚质地均匀的硬币,落地后正面朝上,是随机事件,故该选项不符合题意;C. 从一副扑克牌中随机抽取一张,抽到的是红桃A ,是随机事件,故该选项不符合题意;D. 因为2222223425,636,346+==+≠,则以长度分别是3cm ,4cm ,6cm 的线段为三角形三边,能构成一个直角三角形,是不可能事件,故该选项不符合题意;故选A【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.9、C【分析】根据题意设旗杆的高AB 为xm ,则绳子AC 的长为(x +2)m ,再利用勾股定理即可求得AB 的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC=8m,设旗杆的高AB为xm,则绳子AC的长为(x+2)m,在Rt△ABC中,AB2+BC2=AC2,即x2+82=(x+2)2,解得x=15,故AB=15m,即旗杆的高为15m.故选:C.【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.10、B【分析】连接BM,MB′,由于CB′=3,则DB′=6,在Rt△ABM和Rt△MDB′中由勾股定理求得AM的值.【详解】解:连接BM,MB′,设AM=x,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵折叠,∴MB=MB′,∴AB2+AM2= MD2+DB′2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2,故选:B.【点睛】本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解.二、填空题1、24 5【分析】根据勾股定理的逆定理,得这个三角形是直角三角形;根据直角三角形的面积计算,即可得到答案.【详解】∵三角形的三边分别是6,8,10,又∵2226810+=∴这个三角形是直角三角形 ∵12⨯最长边上的高110682⨯=⨯⨯ ∴最长边上的高为:6824105⨯= 故答案为:245. 【点睛】本题考查了勾股定理逆定理的知识;解题的关键是熟练掌握勾股定理的逆定理,从而完成求解. 2、24【分析】根据勾股定理求出AB ,分别求出三个半圆的面积和△ABC 的面积,两小半圆与直角三角形的和减去大半圆即可得出答案.【详解】解:在Rt △ACB 中∠ACB =90°,AC =6,BC =8,由勾股定理得:AB =10, 阴影部分的面积2221618111068242222222S πππ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:24.【点睛】本题主要考查勾股定理和圆有关的不规则图形的阴影面积.利用规则图形面积的和差关系求阴影面积是这类题型的关键.勾股定理是解决三角形中线段问题最有效的方法之一.3、554【分析】根据题意过点D 作DG ⊥EC ,CF ⊥AB ,连接AC 、DE ,先证明△ADE ≅△BCD 和△GDC ≅△FDC ,进而设AD =BC =5x ,AE = BD =11x ,AF =y ,则BF =16x -y ,通过勾股定理建立方程求解即可.【详解】解:过点D 作DG ⊥EC ,CF ⊥AB ,连接AC 、DE ,∵点D 在CE 的垂直平分线上,DG ⊥EC ,∴DE =DC ,EDG CDG ∠=∠,∵∠AEC =90°,DG ⊥EC ,∠EAD =2∠BDC ,∴//AE DG ,2,EAD GDF BDC AED GDE ∠=∠=∠∠=∠,∴BDC CDG EDG AED ∠=∠=∠=∠,∵∠B =∠EAD ,BDC AED ∠=∠,DE =DC ,∴△ADE ≅△BCD ,AE =BD ,∵DG ⊥EC ,CF ⊥AB ,BDC CDG ∠=∠,CD =CD ,∴△GDC ≅△FDC ,又∵CE =10,CG =CE ,∴CF =CG =5,∵AD ∶BD =5∶11,设AD =BC =5x ,AE = BD =11x ,AF =y ,则BF =16x -y ,由勾股定理AC2=AE2+CE2=CF2+AF2得到121x2+100=25+y2①由勾股定理得BC2=CF2+BF2得到25x2=25+(16x-y)2②联立①②可解得54x=,∴5551144 BD=⨯=.故答案为:554.【点睛】本题考查全等三角形的判定与性质以及勾股定理的应用和垂直平分线性质,熟练掌握通过垂直平分线性质和角平分线性质构造全等三角形是解题的关键.4、289 2【分析】连接BE,根据题意可以证明AEB△是直角三角形,然后根据三角形全等和勾股定理即可证明2222AE AD AC=+,即可求AC的值.【详解】解:如图所示,连接BE,∵在ACB △和ECD 中,∠ACB=∠DCE=90°,CA CB =,CE CD =,90ECA ACD ACE ECB ∴∠+∠=∠+∠=︒,45CEA CDE ∠=∠=︒,45CAB CBA ∠=∠=︒,DCA ECB ∴∠=∠,又∵CE CD =,CA CB =()DCA ECB SAS ∴≅△△,AD BE ∴=,CEB CDA ∠=∠,90BEA CEB CDA CEA CDA ∴∠=∠+∠=∠+∠=︒,AEB ∴是直角三角形,222AE BE AB ∴+=,在Rt ACB 中,AC BC =,22222AC BC AC AB +==,2222AC AE BE ∴=+,∵8AD =,23DE =,∴23815AE DE AD =-=-=222815289=22AC +∴= 故答案为:2892. 【点睛】 本题考查全等三角形的判定与性质、等腰直角三角形的性质,解答本题的关键是找到2222AE AD AC =+.5、(﹣2020201953,0) 【分析】先根据一次函数解析式求出B 1点的坐标,再根据B 1点的坐标求出OA 2的长,用同样的方法得出OA 3,OA 4的长,以此类推,总结规律便可求出点A 2021的坐标.【详解】解:∵点A1坐标为(﹣3,0),∴OA1=3,在y=﹣43x中,当x=﹣3时,y=4,即B1点的坐标为(﹣3,4),∴由勾股定理可得OB1=5,即OA2=5=3×53,同理可得,OB2=253,即OA3=253=5×(53)1,OB3=1259,即OA4=1259=5×(53)2,以此类推,OA n=5×(53)n﹣2=-1253nn-,即点A n坐标为(﹣-1253nn-,0),当n=2021时,点A2021坐标为(﹣2020201953,0),故答案为:(﹣2020201953,0).【点睛】本题考查一次函数图象上点的坐标特征、勾股定理等知识,是重要考点,难度一般,解题注意,直线上任意一点的坐标都满足函数关系式y =﹣43x .三、解答题1、(1)A (4,2);(2)E (2,-2)或(6,6);(3)∠ABO +∠DBO =45°【分析】(1)联立方程组可求解;(2)设点E 的坐标为(a ,b ),分两种情况讨论:当点E 在A 点上方时;当点E 在A 点下方时求解即可;(3)由面积关系可求OB 的长,由全等三角形的性质和等腰直角三角形的性质可求解.【详解】解:(1)联立方程组可得:1226y x y x ⎧=⎪⎨⎪=-⎩,解得:42x y =⎧⎨=⎩, ∴点A (4,2),故答案为(4,2);(2)∵直线y =2x -6与y 轴交于点M ,令2x -6=0,解得:x =3,∴点M (3,0),设点E 的坐标为(a ,b ),当点E 在A 点上方时,则AOE OME OMA S S S =-=1133222b ⨯-⨯⨯=6, 解得:b =6,把b =6代入y =2x -6得:x =6,∴E 的坐标为(6,6),当点E 在A 点下方时, 则AOE OME OMA S S S =+=1133222b ⨯+⨯⨯=6, 解得:b =-2或2(舍去), 把b =-2代入y =2x -6得:x =2, ∴E 的坐标为(2,-2),综上:E (2,-2)或(6,6)(3)由(2)得:C(0,-6),∵△BOC的面积等于△AOC面积的一半,∴12×OC×OB=12×12×OC×4,∴BO=2,如图,作点B关于y轴的对称点B',连接B'C,AB',过点A作AH⊥x轴于H点,∴OB=OB'=2,BB'⊥CO,∴BC=B'C,又∵BB'⊥CO,∴∠BCO=∠B'CO,∵AH=B'O=2,B'H=6=CO,∠AHB'=∠B'OC=90°,∴△AHB'≌△B'OC(SAS),∴∠AB'H=∠B'CO,AB'=B'C,∴∠AB'H+∠CB'O=∠B'CO+∠CB'O=90°,∴∠B'CA=∠ACO+∠B'CO=45°,综上所述:当点B在x轴正半轴上时,∠ACO+∠BCO=45°.【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.2、【分析】连接AM ,由△BDE ≌△MDA ,可证AM=BE =ABM =∠ACM =30°,然后根据含30°角的三角形的性质和勾股定理求解即可.【详解】解:连接AM ,∵AB =AC ,M 是BC 的中点,∴AM ⊥BC .∵MN AB ⊥,∴∠AMD =∠DBE =90°.∵D 是BM 的中点,∴BD =DM .在△BDE 和△MDA 中BDE ADM BD DMDBE AND ∠=∠⎧⎪=⎨⎪∠=⎩, ∴△BDE ≌△MDA ,∴AM=BE =∵AB =AC ,120BAC ∠=︒,∴∠ABM =∠ACM =30°,∴AB =2AM =∴BM∵∠ABM =30°,∴MN∴BN【点睛】本题考查了等腰三角形的性质,30°角所对的直角边等于斜边的一半,以及勾股定理等知识,熟练掌握直角三角形的性质是解答本题的关键.3、(1)AD =(2)①60AEC ∠=︒;②证明见解析.【分析】(1)连接DP ,BD ,可证明△BPD 为等边三角形,再结合等腰三角形的性质和三角形外角的性质证明∠BAD =∠BDA =30°,可得∠ADP =90°,利用勾股定理即可得出结论;(2)①连接BD 与CP 交于F ,连接DC ,利用等腰三角形的性质和三角形内角和定理求得CDB ∠和CDA ∠,从而可求得ADB ∠,根据轴对称图形对应点连接线段被对称轴垂直平分、三角形内角和定理、对顶角相等可求得AEC ∠的度数;②连接BE ,在AE 上截取GE =CE ,可证明△GCE 为等边三角形和△ACG ≌△BCE ,结合等量代换即可证明结论.【详解】解:(1)补全图形如下,连接DP,BD,∵△ABC为等边三角形,∴∠ABC=60°,AB=BC=2,又∵∠BCP+∠BPC=∠ABC=60°,BC=BP,∴∠BCP=∠BPC=30°,∵点B关于直线PC的对称点为D,∴BP=DP,∠BPC=∠DPC=30°,∴∠BPD=60°,△BPD为等边三角形,∴∠DBP=60°,DP=BD=BP=AB=2,∴∠BAD=∠BDA,又∵∠BAD+∠BDA=∠DBP=60°,∴∠BAD=∠BDA=30°,∴∠ADP=90°,∴AD===(2)①如下图所示,连接BD与CP交于F,连接DC,由(1)可知∠ACB =60°,AC =BC ,∵点B 关于直线PC 的对称点为D ,∴BC =CD =AC ,DCP BCP α∠=∠=,∠CFD =90°, ∴180********BCD CDB CBD αα︒-∠︒-∠=∠===︒-, 180180(260)6022ACD CDA CAD αα︒-∠︒-+︒∠=∠===︒-, ∴(90)(60)30ADB CDB CDA αα∠=∠-∠=︒--︒-=︒,∴9060AEC FED ADB ∠=∠=︒-∠=︒,②如下图,连接BE ,在AE 上截取GE =CE ,由①得60AEC ∠=︒,∵GE =CE ,∴△GCE 为等边三角形,∴GC =CE ,∠GCE =60°,由(1)得∠ACB =60°,AC =BC ,∴∠ACG =∠BCE =60°-∠BCG ,在△ACG 和△BCE 中∵AC BC ACG BCE CG CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACG≌△BCE(SAS)∴AG=BE,∵点B关于直线PC的对称点为D,∴BE=DE,∴AE GE AG CE BE CE DE=+=+=+.【点睛】本题考查轴对称的性质,全等三角形的性质和判定,等边三角形的性质和判定,三角形外角和内角的性质,等腰三角形的性质,勾股定理等.(1)中能正确构造直角三角形并证明是解题关键;(2)①中掌握等边对等角定理,并能利用三角形内角和定理表示等腰三角形的底角是解题关键;③中掌握割补法是解题关键.4、(1(2)见解析(3)【分析】(1)直接根据勾股定理求出AC的长即可;(2)在△ACD中,由勾股定理的逆定理即可判断三角形的形状;(3)分别计算出△ABC和△ACD的面积,然后相加即可得四边形ABCD的面积.(1)∵∠B =90°,AB =1,BC =2,∴AC 2=AB 2+BC 2=1+4=5,∴.AC =(2)∵△ACD 中,AC CD =2,AD =2,∴AC 2+CD 2=5+4=9,AD 2=9,∴AC 2+CD 2=AD 2,∴△ACD 是直角三角形.(3)四边形ABCD 的面积:111112212222AB CB AC CD ⨯⨯+⨯⨯=⨯⨯+⨯【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键..5、(1)见解析;(2)132 【分析】(1)先求EF ,再利用勾股定理的逆定理得出△EFC 为直角三角形,即可得证;(2)先求出FEC S和EGF S 的面积,再利用=FEC EGF S S S -阴得出阴影部分的面积.【详解】解:(1)∵∠EGF =90°,根据勾股定理得:5=,∵22225550EF EC+=+=,2250CF==,∴222EF EC CF+=,∴△EFC为直角三角形,∴∠FEC=90°;(2)∵112555222FECS EF EC=⨯⨯=⨯⨯=,1143622EGFS FG EG=⨯⨯=⨯⨯=,∴2513 =622FEC EGFS S S-=-=阴.【点睛】本题考查了勾股定理及其逆定理,灵活运用勾股定理是解题的关键.。
沪科版八年级数学下册第18章勾股定理单元检测卷(满分150分,考试时间120分钟)一、选择题(本大题共6题,每题4分,满分24分)1.某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要( )A.450a元B.225a元C.150a元D.300a元2.如图,Rt△ABC中,∠C=90°,AC=12,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABDE、ACFG、BCIH,四块阴影部分的面积分别为S1、S2、S3、S4.则S1+S2+S3+S4等于()A.90B.60C.169D.1443. 已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.32cm D.122cmcm C.62cm B.424.如图,Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则(AC+BC)2等于( )A.25B.325C.2197D.4055. 已知三角形的三边长为a b c 、、,由下列条件能构成直角三角形的是( )A.()()2222221,4,1a m b m c m =-==+B.()()222221,4,1a m b m c m =-==+C.()()222221,2,1a m b m c m =-==+D.()()2222221,2,1a m b m c m =-==+6. 勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则矩形KLMJ 的面积为( )A .90 B . 100 C . 110 D . 121B . 二、填空题(本大题共12 题,每题4分,满分48分)7.如图,B ,C 是河岸边两点,A 是对岸岸边一点,测得∠ABC =45°,∠ACB =45°,BC =60米,则点A 到岸边BC 的距离是______米.8.在直角三角形中,一条直角边为11cm ,另两边是两个连续自然数,则此直角三角形的周长为______.9.如图,圆柱形容器中,高为120cm ,底面周长为100cm ,在容器内壁离容器底部40cm 的点B 处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿40cm 与蚊子相对的点A 处,则壁虎捕捉蚊子的最短距离为__________cm .(容器厚度忽略不计)10.如图,平面上A、B两点处有甲、乙两只蚂蚁,它们都发现C处有食物,已知点C在A的东南方向,在B的西南方向.甲、乙两只蚂蚁同时从A、B两地出发爬向C处,速度都是30cm/min.结果甲蚂蚁用了2 min,乙蚂蚁2分40秒到达C处分享食物,两只蚂蚁原来所处地点相距_______cm.11. 小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?______________(填“能”或“不能”).12.如图,△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与△ABC的BC边重叠为止,此时这个三角形的斜边长为__________.13.已知:△ABC中,AB=15,AC=13,BC边上的高AD=12,BC=_______.14.如图,E是边长为4cm的正方形ABCD的边AB上一点,且AE=1cm,P为对角线BD上的任意一点,则AP+EP的最小值是____________cm.15.如图,长方体的底面边长分别为1cm 和2cm,高为4cm,点P在边BC上,且BP=14 BC.如果用一根细线从点A开始经过3个侧面缠绕一圈到达点P,那么所用细线最短需要_________cm.16.小明把一根70cm长的木棒放到一个长宽高分别为30cm,40cm,50cm的木箱中,他能放进去吗?答:__________(选填“能”或“不能”).17. 已知长方形OABC,点A、C的坐标分别为OA=10,OC=4,点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,CP的长为________.18. 如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,∠BAD=________.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)甲乙两船从位于东西走向的海岸线上的港口A同时出发,甲以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,2小时后,甲船到C岛,乙船到达B岛,B、C两岛相距100海里,判断乙船所走方向,说明理由.20.(本题满分10分)如图,△ABC中,∠A=90°,AC=20,AB=10,延长AB到D,使CD+DB=AC+AB,求BD 的长.21.(本题满分10分)如图,四边形ABCD是边长为9的正方形纸片,B'为CD边上的点,CB'=3.将纸片沿某条直线折叠,使点B落在点B'处,点A的对应点为A',折痕分别与AD,BC边交于点M,N.求BN的长.22. (本题满分10分)如图所示,已知D、E、F分别是△ABC中BC、AB、AC边上的点,且AE=AF,BE=BD,CF=CD,AB=4,AC=3,32BDCD=,求:△ABC的面积.23.(本小题满分12分)如图等腰△ABC的底边长为8cm,腰长为5cm,一个动点P在底边上从B向C以0.25cm/s的速度移动,请你探究,当P运动几秒时,P点与顶点A的连线PA与腰垂直.24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.25.(本题满分14分)如图1,四根长度一定的木条,其中AB=6cm,CD=15cm,将这四根木条用小钉绞合在一起,构成一个四边形ABCD(在A、B、C、D四点处是可以活动的).现固定AB边不动,转动这个四边形,使它的形状改变,在转动的过程中有以下两个特殊位置.位置一:当点D在BA的延长线上时,点C在线段AD上(如图2);位置二:当点C在AB的延长线上时,∠C=90°.(1)在图2中,若设BC的长为x,请用x的代数式表示AD的长;(2)在图3中画出位置二的准确图形;(各木条长度需符合题目要求)(3)利用图2、图3求图1的四边形ABCD中,BC、AD边的长.参考答案一、选择题(本大题共6题,每题4分,满分24分)12 3 4 5 6 C C C D C D二、填空题(本大题共12 题,每题4分,满分48分)7.【答案】30;8.【答案】132cm ;【解析】由题意()222111n n +=+,解得60n =,所以周长为11+60+61=132.9.【答案】130;10.【答案】100;【解析】依题知AC =60cm ,BC =80cm ,∴ AB2=602+802=1002,AB=100cm . 11.【答案】能;【解析】可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000, 702=4900,因为4900<5000,所以能放进去.12.【答案】81; 13.【答案】14或4;【解析】当△ABC 是锐角三角形时,BC =9+5=14;当△ABC 是钝角三角形时,BC =9-5=4. 14.【答案】5【解析】作E 点关于直线BD 的对称点E ′,连接AE ′,则线段AE ′的长即为AP+EP 的最小值5.15.【答案】5【解析】∵长方体的底面边长分别为1cm 和2cm ,高为4cm ,点P 在边BC 上,且BP=14BC ,∴AC=4cm ,PC=34BC=3cm ,根据两点之间线段最短,AP=5. 16.【答案】能;【解析】解:可设放入长方体盒子中的最大长度是xcm ,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.17.【答案】3,2, 8;【解析】以O 为等腰三角形的顶点,作等腰三角形1OPD ,因为1OP =5,114PH OC ==,所以由勾股定理求得13OH =,所以13CP =,同理,以D 为等腰三角形的顶点,可求出232,8CP CP ==.如图所示.18.【答案】90°;【解析】延长AD 到M ,使DM =AD ,易得△ABD ≌△MCD .∴ CM =AB =5 AM =2AD =12 在△ACM 中22251213+= 即222CM AM AC +=∴∠AMC =∠BAD=90°三、解答题:(本大题共7题,满分78分)19.【解析】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里, ∵602+802=1002,∴∠BAC=90°,∵C 岛在A 北偏东35°方向,∴B 岛在A 北偏西55°方向.∴乙船所走方向是北偏西55°方向.20.【解析】解:设BD =x ,则CD =30-x .在Rt △ACD 中,根据勾股定理列出()222(30)1020x x -=++, 解得x =5.所以BD =5.21. 【解析】解:点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=.设BN B N x '==,则9CN x =-.∵ 正方形ABCD ,∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.解得5x =.∴ 5BN =.22.【解析】 解:∵32BD CD =,设BD =3x ,则CD =2x ,由AE =AF ,BE =BD ,CF =CD , 即AF =3-2x ,AE =4-3x , ∴ 3-2x =4-3x ,解得x =1.∴ BC =3x +2x =5 又∵ 222345+=,即222AC AB BC +=∴ △ABC 是直角三角形,∠A =90°.∴ 1143622ABC S AB AC ==⨯⨯=g △ 23.【解析】解:如图,作AD ⊥BC ,交BC 于点D ,∵BC=8cm ,∴BD=CD=21BC=4cm , ∴AD=3,分两种情况:当点P 运动t 秒后有PA ⊥AC 时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52∴PD=2.25,∴BP=4﹣2.25=1.75=0.25t ,∴t=7秒,当点P 运动t 秒后有PA ⊥AB 时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t ,∴t=25秒,∴点P 运动的时间为7秒或25秒.24.【解析】解:(1)过点A 作AD ⊥ON 于点D ,∵∠NOM=30°,AO=80m ,∴AD=40m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离为40米;(2)由图可知:以50m 为半径画圆,分别交ON 于B ,C 两点,AD ⊥BC ,BD=CD=21BC ,OA=80m , ∵在Rt △AOD 中,∠AOB=30°,∴AD=21OA=21×80=40m , 在Rt △ABD 中,AB=50,AD=40,由勾股定理得:m AD AB BD 3040502222=-=-=,故BC=2×30=60米,即重型运输卡车在经过BD 时对学校产生影响.∵重型运输卡车的速度为18千米/小时,即3006018000=米/分钟, ∴重型运输卡车经过BD 时需要60÷300=0.2(分钟)=12(秒).答:卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.25.【解析】解:(1)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变,BC =x , ∴ 在图2中,AC =BC -AB =x -6,AD =AC +CD =x +9.(2)位置二的图形见图3.(3)∵ 在四边形ABCD 转动的过程中,BC 、AD 边的长度始终保持不变, ∴ 在图3中,BC =x ,AC =AB +BC =6+x ,AD =x +9.在△ACD 中,∠C =90°由勾股定理得222AC CD AD +=.∴ 222(6)15(9)x x ++=+.整理,得2212362251881x x x x +++=++.化简,得6x =180.解得 x =30.即 BC =30.∴ AD =39.。
沪科版八年级数学下册第十八章测试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共12题;共24分)1.以下各组数能作为直角三角形三边长的是A. 2,5,6B. 5,8,10C. 4,11,12D. 5,12,132.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 83.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多米?()A. 4B. 8C. 9D. 74.一个直角三角形“两边”的长分别为3和4,则“第三边”的长是().A. 5B. 6C.D.5.如图,在底面周长为12,高为8的圆柱体上有A,B两点,则一只蚂蚁从圆柱体表面A点爬到B点吃食物的最短距离为()5题6题A. 10B. 8C. 5D. 46.如图,一个底面圆周长为24m,高为5m的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A. 12mB. 15mC. 13mD. 9.13m7.分别以下列四组数为一个三角形的三边长,其中不能构成直角三角形的是()A. 6,8,10B. 3,5,4C. 1,2,D. 2,2,38.如图,正方形中的数表示该正方形的面积,则字母B所代表的正方形的面积是()8题9题10题A. 12B. 144C. 13D. 1949.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A. S l+S2>S3B. S l+S2<S3C. S1+S2=S3D. S12+S22=S3210.如图,一个底面圆周长为24m,高为5m的圆柱体,一只蚂蚁沿侧表面从点A到点B所经过的最短路线长为()A. 12mB. 15mC. 13mD. 3m11.将直角三角形三条边的长度都扩大同样的倍数后得到的三角形()A. 仍是直角三角形B. 可能是锐角三角形C. 可能是钝角三角形D. 不可能是直角三角形12.如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=6cm,点P是母线BC上一点且PC=BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是()A. (4+)cmB. 5cmC. 2cmD. 7cm二、填空题(共8题;共16分)13.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2=________.14.如图,一旗杆被大风刮断,旗杆的顶部着地点到旗杆底部的距离为4m,折断点离旗杆底部的高度为3m,则旗杆的高度为________m.14题15题16题15.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有________米.16.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠A=90°,计算四边形ABCD的面积________.17.在Rt△ABC中,∠BAC=90°,AD⊥BC,垂足为点D,如果AC=6,AB=8,那么AD的长度为________.18.读诗求解:“出水三尺一红莲,风吹花朵齐水面,水平移动有六尺,水深几何请你算?”请你写出水的深度为________尺.19.如图,已知点A(-1,0)和点B(1,2),在y 轴正半轴上确定点P ,使得△ABP 为直角三角形,则满足条件的点P 的坐标为________.19题20题20.在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为 ________cm.(结果保留π)三、解答题(共4题;共19分)21.如图,一根树在离地面9米处撕裂,树的顶部落在离底部12米处,求折断之前树高多少米.22题21题22.如图,在一个长方形的木块上截下一个三角形ABC,使AB=6cm,BC=8cm,截线AC的长是多少?23.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.24.意大利著名画家达•芬奇验证勾股定理的方法如下:①在一张长方形的纸板上画两个边长分别为a、b的正方形,并连接BC、FE.②沿ABCDEF剪下,得两个大小相同的纸板Ⅰ、Ⅱ,请动手做一做.③将纸板Ⅱ翻转后与Ⅰ拼成其他的图形.④比较两个多边形ABCDEF和A′B′C′D′E′F′的面积,你能验证勾股定理吗?四、综合题(共4题;共51分)25.如图所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.(1)求点B到AC的距离?(2)求线段CD的长度?26.菱形ABCD中,对角线AC、BD交于点O,且AC=2BD,以AD为斜边在菱形ABCD同侧作Rt△ADE.(1)如图1,当点E落在边AB上时.①求证:∠BDE=∠BAO;②求的值;③当AF=6时,求DF的长.(2)如图2,当点E落在菱形ABCD内部,且AE=DE时,猜想OE与OB的数量关系并证明.27.爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.(1)【特例探究】如图1,当tan∠PAB=1,c=4 时,a=________,b=________;如图2,当∠PAB=30°,c=2时,a=________,b=________;(2)【归纳证明】请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.(3)【拓展证明】如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE 于E,AF与BE相交点G,AD=3 ,AB=3,求AF的长.28.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做等对角四边形.请解决下列问题:(1)已知:如图1,四边形ABCD是等对角四边形,∠A≠∠C,∠A=70°,∠B=75°,则∠C=________°,∠D=________°(2)在探究等对角四边形性质时:小红画了一个如图2所示的等对角四边形ABCD,其中,∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立,请你证明该结论;(3)图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个等对角四边形ABCD.要求:四边形ABCD的顶点D在格点上,所画的两个四边形不全等.(4)已知:在等对角四边形ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4,求对角线AC的长.答案一、单选题1. D2.A3. D4. D5. A6.C7. D8.B9. C 10.C 11.A 12. B二、填空题13.8 14.8 15.24 16.36 17.4.8 18.4.5 19.(0,3)或(0,1+). 20. ""三、解答题21.解:在Rt△ABC中,∵AC=12m,BC=9m,∴AB= = =15(m),∴AB+BC=15+9=24(m),答:折断之前树高24米.22.解:∵四边形为长方形,∴∠B=90°,在Rt△ABC 中,AB=6cm,BC=8cm,根据勾股定理得:AC= =10cm,则截线AC 的长是10cm.23.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC= =5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30-6=24.24.解:∵四边形ABOF、四边形CDEO是正方形,∴OB=OF,OC=OE,∠BOF=∠COE=90°,∴∠BOC=∠FOE=90°,在△BOC和△FOE中,∴△BOC≌△FOE(SAS),同理可证△BOC≌△B′A′F′≌△E′D′C′,∴BC=EF,B′C′=B′F′=F′E′=E′C′,设BC=EF=c,∴四边形B′C′E′F′是菱形,B′C′=c,∵∠DEF=∠A′F′E′,∠OEF=∠A′F′B′,∴∠B′F′E′=90°,∴四边形B′C′E′F′是正方形,∵两个多边形ABCDEF和A′B′C′D′E′F′的面积相等,∴正方形ABOF的面积+正方形OCDE的面积=正方形B′C′F′的面积,∴a2+b2=c2.四、综合题25.(1)解:过点B作BE⊥AC于点E,在Rt△AEB中,AB=60m,sinA= ,BE=ABsinA=60× =30,cosA= ,∴AE=60× =30 m,在Rt△CEB中,∠ACB=∠CBD﹣∠A=75°﹣30°=45°,∴BE=CE=30m;(2)解:∵AE=30 ,CE=30m,∴AC=AE+CE=(30+30 )m,在Rt△ADC中,sinA= ,∴CD=(30+30 )× =(15+15 )m.26. (1)解:①∵四边形ABCD是菱形,∴AC⊥BD,又△ADE是直角三角形,∴∠AEF=∠DOF=90°,∴∠BDE+∠DFO=∠BAO+∠AFE,∵∠AFE=∠DFO,∴∠BDE=∠BAO;②∵AC=2BD,∴AO=2OB,∴tan∠BAO= = ,∴tan∠ODF= = ,∴=2;③设OF=x,则OD=2x,AO=4x,∵AF=6,∴4x﹣x=6,∴x=2,即OF=2,DO=4,由勾股定理得,DF= =2(2)解:OB= OE.理由如下:如图2,连结BE,在△AEO和△DEB中,,∴△AEO≌△DEB,∴EO=EB,∠AEO=∠DEB,∴∠AEO﹣∠DEO=∠DEB﹣∠DEO,即∠OEB=∠AED=90°,∴OB= OE.27.(1)4 ;4 ;;(2)结论a2+b2=5c2.证明:如图3中,连接MN.∵AM、BN是中线,∴MN∥AB,MN= AB,∴= ∴△MPN∽△APB,= ,设MP=x,NP=y,则AP=2x,BP=2y,∴a2=BC2=4BM2=4(MP2+BP2)=4x2+16y2,b2=AC2=4AN2=4(PN2+AP2)=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.(3)解:如图4中,在△AGE和△FGB中,,∴△AGE≌△FGB,∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,同理可证△APH≌△BFH,∴AP=BF,PE=CF=2BF,即PE∥CF,PE=CF,∴四边形CEPF是平行四边形,∴FP∥CE,∵BE⊥CE,∴FP⊥BE,即FH⊥BG,∴△ABF是中垂三角形,由(2)可知AB2+AF2=5BF2,∵AB=3,BF= AD= ,∴9+AF2=5×()2,∴AF=4.28.(1)140;75 (2)证明:如图2,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)如图所示:(4)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2 ,∴AC== =2 ;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM= AD=2,∴DM=2 ,∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2 ,∵∠BCD=60°,∴CN= ,∴BC=CN+BN=3 ,∴AC= =2 .综上所述:AC的长为2 或2 .故答案为:140,75.。
沪科版初二数学下册第18章达标检测卷(150分,90分钟)一、选择题(每题4分,共40分)1.三角形的三边长为a,b,c,且满足()a+b2=c2+2ab,则这个三角形是() A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形2.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个B.2个C.3个D.4个3.一个直角三角形,有两边长分别为6和8,下列说法正确的是()A.第三边长一定是10 B.三角形的周长为24 C.三角形的面积为24 D.第三边长可能是2 74.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8 cm B.5 2 cm C.5.5 cm D.1 cm5.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最多能伸长13米,则云梯可以到达该建筑物的最大高度是()(消防车的高度忽略不计)A.12米B.13米C.14米D.15米6.在如图所示的网格中,每个小正方形的边长都为1,△ABC的顶点都在格点上,三边长分别为a、b、c,则a、b、c的大小关系是()A.a<c<b B.a<b<c C.c<a<b D.c<b<a7.一次函数y=34x+3的图象与x轴,y轴分别交于A,B两点,则A,B两点之间的距离是()A.3 B.4 C.5 D.68.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A .65B .95C .125D .165(第6题)(第8题)(第9题)(第10题)9.如图,在Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .53B .52C .4D .5 10.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,AD 平分∠BAC 交BC 于点D ,则BD 的长为( )A .157B .125C .207D .215二、填空题(每题5分,共20分)11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是________. 12.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE =1,F 为AB 上的一点,AF =2,P 为AC 上一个动点,则PF +PE 的最小值为________.(第12题)(第13题)(第14题)13.如图①是一面长方形彩旗完全展平时的尺寸图(单位:cm),其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,长方形DCEF为绸缎旗面.将穿好彩旗的旗杆竖直插在操场上,旗杆从旗顶到地面的高度为220 cm,在无风的天气里,彩旗自然下垂,如图②,则彩旗下垂时最低处离地面的高度h为________ cm.14.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________.三、解答题(19,20题每题10分,21,22题每题12分,23题14分,其余每题8分,共90分)15.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,则△ABC的形状是什么?16.一个零件的形状如图①所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件的尺寸如图②所示,那么这个零件符合要求吗?(第16题)17.如图,甲、乙两船同时从港口A出发,甲船以12海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距40海里,求乙船航行的平均速度为多少.(第17题)18.如图,△ABC中,AD是BC边上的中线,以D为顶点作∠EDF=90°,DE,DF 分别交AB,AC于E,F,且BE2+CF2=EF2,求证:△ABC为直角三角形.(第18题)19.如图,一块长方体砖宽AN=5 cm,长ND=10 cm,B为CD上的一点,BD=8 cm,地面上点A处的一只蚂蚁想要沿长方体砖的表面爬到B处吃食,则蚂蚁需要爬行的最短路程是多少?(第19题)20.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:,即=|x|+|y|(其中“+”是四则运算中的加法).(1)求点A(-1,3),B(3+2,3-2)的勾股值、;(2)求满足条件=3的所有点N围成的图形的面积.21.如图所示,在△ABC中,AB∶BC∶AC=3∶4∶5,且周长为36 cm,点P从点A 开始沿AB边向B点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm 的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?(第21题)22.小明、小华在一栋电梯前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能知道!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,如图,其中长方形CDEF表示楼体,CF=DE,∠ACF=∠BDE=90°,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上),问:(1)楼高多少米?(结果保留根号)(2)若每层楼按3米计算,你支持小明还是小华的观点?说明理由.(参考数据:3≈1.73,2≈1.41,5≈2.24)(第22题)23.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.(1)在图①中以格点为顶点画一个三角形,使三角形三边长分别为2,5,13;(2)在图②中以格点为顶点画一个面积为10的正方形;(3)观察图③中带阴影的图形,请你将它适当剪开,重新拼成一个正方形(要求:在图③中用虚线作出,并用文字说明剪拼方法).(第23题)参考答案与解析一、1.C 点拨:化简()a +b 2=c 2+2ab ,得a 2+b 2=c 2,所以该三角形是直角三角形,故选C .2.C3.D 点拨:分两种情况:①当两直角边长为6和8时,第三边长为10,三角形的周长为24,面积为24;②当斜边长为8时,第三边长为2 7,周长为14+2 7,面积为6 7.故选D . 4.A 5.A6.C 点拨:由题意知,c =4;由勾股定理可得,a =42+12=17,b =42+32=5,所以c <a <b.故选C .7.C 点拨:先求出一次函数y =34x +3的图象与两坐标轴的交点的坐标,得出两直角边的长,再利用勾股定理计算即可.8.C9.C 点拨:设线段BN 的长为x ,则AN =9-x.由题意得DN =AN =9-x.因为点D 为BC 的中点,所以BD =12BC =3.在Rt △BND 中,∠B =90°.由勾股定理,得BN 2+BD 2=DN 2,即x 2+32=(9-x)2,解得x =4.10.A 点拨:∵∠BAC =90°,AB =3,AC =4,∴BC =5,∴BC 边上的高为3×4÷5=125.∵AD 平分∠BAC ,∴点D 到AB ,AC 的距离相等,设为h ,则S △ABC =12×3h +12×4h =12×3×4,解得h =127,∴S △ABD =12×3×127=12BD·125,解得BD =157.故选A . 二、11.15 点拨:设第三个数是a.①若a 是三个数中最大的数,则a =82+172=353,不是整数,不符合题意;②若17是三个数中最大的数,则a =172-82=15,8、15、17是正整数,是一组勾股数,符合题意.12.17 点拨:作F 关于AC 在AD 上的对称点F′,连接EF′,交AC 于P′.当点P 在P′处,此时PF +PE 的值最小,PF +PE 的最小值=12+42=17.13.70 点拨:如题图①,连接DE ,已知EF =90cm ,DF =120cm ,根据勾股定理可得DE =150cm ,所以彩旗自然下垂时最低处离地面的高度h 为220-150=70(cm ).14.(2)n -1三、15.解:∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0,∴a =3,b =4,c =5.∵32+42=52,即a 2+b 2=c 2,∴根据勾股定理的逆定理可判定△ABC 是直角三角形.点拨:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理可判定△ABC 是直角三角形.16.解:在△ABD 中,因为AB 2+AD 2=82+62=102=BD 2,所以△ABD是直角三角形,且∠A=90°,在△DBC中,因为BD2+BC2=102+242=262=CD2,所以△BCD是直角三角形,且∠DBC=90°,所以这个零件符合要求.点拨:要判断一个三角形中是否有直角,首先必须算出三边的长,再利用勾股定理的逆定理进行验证.17.解:由题意可知△ABC为直角三角形,∠CAB=90°,且AC=12×2=24(海里),由勾股定理得AB=BC2-AC2=402-242=32(海里),32÷2=16(海里/时),即乙船航行的平均速度为16海里/时.18.证明:延长FD至M,使MD=FD,连接MB,ME,如图所示,∵D为BC的中点,∴BD=DC,又MD=FD,∠BDM=∠CDF,∴△BDM≌△CDF(SAS),∴∠DBM=∠C,BM=CF,∵∠EDF=90°,MD=FD,∴EM=EF,∵BE2+CF2=EF2,∴BE2+BM2=EM2,即△BEM为直角三角形,且∠EBM=90°.由∠DBM=∠C知,BM∥AC,∴∠BAC=180°-∠EBM=90°,即△ABC为直角三角形.(第18题)(第19题)19.解:如图,将长方体砖的部分侧面展开,连接AB,则AB的长即为从A处到B处的最短路程.在Rt△ABD中,因为AD=AN+ND=5+10=15(cm),BD=8 cm,所以AB =AD2+BD2=152+82=17(cm).因此蚂蚁需要爬行的最短路程为17 cm.(第20题)20.解:=|-1|+|3|=4.=|3+2|+|3-2|=3+2+2-3=4.(2)设N(x,y),∵=3,∴|x|+|y|=3.①当x≥0,y≥0时,x+y=3,即y=-x+3;②当x>0,y<0时,x-y=3,即y=x-3;③当x<0,y>0时,-x+y=3,即y=x+3;④当x≤0,y≤0时,-x-y=3,即y=-x-3.如图,满足条件=3的所有点N围成的图形是正方形,面积是18. 21.解:设AB为3x cm,则BC为4x cm,AC为5x cm,∵周长为36 cm,∴AB+BC+AC=36 cm,即3x+4x+5x=36,解得x=3,∴AB=9 cm,BC=12 cm,AC=15 cm.∴AB2+BC2=AC2,∴△ABC是直角三角形,且∠B=90°.过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),∴S△BPQ=12BP·BQ=12×6×6=18(cm2).故过3秒时,△BPQ的面积为18 cm2.点拨:本题先设适当的参数求出三角形的三边长,由勾股定理的逆定理得出三角形为直角三角形,再求出3秒后的BP,BQ的长,利用三角形的面积公式计算即可.22.解:(1)设楼高为x米,则CF=DE=x米.∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴AF=2x米,BD=x米,∴AC=AF2-FC2=3x米,∴3x+x=150-10,解得x=1403+1=70(3-1),∴楼高为70(3-1)米.(2)70(3-1)≈70×(1.73-1)=70×0.73=51.1.∵51.1<3×20=60,∴我支持小华的观点,这栋楼不到20层.23.解:(1)如图①所示,△ABC即为所求作的三角形.(2)如图②所示,正方形ABCD的面积为10.(3)如图③所示,正方形ABCD即为重新拼成的正方形.剪拼方法:沿图③中的虚线剪开,然后①②③分别对应拼接即可.。
沪科版八年级数学下册 第18章 达标检测卷(考试时间:120分钟 满分:150分) 班级:________ 姓名:________分数:________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各组数中是勾股数的是( )A .0.3,0.4,0.5B .3k ,4k ,5kC .7,24,25D . 3 , 2 ,1 2.下列各组线段中能组成直角三角形的是( )A .a =13 ,b =14 ,c =15 B .a = 2 ,b = 3 ,c = 6C .a =2,b =3,c =4D .a =3,b =3,c =3 23.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且∠A ∶∠B ∶∠C =1∶1∶2,则下列说法中错误的是( )A .∠C =90°B .a 2=b 2-c 2C .c 2=2a 2D .a =b 4.如图所示,在数轴上点A 所表示的数为a ,则a 的值为( )A .-1- 5B .1- 5C .- 5D .-1+ 5第4题图5.将一根24 cm 的筷子,置于底面直径为15 cm ,高8 cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为h cm ,则h 的取值范围是( )A .h≤15B .h≥8C .8≤h≤17D .7≤h≤156.(甘井子区期末)如图,点A 的坐标为(3,0),B 是y 轴正半轴上一点,AB =5,则点B 的坐标为( ) A .(4,0) B .(0,4) C .(0,5) D .(0,31 )第6题图7.如图,以Rt △ABC 的三边为直角边分别向外作等腰直角三角形,若AB = 5 ,则图中阴影部分的面积为( )A .52B .254C .252D .5第7题图第8题图8.(大悟县期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若ab =8,小正方形的面积为9,则大正方形的边长为( ) A .9 B .6 C .5 D .49.如图,已知AB ⊥CD ,△ABD ,△BCE 都是等腰直角三角形.如果CD =7,BE =3,那么AC 的长为( ) A .8 B .5 C .3 D .4第9题图第10题图10.★如图,P 是等边△ABC 内一点,连接P A ,PB ,PC ,P A ∶PB ∶PC =3∶4∶5,以AC 为边在三角形外作△AP ′C ≌△APB ,连接PP ′,则以下结论中错误的是( )A .△APP′是正三角形;B .△PCP′是直角三角形;C .∠APB =150°D .∠APC =135°二、填空题(本大题共4小题,每小题5分,满分20分) 11.已知直角三角形的两直角边长分别是3,4,则它的周长为.12.若三角形的三边长分别为x +1,x +2,x +3,当x =时,此三角形是直角三角形.13.如图,在一棵树的10米高处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A 处(离树20米)的池塘边.另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.第13题图第14题图14.★(霍邱县期末)如图,Rt △ABC 中,∠ACB =90°,AC =12,BC =5,延长BC 至点D ,连接AD ,若△ABD 是以AD 为其中一腰的等腰三角形,则线段DC 的长等于.三、(本大题共2小题,每小题8分,满分16分)15.(庆云县期中)计算:(1)在Rt△ABC中,∠C=90°,a=8,b=15,求c;(2)直角三角形的两边分别为3和5,求第三边.16.(武川县期末)如图,网格中小正方形的边长均为1.请在网格中画出一个△ABC,要求:顶点都在格点(即小正方形的顶点)上;三边长满足AB=10 ,BC=2 2 ,AC=10 ,并求出该三角形的面积.四、(本大题共2小题,每小题8分,满分16分)17.(香坊区期末)我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22-1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32-1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n(n≥2,且n为整数),根据上述规律,请直接写出这组勾股数组.18.(建邺区期末)如图,在△ABC 中,∠ABC =∠ACB ,AC =3,D 是CA 延长线上一点,AD =5,BD =4.求证:AB ⊥BD .五、(本大题共2小题,每小题10分,满分20分)19.如图,在笔直的铁路上A ,B 两点相距25 km ,C ,D 为两村庄,AC =10 km ,BD =15 km ,AC ⊥AB 于点A ,BD ⊥AB 于点B ,现要在AB 上建一个中转站E ,使得C ,D 两村到E 站的距离相等.求E 应建在距A 多远处?20.如图,在正方形ABCD 中,E 是AD 的中点,点F 在DC 上,且DF =14 DC ,试判断BE 与EF 的位置关系,并说明理由.21.(内乡县期末)如图,是超市购物车的侧面简化示意图,测得支架AC=24 cm,CB=18 cm,两轮中心的距离AB=30 cm,求点C到AB的距离.(结果保留整数)七、(本题满分12分)22.如图①所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图②所示.已知展开图中每个正方形的边长均为1.(1)求在该展开图中可画出的最长线段的长度,这样的线段可以画几条?(2)求∠B′A′C′的度数?说明理由;(3)在图①中若蚂蚁从点A′沿着正方体的表面爬行到点C,试求爬行的最短路程.①②23.(蜀山区期中)如图,在△ABC中,∠B=90°,AB=8厘米,BC=6厘米,P,Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,速度为1厘米/秒,点Q从点B开始沿B→C→A方向运动,速度为2厘米/秒,若它们同时出发,设出发的时间为t秒.(1)求出发2秒后,PQ的长;(2)点Q在CA边上运动时,当△BCQ成为等腰三角形时,求点Q的运动时间.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.下列各组数中是勾股数的是( C ) A .0.3,0.4,0.5 B .3k ,4k ,5k C .7,24,25 D . 3 , 2 ,12.(宜城期末)下列各组线段中能组成直角三角形的是( D ) A .a =13 ,b =14 ,c =15 B .a = 2 ,b = 3 ,c = 6C .a =2,b =3,c =4D .a =3,b =3,c =3 23.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且∠A ∶∠B ∶∠C =1∶1∶2,则下列说法中错误的是( B )A .∠C =90°B .a 2=b 2-c 2;C .c 2=2a 2D .a =b4.(瑶海区期末)如图所示,在数轴上点A 所表示的数为a ,则a 的值为( A ) A .-1- 5 B .1- 5 C .- 5 D .-1+ 5第4题图5.将一根24 cm 的筷子,置于底面直径为15 cm ,高8 cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为h cm ,则h 的取值范围是( C ) A .h ≤15 B .h ≥8C .8≤h ≤17 D .7≤h ≤156.(甘井子区期末)如图,点A 的坐标为(3,0),B 是y 轴正半轴上一点,AB =5,则点B 的坐标为( B ) A .(4,0) B .(0,4)C .(0,5) D .(0,31 )第6题图7.如图,以Rt △ABC 的三边为直角边分别向外作等腰直角三角形,若AB = 5 ,则图中阴影部分的面积为( D )A .52B .254C .252D .5第7题图第8题图8.(大悟县期中)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,小正方形的面积为9,则大正方形的边长为(C)A.9 B.6 C.5 D.49.如图,已知AB⊥CD,△ABD,△BCE都是等腰直角三角形.如果CD=7,BE=3,那么AC的长为(B) A.8 B.5 C.3 D.4第9题图第10题图10.★如图,P是等边△ABC内一点,连接P A,PB,PC,P A∶PB∶PC=3∶4∶5,以AC为边在三角形外作△AP′C≌△APB,连接PP′,则以下结论中错误的是(D)A.△APP′是正三角形B.△PCP′是直角三角形C.∠APB=150°D.∠APC=135°二、填空题(本大题共4小题,每小题5分,满分20分)11.已知直角三角形的两直角边长分别是3,4,则它的周长为12.12.若三角形的三边长分别为x+1,x+2,x+3,当x=2时,此三角形是直角三角形.13.如图,在一棵树的10米高处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高15米.第13题图第14题图14.★(霍邱县期末)如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD 为其中一腰的等腰三角形,则线段DC 的长等于5或11910. 选择、填空题答题卡一、选择题(每小题4分,共40分)11.__12__ 12.__2__ 13.__15__ 14.__5或11910__三、(本大题共2小题,每小题8分,满分16分) 15.(庆云县期中)计算:(1)在Rt △ABC 中,∠C =90°,a =8,b =15,求c ; 解:利用勾股定理,得c =a 2+b 2 =82+152 =17,即c =17.(2)直角三角形的两边分别为3和5,求第三边. 解:当5是直角边时,第三边=32+52 =34 , 当5是斜边时,第三边=52-32 =4, ∴第三边长为34 或4.16.(武川县期末)如图,网格中小正方形的边长均为1.请在网格中画出一个△ABC ,要求:顶点都在格点(即小正方形的顶点)上;三边长满足AB =10 ,BC =2 2 , AC =10 ,并求出该三角形的面积.解:如图,△ABC 即为所求.则S △ABC =3×3-12 ×1×3-12 ×2×2-12 ×1×3=4.四、(本大题共2小题,每小题8分,满分16分)17.(香坊区期末)我们知道,以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组,记为(3,4,5),可以看作(22-1,2×2,22+1);同时8,6,10也为勾股数组,记为(8,6,10),可以看作(32-1,2×3,32+1).类似的,依次可以得到第三个勾股数组(15,8,17).(1)请你根据上述勾股数组规律,写出第5个勾股数组;(2)若设勾股数组中间的数为2n(n≥2,且n为整数),根据上述规律,请直接写出这组勾股数组.解:(1)上述四组勾股数组的规律是32+42=52,62+82=102,82+152=172,即(n2-1)2+(2n)2=(n2+1)2,∴第5个勾股数组为(35,12,37).(2)勾股数组为n2-1,2n,n2+1.18.(建邺区期末)如图,在△ABC中,∠ABC=∠ACB,AC=3,D是CA延长线上一点,AD=5,BD=4.求证:AB⊥BD.证明:∵∠ABC=∠ACB,AC=3,∴AB=AC=3,又∵AD=5,BD=4,∴AB2+BD2=25=AD2,∴△ABD是直角三角形,且∠ABD=90°,∴AB⊥BD.五、(本大题共2小题,每小题10分,满分20分)19.如图,在笔直的铁路上A,B两点相距25 km,C,D为两村庄,AC=10 km,BD=15 km,AC⊥AB于点A,BD⊥AB于点B,现要在AB上建一个中转站E,使得C,D两村到E站的距离相等.求E应建在距A多远处?解:设AE=x,则BE=25-x,在Rt△ACE中,CE2=AC2+AE2=102+x2.在Rt △BDE 中,DE 2=BD 2+BE 2=152+(25-x )2.由题意可知CE =DE .∴102+x 2=152+(25-x )2,解得x =15.∴E 应建在距A 点15 km 处.20.如图,在正方形ABCD 中,E 是AD 的中点,点F 在DC 上,且DF =14DC ,试判断BE 与EF 的位置关系,并说明理由.解:BE ⊥EF .理由如下:设正方形的边长为4k ,则AE =ED =2k ,DF =k ,CF =3k .在Rt △ABE 中,BE 2=AB 2+AE 2=(4k )2+(2k )2=20k 2.在Rt △DEF 中,EF 2=ED 2+DF 2=(2k )2+k 2=5k 2.在Rt △CFB 中,FB 2=CF 2+CB 2=(3k )2+(4k )2=25k 2.在△BEF 中,∵BE 2+EF 2=20k 2+5k 2=FB 2,∴△BEF 是直角三角形,且∠BEF 是直角,∴BE ⊥EF .六、(本题满分12分)21.(内乡县期末)如图,是超市购物车的侧面简化示意图,测得支架AC =24 cm ,CB =18 cm ,两轮中心的距离AB =30 cm ,求点C 到AB 的距离.(结果保留整数)解:过点C 作CE ⊥AB 于点E ,则CE 的长即为点C 到AB 的距离,在△ABC 中,∵AC =24,CB =18,AB =30,∴AC 2+CB 2=242+182=900,AB 2=302=900,∴AC 2+BC 2=AB 2,∴△ABC为直角三角形,且∠ACB=90°,∵S△ABC=12AC·BC=12CE·AB,∴AC·BC=CE·AB,即24×18=CE×30,∴CE=14.4≈14,答:点C到AB的距离约为14 cm.七、(本题满分12分)22.如图①所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图②所示.已知展开图中每个正方形的边长均为1.(1)求在该展开图中可画出的最长线段的长度,这样的线段可以画几条?(2)求∠B′A′C′的度数?说明理由;(3)在图①中若蚂蚁从点A′沿着正方体的表面爬行到点C,试求爬行的最短路程.①②解:(1)如图②,A′H=1+1+1=3,C′H=1,即最长线段A′C′的长度是32+12=10 ,这样的线段可以画4条,如图②线段EB′,线段FM,线段A′C′,线段GH.(2)连接B′C′,由图形可知:A′B′= 5 ,B′C′= 5 ,A′C′=10 ,∴A′B′2+B′C′2=A′C′2.即△A′B′C′是等腰直角三角形,∴∠B′A′C′=45°.(3)如图所示展开:连接A′C,则线段A′C的长就是蚂蚁从点A′沿着正方体的表面爬行到点C的最短路程,在Rt△A′C′C中,A′C′=1+1=2,C′C=1,∠A′C′C=90°,由勾股定理,得A′C=22+12= 5 .答:爬行的最短路程为 5 .八、(本题满分14分)23.(蜀山区期中)如图,在△ABC中,∠B=90°,AB=8厘米,BC=6厘米,P,Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,速度为1厘米/秒,点Q从点B开始沿B→C→A方向运动,速度为2厘米/秒,若它们同时出发,设出发的时间为t秒.(1)求出发2秒后,PQ的长;(2)点Q在CA边上运动时,当△BCQ成为等腰三角形时,求点Q的运动时间.解:(1)BQ=2×2=4,BP=AB-AP=8-2×1=6,∵∠B=90°,PQ=BQ2+BP2=213 (厘米).答图①答图②答图③(2)分三种情况:①当CQ=BQ时,如答图①所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=5,∴BC+CQ=11,∴t=11÷2=5.5秒;②当CQ =BC 时,如答图②所示, 则BC +CQ =12,∴t =12÷2=6秒.③当BC =BQ 时,如答图③所示, 过点B 作BE ⊥AC 于点E ,由勾股定理得AC =AB 2+BC 2 =10,则BE =AB·BC AC =6×810 =4.8,∴CE =BC 2-BE 2 =3.6,∴CQ =2CE =7.2,∴BC +CQ =13.2, ∴t =13.2÷2=6.6秒.综上可知,当t 为5.5秒或6秒或6.6秒时, △BCQ 为等腰三角形.。
第18章检测卷一、选择题(本大题共10小题,每小题4分,满分40分)1.设直角三角形的两条直角边的长分别为a和b,斜边长为c,已知b=12,c=13,则a的值为()A.1 B.5 C.10 D.252.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.1,2, 3 B.6,8,10C.5,12,13 D.3,2, 53.如图,点P是平面坐标系内一点,则点P到原点的距离是()A.3 B. 2 C.7 D.53第3题图第4题图4.如图,已知AB⊥CD,△ABD,△BCE都是等腰直角三角形.如果CD=7,BE=3,那么AC的长为()A.8 B.5 C.3 D.45.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里第5题图第6题图6.如图是一个十字路口,O是两条公路的交点,点A,B,C,D表示的是公路上的四辆车.若OC=8m,AC=17m,AB=5m,BD=105m,则C,D两辆车之间的距离为() A.5m B.4m C.3m D.2m7.如图,在Rt △ABC 中,∠ACB =90°,若AB =15cm ,则正方形ADEC 与正方形BCFG 的面积之和为( )A .150cm 2B .200cm 2C .225cm 2D .无法计算第7题图 第8题图8.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线AC 上的D ′处.若AB =3,AD =4,则ED 的长为( )A.32 B .3 C .1 D.439.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形的面积为49,小正方形的面积为4.若用x ,y 表示直角三角形的两直角边长(x >y ),下列四个说法:①x 2+y 2=49;②x -y =2;③2xy +4=49;④x +y =9.其中正确的说法是( )A .①②B .①②③C .①②④D .①②③④第 9题图 第10题图10.如图,已知等腰直角三角形ABC 的各顶点分别在直线l 1,l 2,l 3上,且l 1∥l 2∥l 3,l 1,l 2间的距离为1,l 2,l 3间的距离为3,则AB 的长度为( )A .2 2B .3 2C .4 2D .5 2二、填空题(本大题共4小题,每小题5分,满分20分)11.在△ABC 中,∠C =90°,如果AC =1,∠B =30°,那么AB =________,BC =________. 12.如图,在△ABC 中,∠C =90°,BA =15,AC =12,以直角边BC 为直径作半圆,则这个半圆的面积是________.第12题图 第13题图 第14题图13.《九章算术》中记载:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?我们用线段OA 和线段AB 来表示竹子,其中线段AB 表示竹子折断部分,线段OB 表示竹梢触地面处与竹根的距离,则竹子折断处离地面的高度OA 是________尺.14.如图,一只蚂蚁沿着棱长为2的正方体表面从点A出发,经过3个面爬到点B,如果它爬行的路径是最短的,那么最短距离为________.三、(本大题共2小题,每小题8分,满分16分)15.已知a,b,c为一个直角三角形的三边长,且有(a-3)2+(b-2)2=0,求直角三角形的斜边长.16.如图,有一块边长为40米的正方形绿地ABCD,在绿地的边BC上的E处装有健身器材,BE=9米.有人为了走近路,从A处直接踏过绿地到达E处,小明想在A处树立一个标牌“少走■米,踏之何忍”.请你计算后帮小明在标牌的■处填上适当的数.四、(本大题共2小题,每小题8分,满分16分)17.如图,在边长为1的小正方形组成的网格中,四边形ABCD的四个顶点都在格点上,请按要求完成下列各题:(1)线段AB的长为________,BC的长为________,CD的长为________;(2)连接AC,通过计算说明△ACD和△ABC各是什么特殊三角形.18.如图,在四边形ABCD中,∠B=90°,AB=2,BC=4,CD=5,AD=35,求四边形ABCD的面积.五、(本大题共2小题,每小题10分,满分20分)19.如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1……如此作下去,若OA=OB=1.(1)A1B=________,S△A1B1A2=________;(2)试猜想第n个等腰直角三角形的面积S n.20.如图,在笔直的铁路上A,B两点相距25km,C,D为两村庄,DA=10km,CB=15km,DA⊥AB于点A,CB⊥AB于点B,现要在AB上建一个中转站E,使得C,D两村到E站的距离相等.求E站应建在距点A多远处.六、(本题满分12分)21.如图,在△ABC中,AB=8cm,AC=6cm,BC=10cm,点D在AB上,且BD=CD,求△BDC的面积.七、(本题满分12分)22.葛藤是一种刁钻的植物,它的腰杆不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是它绕树盘升的路线总是沿最短路线——螺旋前进的.通过阅读以上信息,解决下列问题:(1)若树干的周长(即图中圆柱的底面周长)为30cm,葛藤绕一圈升高(即圆柱的高)40cm,则它爬行一圈的路程是多少?(2)若树干的周长为80cm,葛藤绕一圈爬行100cm,它爬行10圈到达树顶,则树干高多少?八、(本题满分14分)23.定义:三边长和面积都是整数的三角形称为“整数三角形”.数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位长度)中取出若干根,首尾依次相接组成三角形,进行探究活动.小亮用12根火柴棒,摆成如图所示的“整数三角形”;小颖分别用24根和30根火柴棒摆出直角“整数三角形”;小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.(1)请你画出小颖和小辉摆出的“整数三角形”的示意图;(2)你能否也从中取出若干根,按下列要求摆出“整数三角形”?如果能,请画出示意图;如果不能,请说明理由.①摆出等边“整数三角形”;②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.参考答案与解析1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.A9.B 解析:由题意得⎩⎪⎨⎪⎧x 2+y 2=49,(x -y )2=4,两式相减得2xy =45,∴2xy +4=49,x 2+2xy +y 2=94,∴(x +y )2=94,∴x +y =94.∵(x -y )2=4,x >y ,∴x -y =2,∴①②③正确,④错误.故选B.10.D 解析:过点A 作AD ⊥l 3于点D ,过点B 作BE ⊥l 3于点E ,则AD =1+3=4,BE =3,∠ADC =∠CEB =90°,∴∠CAD +∠ACD =90°.∵△ABC 是等腰直角三角形,∴AC =BC ,∠ACB =90°,∴∠ACD +∠BCE =90°,∴∠CAD =∠BCE .在△ADC 和△CEB 中,∵⎩⎪⎨⎪⎧∠CAD =∠BCE ,∠ADC =∠CEB ,AC =CB ,∴△ADC ≌△CEB ,∴CD =BE =3.在Rt △ADC 中,由勾股定理得AC =AD 2+CD 2=5.∴BC =AC =5,∴AB =BC 2+AC 2=5 2.故选D.11.2 3 12.81π813.4.5514.210 解析:将正方体表面按如图展开,连接AB ,此时蚂蚁运动的路径AB 最短.易知AD =2×3=6,BD =2,则最短距离AB =62+22=210.15.解:∵(a -3)2+(b -2)2=0,∴a -3=0,b -2=0,解得a =3,b =2.(3分)①以a 为斜边长时,斜边长为3;(5分)②以a ,b 为直角边的长时,斜边长为32+22=13.(7分)综上所述,直角三角形的斜边长为3或13.(8分)16.解:∵正方形ABCD 的边长为40米,∴AB =40米,∠B =90°.在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=402+92=41(米).(4分)∵AB +BE =40+9=49(米),∴少走的路程为49-41=8(米),∴标牌的■处填的数是8.(8分)17.解:(1)5 5 22(3分)(2)∵AC =22+42=25,AD =22+42=25,∴AC =AD ,∴△ACD 是等腰三角形.(5分)∵AB 2+AC 2=(5)2+(25)2=5+20=25=BC 2,∴△ABC 是直角三角形.(8分) 18.解:连接AC .在Rt △ABC 中,AC =AB 2+BC 2=22+42=2 5.(2分)∵AC 2+CD 2=(25)2+52=45=(35)2=AD 2,∴∠ACD =90°,(4分)∴S 四边形ABCD =12AB ·BC +12AC ·CD =12×2×4+12×25×5=4+5 5.(8分) 19.解:(1)2(2分) 4(4分)(2)∵OA =OB =1,∠AOB =90°,∴AB =2,S 1=12×1×1=12=2-1.∵AA 1=AB =2,∠A 1AB =90°,∴A 1B =2,S 2=12×2×2=1=20.∵BB 1=A 1B =2,∠A 1BB 1=90°,∴A 1B 1=22,S 3=12×2×2=2=21.∵A 2A 1=A 1B 1=22,∠A 2A 1B 1=90°,∴A 2B 1=4,S 4=12×22×22=4=22.由此可猜想S n =2n -2.(10分)20.解:设AE =x km ,则BE =(25-x )km.(2分)在Rt △ADE 中,由勾股定理得DE 2=AD 2+AE 2=102+x 2.在Rt △BCE 中,由勾股定理得CE 2=BC 2+BE 2=152+(25-x )2.(6分)由题意可知DE =CE ,即102+x 2=152+(25-x )2,解得x =15.(9分)答:E 站应建在距点A 15km 处.(10分)21.解:∵AB =8cm ,AC =6cm ,BC =10cm ,∴AB 2+AC 2=BC 2,∴∠BAC =90°.(3分)设BD =CD =x cm ,则AD =(8-x )cm.(5分)在Rt △ADC 中,由勾股定理得AD 2+AC 2=CD 2,即(8-x )2+62=x 2,解得x =254,即BD =254cm.(9分)∴S △BDC =12BD ·AC =12×254×6=754(cm 2).(12分)22.解:(1)如图为圆柱侧面沿AB 剪开的展开图.(1分)圆柱的底面周长为30cm ,即AC =30cm ,高为40cm ,即CD =40cm ,∴AD =AC 2+CD 2=50cm.(5分)答:它爬行一圈的路程是50cm.(6分)(2)树干的周长为80cm ,即AC =80cm ,绕一圈爬行100cm ,即AD =100cm ,∴绕一圈上升的高度CD =AD 2-AC 2=60cm.(10分)∴树干的高为60×10=600(cm)=6(m).(11分)答:树干高6m.(12分)23.解:(1)小颖摆出如图①所示的“整数三角形”,(4分)小辉摆出如图②所示三个不同的等腰“整数三角形”.(10分)(2)①不能摆出等边“整数三角形”.理由如下:设等边三角形的边长为a,易得等边三角形的面积为34a2.若边长a为整数,那么面积34a2一定是非整数.所以不存在等边“整数三角形”.(12分)②能摆出一个非特殊“整数三角形”,如图③所示.(14分)。
第18章《勾股定理》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是( )A.如果a:b:c=1:1:2,那么△ABC是直角三角形B.如果∠A=∠B﹣∠C,那么△ABC是直角三角形C.如果a=35c,b=45c,那么△ABC为直角三角形D.如果b2=a2﹣c2,那么△ABC是直角三角形且∠B=90°2.如图,在四边形ABCD中,AB=BC=2,CD=3,AD=1,∠B=90°,∠D=α.则∠BCD的大小为( )A.αB.90°﹣αC.45°+αD.135°﹣α3.如图,已知钓鱼竿AC的长为10m,露在水面上的鱼线BC长为6m,某钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,则BB'的长为( )A.1m B.2m C.3m D.4m4.如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为( )A.8B.8.8C.9.8D.105.如图,在Rt△ABC中,分别以三角形的三条边为边向外作正方形,面积分别记为S1,S2,S3.若S1=9,S2=16,则S3的值为( )A.7B.10C.20D.256.如图所示的网格是正方形网格,A,B,C,D是网格线交点,则∠BAC与∠DAC 的大小关系为( )A.∠BAC>∠DAC B.∠BAC<∠DAC C.∠BAC=∠DAC D.无法确定7.下列长度的三条线段能组成锐角三角形的是( )A.2,3,4B.2,3,5C.3,4,4D.3,4,58.在证明勾股定理时,甲、乙两位同学分别设计了方案:甲:如图,用四个全等的直角三角形拼成,其中四边形ABDE和四边形CFGH 均是正方形,通过用两种方法表示正方形ABDE的面积来进行证明;乙:两个全等的直角三角板ABC和直角三角板DEF,顶点F在BC边上,顶点C、D重合,通过用两种方法表示四边形ACBE的面积来进行证明.对于甲、乙两种方案,下列判断正确的是( )A.甲、乙均对B.甲对、乙不对C.甲不对,乙对D.甲、乙均不对9.若一个直角三角形的两边长为4和5,则第三边长为( )A.3B.41C.8D.3或41 10.在数学活动课上,老师要求学生在4×4的正方形ABCD网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在格点上,而且三边与AB或AD都不平行,则画出的形状不同的直角三角形有( )种.A.3B.4C.5D.6二.填空题(共6小题,满分18分,每小题3分)11.如图,一牧童在A处放羊,牧童的家在B处,A、B距河岸的距离AC、BD分别为500m和700m,且C、D两地相距500m,天黑前牧童要将羊赶往河边喝水再回家,那么牧童至少应该走 m.12.如图Rt△ABC中,AC=12,BC=5,分别以AB,AC,BC为直径作半圆,则图中阴影部分的面积为 .13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .14.如图,设AD、BE、CF为三角形ABC的三条高,若AB=6,BC=5,AE﹣EC=11,则线段BE的长为 .515.周长为24,斜边长为10的直角三角形面积为 .16.甲、乙两艘客轮同时离开港口,航行的速度都是40m/min,甲客轮用15min 到达点A,乙客轮用20min到达点B.若A,B两点的直线距离为1000m,甲客轮沿着北偏东30°的方向航行,则乙客轮的航行方向可能是 .三.解答题(共7小题,满分52分).17.(6分)如图所示,已知△ABC中,CD⊥AB于D,AC=4,BC=3,DB=95(1)求CD的长;(2)求AD的长;(3)求证:△ABC是直角三角形.18.(6分)如图,已知等腰三角形ABC的底边BC=20cm,D是腰AB上的一点,且BD=12cm,CD=16cm.(1)求证:△BCD是直角三角形;(2)求△ABC的周长,19.(8分)早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”,那么这三个整数叫做一组“勾股数”.在一次“构造勾股数”的探究性学习中,老师给出了下表(其中m,n为正整数,且m>n):m23344…n11212…a22+1232+1232+2242+1242+22…b4612816…c22﹣1232﹣1232﹣2242﹣1242﹣22…(1)探究a,b,c与m,n之间的关系并用含m,n的代数式表示:a= ,b= ,c= .(2)以a,b,c为边长的三角形是否一定为直角三角形?请说明理由.20.(8分)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.21.(8分)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.22.(8分)如图,有一架秋千,当他静止时,踏板离地的垂直高度DE=0.6m,将他往前推送2.4m(水平距离BC=2.4m)时,秋千的踏板离地的垂直高度BF =1.2m,秋千的绳索始终拉得很直,求绳索AD的长度.23.(8分)(1)如图1,长方体的长为4cm,宽为3cm,高为12cm.求该长方体中能放入木棒的最大长度;(2)如图2,长方体的长为4cm,宽为3cm,高为12cm.现有一只蚂蚁从点A处沿长方体的表面爬到点G处,求它爬行的最短路程.(3)若将题中的长方体换成透明圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁且离容器上沿3cm的点A处.求蚂蚁吃到饭粒需要爬行的最短路程是多少?答案一.选择题1.【分析】利用勾股定理的逆定理,三角形内角和定理,进行计算逐一判断即可解答.【解答】解:A、∵a:b:c=1:1:2,∴设a=k,b=k,c=2k,∴a2+b2=k2+k2=2k2,c2=(2k)2=2k2,∴a2+b2=c2,∴△ABC是直角三角形,故A不符合题意;B、∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC是直角三角形,故B不符合题意;C、∵a=35c,b=45c,∴a2+b2=(35c)2+(45c)2=c2,∴△ABC为直角三角形,故C不符合题意;D、∵b2=a2﹣c2,∴b2+c2=a2,∴△ABC为直角三角形,∴∠A=90°,故D符合题意;故选:D.2.【分析】由于∠B=90°,AB=BC=2,利用勾股定理可求AC,并可求∠BAC=45°,而CD=3,DA=1,易得AC2+DA2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,从而易求∠BAD,进而得出∠BCD.【解答】解:连接AC,∵∠B=90°,AB=BC=2,∴AC=AB2+BC2=22,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°,∵∠D=α,∴∠BCD=360°﹣90°﹣135°﹣α=135°﹣α,故选:D.3.【分析】根据勾股定理分别求出AB和AB′,再根据BB′=AB﹣AB′即可得出答案.【解答】解:∵AC=10m,BC=6m,∴AB=AC2−B C2=102−62=8(m),∵AC′=10m,B′C′=8m,∴AB′=AC'2−B′C'2=102−82=6(m),∴BB′=AB﹣AB′=8﹣6=2(m);故选:B.4.【分析】若AP+BP+CP最小,就是说当BP最小时,AP+BP+CP才最小,因为不论点P在AC上的那一点,AP+CP都等于AC.那么就需从B向AC作垂线段,交AC于P.先设AP=x,再利用勾股定理可得关于x的方程,解即可求x,在Rt△ABP中,利用勾股定理可求BP.那么AP+BP+CP的最小值可求.【解答】解:从B向AC作垂线段BP,交AC于P,设AP=x,则CP=5﹣x,在Rt△ABP中,BP2=AB2﹣AP2,在Rt△BCP中,BP2=BC2﹣CP2,∴AB2﹣AP2=BC2﹣CP2,∴52﹣x2=62﹣(5﹣x)2解得x=1.4,在Rt△ABP中,BP=52−1.42=23.04= 4.8,∴AP+BP+CP=AC+BP=5+4.8=9.8.故选:C.5.【分析】由正方形的面积公式可知S1=AB2,S2=AC2,S3=BC2,在Rt△ABC中,由勾股定理得AC2+AB2=BC2,即S1+S2=S3,由此可求S3.【解答】解:在Rt△ABC中,AC2+AB2=BC2,由正方形面积公式得S1=AB2,S2=AC2,S3=BC2,∵S1=9,S2=16,∴S3=S1+S2=9+16=25.故选:D.6.【分析】连接CD,BC,设小正方形的边长为1,根据勾股定理求出AB、AC、BC、AD、CD的长,根据求出的结果得出BC=AC,AD=CD,AC2+BC2=AB2,AD2+CD2=AC2,求出△ACB和△ADC都是等腰直角三角形,再得出选项即可.【解答】解:连接CD,BC,设小正方形的边长为1,由勾股定理得:AB2=22+42=4+16=20,BC2=12+32=1+9=10,AC2=12+32=1+9=10,AD2=12+22=1+4=5,CD2=12+22=1+4=5,所以BC=AC,AD=CD,AC2+BC2=AB2,AD2+CD2=AC2,即△ACB和△ADC都是等腰直角三角形,所以∠BAC=∠DAC=45°,故选:C.7.【分析】根据勾股定理求出以较短的两条边为直角边的三角形的斜边的长度,然后与较长的边进行比较作出判断即可.【解答】解:A、∵22+32=13<4,2+3>4,∴不能组成锐角三角形;B、∵2+3=5,∴不能组成三角形;C、∵32+42=5>4,3+4>4,∴能组成锐角三角形;D、∵32+42=5,是直角三角形,∴不能组成锐角三角形.故选:C.8.【分析】甲:根据题意,我们可在图中找等量关系,由中间的小正方形的面积等于大正方形的面积减去四个直角三角形的面积,列出等式化简即可得出勾股定理的表达式;乙:根据三角形的面积和梯形的面积公式用两种方法求得四边形ACBE的面积,于是得到结论.【解答】甲:证明:Rt△ABC中,∠ACB=90°,设AC=b,BC=a,AB=c.由图可知S正方形ABDE=4S△ABC+S正方形FCHGab,正方形FCHG边长为a﹣b,∵S正方形ABDE=c2,S△ABC=12ab+(a﹣b)2=2ab+a2﹣2ab+b2∴c2=4×12即c2=a2+b2.故甲对;乙:证明:∵四边形ACBE的面积=S△ACB+S△ABE=12AB•DG+12AB•EG=12AB•(DG+EG)=12AB•DE=12c2,四边形ACBE的面积=S四边形ACFE+S△EFB=12×(AC+EF)•CF+12BF•EF=12(b+a)b+12(a﹣b)•a=12b2+12ab+12a2−12ab=12a2+12b2,∴12c2=12a2+12b2,即a2+b2=c2.故乙对,故选:A.9.【分析】分5是直角边、5是斜边两种情况,再由勾股定理即可得出答案.【解答】解:当5是直角边时,则第三边为:42+52=41;当5是斜边时,则第三边为:52−42=3,综上所述,第三边的长为3或41,故选:D.10.【分析】根据三个顶点都在格点上,而且三边与AB或AD都不平行,画出的形状不同的直角三角形即可.【解答】解:如图所示:直角边之比为1:2,如图①和②;直角边之比为1:3,如图③直角边之比为1:1,如图④和⑤.形状不同的直角三角形共有3种情况.故选:A.二.填空题11.【分析】本题可以把两线段的和最小的问题转化为两点之间线段最短的问题解决.转化的方法是作A关于CD的对称点,求解对称点与B之间的距离即可.【解答】解:作A关于CD的对称点E,连接BE,并作BF⊥AC于点F.则EF=BD+AC=500+700=1200m,BF=CD=500m.在Rt△BEF中,根据勾股定理得:BE=BF2+EF2=12002+5002= 1300米.12.【分析】利用勾股定理列式求出AB,再根据阴影部分的面积等于阴影部分所在的两个半圆的面积加上△ABC的面积减去大半圆的面积,列式计算即可得解.【解答】解:∵AC=12,BC=5,∴AB=AC2+BC2=122+52=13,∴阴影部分的面积=12π(122)2+12π(52)2+12×12×5−12π(132)2=1448π+258π+30−1698π=30.故答案为:30.13.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),((2n+1)2−12),((2n+1)2+12),由此规律解决问题.【解答】解:在32=4+5中,4=32−12,5=32+12;在52=12+13中,12=52−12,13=52+12;…则在13、b、c中,b=132−12=84,c=132+12=85.14.【分析】可设AE=x,EC=y,则根据勾股定理和已知条件可得方程组,解方程组可求AE的长,再根据勾股定理可求线段BE的长.【解答】解:设AE=x,EC=y,则{36−x2=25−y2x−y=115,解得x=185,则BE=AB2−A E2=245.故答案为:245.15.【分析】设直角三角形两直角边长为a,b,由周长与斜边的关系得a+b=14,中由完全平方公式和勾股定理求出ab的值,即可求出三角形的面积.【解答】解:设直角三角形两直角边长为a,b,∵该直角三角形的周长为24,其斜边长为10,∴24﹣(a+b)=10,即a+b=14,由勾股定理得:a2+b2=102=100,∵(a+b)2=142,∴a2+b2+2ab=196,即100+2ab=196,∴ab=48,ab=24,∴直角三角形的面积=12故答案为:24.16.【分析】首先根据速度和时间计算出行驶路程,再根据勾股定理逆定理结合路程可判断出甲和乙两艘轮船的行驶路线呈垂直关系,进而可得答案.【解答】解:如图:∵甲乙两艘客轮同时离开港口,航行的速度都是每分钟40m,甲客轮用15分钟到达点A,乙客轮用20分钟到达点B,∴甲客轮走了40×15=600(m),乙客轮走了40×20=800(m),∵A、B两点的直线距离为1000m,∴6002+8002=10002,∴∠AOB=90°,∵甲客轮沿着北偏东30°的方向航行,∴乙客轮的航行方向可能是南偏东60°,同理可得:乙客轮的航行方向也可能是北偏西60°.综上所述:乙客轮的航行方向可能是南偏东60°或北偏西60°.故答案为:南偏东60°或北偏西60°.三.解答题17.(1)解:在Rt△BCD中,DC=BC2−B D2=32−(95)2=125;(2)解:在Rt△CDA中AD=AC2−D C2=42−(125)2=165;(3)证明:∵BC2=9,AC2=16,(BD+AD)2=25,∴BC2+AC2=AB2,∴△ABC是直角三角形.18.(1)证明:∵在△BDC中,BC=20cm,BD=12cm,CD=16cm.∴BD2+CD2=BC2,∴∠BDC=90°,∴△BCD是直角三角形;(2)解:设AB=AC=xcm,则AD=(x﹣12)cm,在Rt△ADC中,由勾股定理得:AD2+CD2=AC2,即(x﹣12)2+162=x2,解得:x=503,即AB=AC=503cm,∵BC=20cm,∴△ABC的周长是AB+AC+BC=503cm+503cm+20cm=1603cm.19.解:(1)观察得,a=m2+n2,b=2mn,c=m2﹣n2.故答案为:m2+n2,2mn,m2﹣n2;(2)以a,b,c为边长的三角形一定为直角三角形,理由如下:∵a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4﹣2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.20.解:(1)∵3、4、5是正整数,且32+42=52,∴3、4、5是一组勾股数;(2)∵122+162=202,且12,16,20都是正整数,∴一组勾股数可以是12,16,20.答案不唯一;(3)∵m表示大于1的整数,∴由a=2m,b=m2﹣1,c=m2+1得到a、b、c均为正整数;又∵a2+b2=(2m)2+(m2﹣1)2=4m2+m4﹣2m2+1=m4+2m2+1,而c2=(m2+1)2=m4+2m2+1,∴a2+b2=c2,∴a、b、c为勾股数.21.解:(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.22.解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x+0.6﹣1.2)m,故x2=2.42+(x+0.6﹣1.2)2,5.76﹣1.2x+0.36=0解得:x=5.1,答:绳索AD的长度是5.1m.23.解:(1)由题意得:该长方体中能放入木棒的最大长度是:(32+42)2+122=13(cm).(2)分三种情况可得:AG=(4+12)2+32=265cm>AG= (3+12)2+42=241cm>AG=(3+4)2+122=193cm,所以最短路程为193cm;(3)∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B=A′D2+BD2=13(cm)。
八年级数学下册新版沪科版:第十八章达标检测卷一、选择题(每题3分,共30分)1.下列各组线段中,能够组成直角三角形的一组是( )A.1,2,3 B.2,3,4C.4,5,6 D.1,2, 32.在平面直角坐标系中,点P(3,4)到原点的距离是( )A.3 B.4 C.5 D.±53.如图,在△ABC中,∠B=90°,AB=3,BC=1,AB在数轴上,以点A为圆心,AC长为半径作弧,交数轴的正半轴于点M,则M表示的数为( )A.2.1 B.10-1C.10D.10+14.以直角三角形的三边为直径向外作三个半圆,若有两个半圆形的面积分别为10π和18π,则第三个半圆形的面积为( )A.8π B.28π C.8π或28π D.无法确定5.已知直角三角形两边的长分别为3和4,则此三角形的周长为( ) A.12 B.7+7 C.12或7+7 D.以上都不对6.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC交AB于点D,E是垂足,连接CD,若BD=1,则AC的长是( )A.2 3 B.2 C.4 3 D.47.如图,a,b,c是3×3正方形网格中的3条线段,它们的端点都在格点上,则关于a ,b ,c 大小关系的正确判断是( )A .b <a <cB .a <b <cC .a <c <bD .b <c <a8.如图为某楼梯,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,则地毯的长度至少应为( )A .5米B .7米C .8米D .12米9.如图,圆柱体的底面圆周长为8 cm ,高AB 为3 cm ,BC 是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的侧面爬行到点C ,则爬行的最短路程为( )A .4 cmB .5 cm C.73 cm D.7 cm 10.如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为⎝ ⎛⎭⎪⎫12,0,点P 为斜边OB 上的一个动点,则PA +PC 的最小值为( )A .132B .312C .3+192D .27二、填空题(每题3分,共18分)11.木工师傅要做扇长方形纱窗,做好后量得长为6分米,宽为4分米,对角线为7分米,则这扇纱窗________(填“合格”或“不合格”).12.如图,一棵树在离地面9米处断裂,树的顶部落在离底部12米处,则树断裂前高________米.13.如图,正方形ABCD的边长为4,E是边BC上的一点,且BE=1,P为对角线AC上的一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值是________.14.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于________cm.15.如图,阴影部分是一个等腰直角三角形,则此等腰直角三角形的面积为________cm2.16.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________.三、解答题(17,18题每题8分,19题7分,20题9分,其余每题10分,共52分) 17.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,则△ABC的形状是什么?18.如图,在△ABC中,CD⊥AB,AB=AC=13,BD=1.(1)求CD的长;(2)求BC的长.19.如图,某港口A有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个方向以每小时15海里的速度前进,2小时后,甲船到达M岛,乙船到达P岛,两岛相距34海里.你知道乙船是沿哪个方向航行的吗?20.如图,小文和她的同学在荡秋千,秋千AB在静止位置时,下端B距地面0.6 m,当秋千荡到AB1的位置时,下端B1距静止位置的水平距离EB1=2.4 m,距地面1.4 m,求秋千AB的长.21.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:『P』,即『P』=|x|+|y|(其中“+”是四则运算中的加法).(1)求点A(-1,3),B(3+2,3-2)的勾股值『A』,『B』;(2)求满足条件『N』=3的所有点N围成的图形的面积.22.勾股定理神奇而美妙,它的证法多种多样,在学习了教材中介绍的证法以后,小华突发灵感,给出了如图所示拼图.两个全等的直角三角板ABC和直角三角板DEF,顶点F在BC边上,顶点C、D重合,连接AE、EB.设AB、DE交于点G.∠ACB=∠DFE =90°,BC=EF=a,AC=DF=b(a>b),AB=DE=c.请你回答以下问题:(1)填空:∠AGE=________°.(2)请用两种方法计算四边形ACBE的面积,并以此为基础证明勾股定理.答案一、1.D 2.C 3.B 4.C 5.C 6.A 7.B 8.B 9.B 10.B二、11.不合格12.24 13.6 14.7 15.12.5 16.(2)n-1三、17.解:∵a2+b2+c2+50=6a+8b+10c,∴a2+b2+c2-6a-8b-10c+50=0,即(a-3)2+(b-4)2+(c-5)2=0,∴a=3,b=4,c=5.∵32+42=52,即a2+b2=c2,∴根据勾股定理的逆定理可判定△ABC是直角三角形.点拨:本题利用配方法,先求出a,b,c的值,再利用勾股定理的逆定理可判定△ABC是直角三角形.18.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD=AC2-AD2=132-122=5.(2)在Rt△BCD中,BC=BD2+CD2=12+52=26.19.解:由题意知,AM=8×2=16(海里),AP=15×2=30(海里).因为两岛相距34海里,所以MP=34海里.因为162+302=342,所以AM2+AP2=MP2,所以∠MAP=90°.180°-90°-60°=30°,所以乙船是沿南偏东30°方向航行的.20.解:设AB=AB1=x m,∵BE=1.4-0.6=0.8(m),∴AE=AB-BE=(x-0.8)m.在△AEB1中,∠AEB1=90°,∴AB12=AE2+EB12,∴x2=(x-0.8)2+2.42,∴x=4,即秋千AB的长为4 m.21.解:(1) 『A』=|-1|+|3|=4.『B』=|3+2|+|3-2|=3+2+2-3=4.(2)设N(x,y),∵『N』=3,∴|x|+|y|=3.①当x≥0,y≥0时,x+y=3,即y=-x+3;②当x>0,y<0时,x-y=3,即y=x-3;③当x<0,y>0时,-x+y=3,即y=x+3;④当x≤0,y≤0时,-x-y=3,即y=-x-3.如图,满足条件『N』=3的所有点N围成的图形是正方形,面积是18.22.解:(1)90点拨:∵△ABC≌△DEF,∴∠EDF =∠CAB . ∵∠EDF +∠ACE =90°, ∴∠ACE +∠CAB =90°. ∴∠AGC =90°.∴∠AGE =180°-∠AGC =90°.(2)∵四边形ACBE 的面积=S △ACB +S △ABE =12AB ·DG +12AB ·EG =12AB ·(DG +EG )=12AB ·DE =12c 2, 四边形ACBE 的面积=S四边形ACFE+S △EFB =12(AC +EF )·CF +12BF ·EF =12(b +a )·b +12(a -b )·a =12b 2+12ab +12a 2-12ab =12a 2+12b 2,∴12c 2=12a 2+12b 2,即a 2+b 2=c 2.。
沪科版数学八年级下册第18章勾股定理评卷人得分一、单选题1.如图,在△ABC中,三边a、b、c的大小关系是( )(A)a<b<c (B)c<a<b (C)c<b<a (D)b<a<c2.五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A.B.B.C.D.3.已知一个Rt△的两边长分别为3和4,则第三边长的平方是()A.25 B.14 C.7 D.7或254.A,B,C三地的两两距离如图所示,B地在A地的正西方向,那么B地在C地的()A.正南方向B.正北方向C.正东方向D.正西方向5.如图,一块直角三角形的纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于().A.2 cm B.4 cm C.3 cm D.5 cm6.直角三角形一直角边长为12,另两条边长均为自然数,则其周长为().A.30 B.28 C.56 D.不能确定7.如图,分别以直角三角形的三边为直径作半圆,则三个半圆的面积S1,S2+S3之间的关系是()A.S1>S2+S3B.S1=S2+S3C.S1<S2+S3D.无法确定8.下列命题的逆命题是真命题的是()A.若a=b,则a2=b2B.全等三角形的周长相等C.若a=0,则ab=0 D.有两边相等的三角形是等腰三角形9.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是()A.51 B.49 C.76 D.无法确定10.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则( )A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形11.小明和小刚二人同时从学校步行去公园,速度都是50m/min,小明从学校直接去公园走直线用了10min,而小刚走直线从学校出发先回家用时6min,再去公园,用时8min,则小刚从学校到公园走了个()A.锐角弯B.钝角弯C.直角弯D.不能确定12.如图,圆柱底面半径为2πcm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A.12cm B C.15cm D cm二、填空题13.已知|m+(p)2=0则以m、n、p为三边长的三角形是_______三角形.14.在△ABC中,∠C=90°,BC=1,AB=2,则AC=___________.15.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为_______16.如图是一个三级台阶,它的每一级的长、宽和高分别为20 dm,3 dm,2 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点的最短路程是__________dm.17.如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___米.18.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI 的面积分别为S1、S2、S3,则S1+S2+S3=___.三、解答题19.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.20.如图是单位长度为1的正方形网格.(1)在图1的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.21.在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某个角度的方向以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?22.如图,在△ABC中,CD⊥AB于点D,若AC CD=5,BC=13,求△ABC的面积.23.△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如图(1),根据勾股定理,则a2+b2=c2,若△ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想a2+b2与c2的关系,并证明你的结论.24.如图,一架梯子AB 长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?参考答案1.D【解析】试题分析:先分析出a 、b 、c 三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可. 根据勾股定理,得103122=+=a ,52122=+=b ,133222=+=b , 13105<< ,∴,c<b<a故选D.考点:本题考查的是勾股定理点评:解答本题的关键是认真分析格点的特征,熟练运用勾股定理进行计算。
第十八章达标测试卷时间:100分钟满分:120分一、选择题(每题3分,共30分)1.在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.82.下列四组数中不能构成直角三角形三边长的一组是()A.1,2, 5 B.3,5,4 C.5,12,13 D.4,13,153.直角三角形的一条直角边长是另一条直角边长的13,斜边长为10,则它的面积为()A.10 B.15 C.20 D.304.如图,P是第一象限的角平分线上一点,且OP=2,则P点的坐标为() A.(2,2) B.(2,2) C(2,2) D.(2,2)(第4题)(第5题)5.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为()A.9 B.6 C.4 D.36.有一个三角形的两边长分别是4和5,若这个三角形是直角三角形,则第三边长为()A.3 B.41 C.3或41 D.无法确定7.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米8.在Rt△ABC中,斜边c=10,两直角边a≤8,b≥8,则a+b的最大值是() A.10 2 B.14 C.8 3 D.169.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上D′处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.43(第9题)(第10题)10.欧几里得的《原本》记载,形如x2+a x=b2的方程的图解法是:如图,画Rt△ABC,使∠ACB=90°,BC=a2,AC=b,再在斜边AB上截取BD=a2.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长二、填空题(每题3分,共12分)11.如图是八里河公园水上风情园一角的示意图,A,B,C,D为四个养有珍稀动物的小岛,连线代表连接各个小岛的晃桥(各岛之间也可以通过乘船到达),如果黄芳同学想从A岛到C岛,至少要经过____________m.(第11题)(第13题)(第14题)12.三角形一边长为10,另两边长是方程x2-14x+48=0的两根,则这是一个____________三角形,面积为____________.13.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为________.14.如图,在△ABC中,AB=AC=10 cm,BC=16 cm,现点P从点B出发,沿BC向C点运动,运动速度为14cm/s,若点P的运动时间为t s,则当△ABP是直角三角形时,时间t的值可能是________.三、(每题5分,共10分)15.在△ABC中,∠C=90°,AB=20,若∠A=60°,求BC,AC的长.16.如图,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.(第16题)四、(每题6分,共12分)17.如图,在B港有甲、乙两艘渔船,若甲渔船沿北偏东60°方向以每小时8海里的速度前进,乙渔船沿南偏东30°方向以每小时15海里的速度前进,两小时后,甲船到达M岛,乙船到达P岛.求P岛与M岛之间的距离.(第17题)18.如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,D,在对岸选取一个参照点C,测得∠CAD=30°;小丽沿河岸向前走30 m选取点B(点A,B,D在一条直线上),并测得∠CBD =60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.(第18题)五、(每题6分,共12分)19.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若EF=10,求CE2 +CF2的值.(第19题)20.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB =90°,∠E=45°,∠A=60°,AC=10,试求CD的长.(第20题)六、(8分)21.阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2-b2)(a2+b2).②∴c2=a2+b2.③∴△ABC是直角三角形.回答下列问题:(1)上述解题过程,从哪一步开始出现错误?请写出该步代码为________;(2)错误的原因为________________________________________________________________;(3)请你将正确的解答过程写下来.七、(8分)22.如图,要在某林场东西方向的两地之间修一条公路MN,已知点C周围200 m范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45°方向上,从A向东走600 m到达B处,测得C在B的北偏西60°方向上.(1)MN是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?(第22题)八、(8分)23.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C 的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为________,点E的坐标为________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.(第23题)答案一、1. A 2. D3.B 点拨:设较短直角边长为x (x >0),则有x 2+(3x )2=102,解得x =10,∴直角三角形的面积S =12x ·3x =15.4.B 5.D6.C 点拨:此题要考虑两种情况:当两直角边长是4和5时,斜边长为41;当一直角边长是4,斜边长是5时,另一直角边长是3.故选C.7.A 点拨:由题意可得三角形沙田的三边长为2.5千米,6千米,6.5千米,因为2.52+62=6.52,所以这个三角形为直角三角形,直角边长为2.5千米和6千米,所以S =12×6×2.5=7.5(平方千米),故选A.8.B 点拨:由勾股定理,可知a +b =100+2a 100-a 2.当2a 100-a 2取最大值时a +b 取最大值.令y =2a 100-a 2,则y =4a 2(100-a 2)=-4(a 4-100a 2)=-4(a 2-50)2+10 000.∵b ≥8,∴b 2≥64,∴a 2≤36.当a 2=36,即a =6时,y 取最大值,此时b =8.故a +b 的最大值为14.故选B.9.A 点拨:在Rt △ABC 中,AC =AB 2+BC 2=32+42=5.设ED =x ,则D ′E =x ,AD ′=AC -CD ′=2,AE =4-x ,在Rt △AD ′E 中,根据勾股定理可得方程22+x 2=(4-x )2,再解方程即可.10.B 点拨:可以利用求根公式求出方程的根,根据勾股定理求出AB 的长,进而求得AD 的长,即可发现结论.将方程x 2+ax =b 2整理得x 2+ax -b 2=0,由求根公式可得x =-a ±a 2+4b 22,方程的两根为x 1=-a +a 2+4b 22,x 2=-a -a 2+4b 22,∵∠ACB =90°,BC =a 2,AC =b ,∴AB =b 2+⎝ ⎛⎭⎪⎫a 22=a 2+4b 22,∴AD =AB -BD =a 2+4b 22-a 2=-a +a 2+4b 22,∴AD 的长就是方程的正根.故选B. 二、11. 37012.直角;24 点拨:解方程得x 1=6,x 2=8.∵x 21+x 22=36+64=100=102,∴这个三角形为直角三角形,从而求出面积.13. 41 点拨:如图,设这一束光与x 轴交于点C ,作点B 关于x 轴的对称点B ′,过B ′作B ′D ⊥y 轴于点D ,连接B ′C .易知A ,C ,B ′这三点在同一条直线上,再由轴对称的性质知B ′C =BC ,则AC +CB =AC+CB ′=AB ′.由题意得AD =5,B ′D =4,由勾股定理,得AB ′=41.所以AC +CB =41.(第13题)14.32或50 点拨:如图①,当∠APB =90°时,AP ⊥BC ,∵AB =AC ,AP⊥BC ,∴BP =CP =12BC =8 cm ,∴14t =8,解得t =32;如图②,当∠P AB=90°时,过点A 作AE ⊥BC 交BC 于点E ,∵AB =AC ,AE ⊥BC ,∴BE=CE =12BC =8 cm ,∴PE =BP -BE =⎝ ⎛⎭⎪⎫14t -8cm ,在Rt △AEC 中,AE 2=AC 2-CE 2,即AE 2=102-82,解得AE =6 cm ,在Rt △P AB 中,AP 2=BP 2-AB 2,在Rt △AEP 中,AP 2=PE 2+AE 2,∴⎝ ⎛⎭⎪⎫14t 2-100=⎝ ⎛⎭⎪⎫14t -82+36,解得t =50.综上所述,t 的值为32或50.(第14题)三、15. 解:∵∠C =90°,∠A =60°,∴∠B =180°-∠C -∠A =180°-90°-60°=30°.∴AC =12AB =12×20=10.在Rt △ABC 中,由勾股定理得BC =AB 2-AC 2=202-102=10 3.16.解:在Rt △ABC 中,AC =AB 2+BC 2=5,∴AC 2=25,CD 2=122=144,AD 2=132=169. ∵25+144=169,∴AC 2+CD 2=AD 2,∴△ACD 是以∠ACD 为90°角的直角三角形.∴S 四边形ABCD =S △ABC +S △ACD =12AB ·BC +12AC ·CD =12×4×3+12×5×12=36.四、17. 解:由题意可知△BMP 为直角三角形,BM =8×2=16(海里),BP =15×2=30(海里),∴MP =B M 2+BP 2=34海里.答:P 岛与M 岛之间的距离为34海里.18.解:过点C 作CE ⊥AD 于点E ,由题意得AB =30 m ,∠CAD =30°,∠CBD=60°,∴∠ACB =∠CAB =∠BCE =30°,∴AB =BC =30 m ,∴BE =15 m.在Rt △BCE 中,根据勾股定理可得CE =BC 2-BE 2=302-152=153(m).答:小河的宽度为15 3 m .五、19. 解:∵ B 、C 、D 三点在一条直线上,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECF =∠ECA +∠FCA =12∠ACB +12∠ACD =12×180°=90°.∴CE 2 + CF 2=EF 2 .∵EF =10,∴CE 2+CF 2=102=100.20.解:如图,过B 点作BM ⊥FD 于点M .(第20题)在△ACB 中,∵∠ACB =90°,∠A =60°,∴∠ABC =30°,∴AB =2AC =20,∴BC =AB 2-AC 2=202-102=10 3.∵AB ∥CF ,∴∠BCM =∠ABC =30°,∴BM=12BC=53,∴CM=BC2-B M2=(103)2-(53)2=15.在△EFD中,∵∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=53,∴CD=CM-MD=15-5 3.六、21. 解:(1)③(2)忽略了a2-b2=0的可能(3)∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2-b2)(a2+b2),∴c2(a2-b2)-(a2-b2)(a2+b2)=0,∴(a2-b2)[c2-(a2+b2)]=0,∴a2-b2=0或c2-(a2+b2)=0.∴a=b或c2=a2+b2,∴△ABC 是等腰三角形或直角三角形或等腰直角三角形.七、22. 解:(1)MN不会穿过原始森林保护区.理由如下:过点C作CH⊥AB于点H.设CH=x m.由题意知∠EAC=45°,∠FBC=60°,则∠CAH=45°,∠CBA=30°.在Rt△ACH中,AH=CH=x m,在Rt△HBC中,BC=2x m.由勾股定理,得HB=BC2-CH2=3x m.∵AH+HB=AB=600 m,∴x+3x=600.解得x=6001+3≈220>200.∴MN不会穿过原始森林保护区.(2)设原计划完成这项工程需要y天,则实际完成这项工程需要(y-5)天.根据题意,得1 y-5=(1+25%)×1y.解得y=25.经检验,y=25是原方程的根.∴原计划完成这项工程需要25天.八、23.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形,∴BC=OA=4,∠AOC=∠DCO=90°,由折叠的性质可得DE=BD=BC-CD=4-1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC=DE2-CD2=32-12=22,则有OE=OC-CE=m-2 2.在Rt△AOE中,OA2+OE2=AE2,即42+(m-22)2=m2,解得m=3 2.(第23题)11。
八年级数学下册第18章勾股定理专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD,则BC的长为()A B C.D.2、下列各组数中,能作为直角三角形三边长的是()A.1,2B.8,9,10 C D3、下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.2、3、4 B C.5、12、13 D.30、50、604、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB 的长为()A.2B C D.5 25、现有一楼房发生火灾,消防队员决定用消防车上的云梯救人,如图(1)已知云梯最多只能伸长到15m,消防车高3m.救人时云梯伸长至最长,在完成从12m高处救人后,还要从15m高处救人,这时消防车要从原处再向着火的楼房靠近的距离AC为()A.3米B.5米C.7米D.9米6、如图,五根小木棒,其长度分别为5,9,12,13,15,现将它们摆成两个直角三角形,其中正确的是()A.B.C.D.7、如图,数轴上点A所表示的数是()A B C D 18、下列四组数据中,不能..作为直角三角形的三边长的是()A.5,13,12 B.6,8,10 C.9,12,15 D.3,4,69、如图,四边形ABCD中,∠B=90°,CD=2,AE平分∠BAD,DE平分∠ADC,∠AED=120°,设AB =x,CE=y,则下列式子可以表示线段AD长的是()y+2 D.x+yA.x+y B.x+2 C.x+1210、下列各组数据中,能构成直角三角形的三边的长的一组是()A .1,2,3B .4,5,6C .5,12,13D .13,14,15第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的S 1,S 2,S 3满足的数量关系是S 1+S 2=S 3.现将△ABF 向上翻折,如图②,已知S 甲=9,S 乙=8,S 丙=7,则△ABC 的面积是______ .2、如图,△ABC 中,∠ACB =90°,AC =4,BC =3,射线CD 与边AB 交于点D ,点E 、F 分别为AD 、BD 中点,设点E 、F 到射线CD 的距离分别为m 、n ,则m +n 的最大值为________.3、如图,已知Rt ABC 中,90ACB ∠=︒,4AC BC ==,动点M 满足1AM =,将线段CM 绕点C 顺时针旋转90︒得到线段CN ,连接AN ,则AN 的最小值为_________.4、如图,将一副三板按图所示放置,∠DAE =∠ABC =90°,∠D =45°,∠C =30°,点E 在AC 上,过点A 作AF ∥BC 交DE 于点F ,则EF DF=__________________.5、如图,将长方形纸片ABCD 沿MN 折叠,使点A 落在BC 边上点A '处,点D 的对应点为D ,连接A D ''交边CD 于点E ,连接CD ',若9AB =,6AD =,A '点为BC 的中点,则线段ED '的长为________.三、解答题(5小题,每小题10分,共计50分)1、如图,有一张四边形纸片ABCD ,AB BC ⊥.经测得9cm AB =,12cm BC =,8cm CD =,17cm AD =.(1)求A 、C 两点之间的距离.(2)求这张纸片的面积.2、设两个点A 、B 的坐标分别为()11,A x y ,()22,B x y ,则线段AB 的长度为:AB =A 、B 两点的坐标是()0,3-,()1,4-,则A 、B 两点之间的距离AB = (1)若()1,2A ,(),6B x ,且5AB =,求x 的值;(2)已知△ABC ,点A 为()1,5-、点B 为()5,2-、点C 为()3,1-,求△ABC 的面积;(3+ 3、如图,在Rt ABC 中,90B ∠=︒,4AB =,3BC =,AD CD =,求CD 的长.4、如图所示的一块地,已知AD =4米,CD =3米,∠ADC =90°,AB =13米,BC =12米,则这块地的面积为多少?5、问题提出:在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是4km 和3km ,km(1)AB a a =>,现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.如何铺设使得管道长度较短?方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图2是方案二的示意咨图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).(1)在方案一中,1d =______km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,2d =_______km (用含a 的式子表示).(3)①当4a =时,比较大小:1d _______2d (填“>”、“=”或“<”);②当7a =时,比较大小:1d ______2d (填“>”、“=”或“<”);(4)请你参考方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案还是方案二?-参考答案-一、单选题1、B【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【详解】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴BD=AD,在Rt△ADC中,∠C=90°,,∴DC∴BC=BD+DC故选:B.【点睛】本题考查了等角对等边,勾股定理,求得BD AD=是解题的关键.2、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A、222+=,能构造直角三角形,故符合题意;12B、222081,不能构造直角三角形,故不符合题意;9C、222+≠,不能构造直角三角形,故不符合题意;D、222+≠,不能构造直角三角形,故不符合题意;故选:A.【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键.3、C【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可.【详解】解:A、22+32≠42,不能构成直角三角形,故此选项不符合题意;B、2+22,不能构成直角三角形,故此选项不符合题意;C 、52+122=132,能构成直角三角形,故此选项符合题意;D 、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C .【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.4、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB == 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴CD =1,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.5、A【分析】根据题意结合图形可得:3OE =m ,1239OB =-=m ,15312OD =-=m ,15AB CD ==m ,在两个直角三角形ABO ∆和ΔΔΔΔ中,分别运用勾股定理求出AO ,CO ,即可得出移动的距离.【详解】解:如图所示:3OE =m ,1239OB =-=m ,15312OD =-=m ,15AB CD ==m ,∆中,在Rt ABOAO==m,12在ΔΔΔΔΔΔ中,CO m,9AC AO CO=-=m,3故选:A.【点睛】题目主要考查勾股定理的应用,理解题意,找出相应的线段运用勾股定理是解题关键.6、C【分析】根据勾股定理的逆定理逐一判断即可.【详解】A、对于△ABD,由于222+=≠,则此三角形不是直角三角形,同理△ADC也不是直角三角形,5910612故不合题意;B、对于△ABC,由于222+=≠,则此三角形不是直角三角形,同理△ADC也不是直角三角51319412形,故不合题意;C、对于△ABC,由于222+==,则此三角形是直角三角形,同理△BDC也是直角三角形,故51216913符合题意;D、对于△ABC,由于222+=≠,则此三角形不是直角三角形,同理△BDC也不是直角三角51216915形,故不合题意.故选:C【点睛】本题考查了勾股定理的逆定理,其内容是:两条短边的平方和等于长边的平方,则此三角形是直角三角形,为便于利用平方差公式计算,常常计算两条长边的平方差即两条长边的和与这两条长边的差的积,若等于最短边的平方,则此三角形是直角三角形.7、D【分析】先根据勾股定理计算出BC BA=BC AD的长,接着计算出OA的长,即可得到点A所表示的数.【详解】解:如图,BD=1﹣(﹣1)=2,CD=1,∴BC∴BA=BC∴AD2,∴OA=21,∴点A1.故选:D【点睛】本题主要考查了勾股定理,实数与数轴的关系,熟练掌握勾股定理,实数与数轴的关系是解题的关键.8、D【分析】根据勾股定理的逆定理进行判断即可.【详解】解:A、22251213+=,故A不符合题意.B、222+=,故B不符合题意.6810C、222+=,故C不符合题意.91215D、222+≠,故D符合题意.346故选:D.【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键.9、B【分析】在AD上截取AG=AB,DH=DC,连接EG、EH,证明△ABE≌△AGE(SAS),△DEH≌△DEC(SAS),由全等三角形的性质得出BE=GE,∠AEB=∠AEG,CE=HE,∠CED=∠HED,证明△EGH是含30度角的直角三角形,根据勾股定理即可得出结论.【详解】解:如图,在AD 上截取AG =AB =x ,DH =DC ,连接EG 、EH ,∵AE 平分∠BAD ,∴∠BAE =∠GAE ,在△ABE 和△AGE 中,AB AGBAE GAE AE AE=⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△AGE (SAS ),∴∠AEB =∠AEG ,∠AGE =∠B =90°,∵DE 平分∠ADC ,同理可证:△DEH ≌△DEC (SAS ),∴∠DEH =∠DEC ,EH =EC =y ,∵∠AED =120°,∠AEB +∠CED =180°﹣120°=60°,∴∠AEG +∠HED =60°,∴∠GEH =60°,∵∠EGF =90°,∴∠EHG =30°,∴EG =12EH =12y ,∴GH,∵AD=AG+GH+HD=x+2.故选:B.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质,角平分线的性质,勾股定理等知识;熟练掌握等边三角形的判定与性质,证明三角形全等是解题的关键.10、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.2221+23≠,不是直角三角形,故A不符合题意;B. 222≠,不是直角三角形,故B不符合题意;4+56C. 2225+12=13,是直角三角形,故C不符合题意;D. 22213+1415≠,不是直角三角形,故D不符合题意,故选:C.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.二、填空题1、10【分析】设△ABC的面积为S,图②中2个白色图形的面积分别为a、b,则S甲+a+S乙+b=S丙+a+b+S,化简代入数值求解即可.【详解】解:设△ABC的面积为S,图②中2个白色图形的面积分别为a、b,∵S 1+S 2=S 3,∴S 甲+a +S 乙+b =S 丙+a +b +S ,∴S 甲+S 乙=S 丙+S ,∴S =S 甲+S 乙-S 丙=9+8-7=10.故答案为:10.【点睛】本题考查的知识点是勾股定理的拓展知识,读懂题意,从图形中找出面积之间的关系是解题的关键. 2、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=,∴11322CD EM CD FN ++=, ∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =, ∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.3、1##【分析】证明△AMC ≌△BNC ,可得1BN AM ==,再根据三角形三边关系得出当点N 落在线段AB 上时,AN 最小,求出最小值即可.【详解】解:∵线段CM 绕点C 顺时针旋转90︒得到线段CN ,∴MC NC =,90MCN ∠=︒,∵90ACB ∠=︒,4AC BC ==,∴ACM BCN ∠=∠,AB =∴△AMC ≌△BNC ,∴1BN AM ==,∵1AN AB BN ≥-=∴AN 的最小值为1;故答案为:1.【点睛】本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出1BN AM ==,根据三角形三边关系取得最小值.4【分析】过点F 作FM ⊥AD 于点M ,由题意易得30AFM CAF C ∠=∠=∠=︒,则有,2MF AF AM ==,然后可得DF ,(1AD AM =,进而可得DE AM ==,最后问题可求解. 【详解】解:过点F 作FM ⊥AD 于点M ,如图所示:∵∠DAE =∠ABC =90°,∴FM ∥AC ,∴AFM CAF ∠=∠,∵∠C =30°,AF ∥BC ,∴30AFM CAF C ∠=∠=∠=︒,∴2AF AM =,∴MF ,∵∠D =45°,∴,DMF DAE 都是等腰直角三角形,∴DM MF ==,DF ==,∵AD AM DM =+,∴(1AD AM =,∴DE AM ==,∴EF DE DF =-=,∴EF DF ==【点睛】本题主要考查等腰直角三角形及含30度直角三角形的性质、勾股定理,熟练掌握等腰直角三角形及含30度直角三角形的性质、勾股定理是解题的关键.5、94【分析】连接NA ',勾股定理求得DN ,进而证明A D N NCA '''≌,设,EC a A E b '==,根据6NC =,以及Rt A EC '三边关系建立方程组,解方程组求解即可.【详解】解:如图,连接NA ',折叠DN D N '∴=,AD A D ''=,A D N D ''∠=∠四边形ABCD 是长方形,9AB =,6AD =,9DC AB ∴==,6BC AD ==,90D BCD ∠=∠=︒设DN x =则9NC DC DN x =-=-A '是BC 的中点,6BC AD ==∴132CA BC '== 在Rt A CN '中, 222A N CN A C ''=+在Rt A D N ''中,222A N ND AD '''=+∴22CN A C '+22ND AD ''=+即()2222936x x -+=+解得3x =ND ND A C ''∴==3=,6NC A D ''==又∵90ND A A CD '''∠=∠=︒A D N NCA '''∴≌NA D A NC '''∴∠=∠A E NE '∴=A D CN ''=CE ED '∴=设,EC a A E b '==在Rt A EC '中222A E EC A C ''-=即2223b a -=①又6CE EN CN +==6EC A E EC EN a b '∴+=+=+=②由①可得()()9b a b a +-=③ 将②代入③得32b a -=④②-④得922a = 解得94a = 即94EC =94ED CE '∴==故答案为:94【点睛】本题考查了勾股定理,折叠问题,因式分解,三角形全等的性质与判定,解二元一次方程组,掌握折叠的性质是解题的关键.三、解答题1、(1)15cm ;(2)114cm 2【分析】(1)连接AC ,在Rt ABC 中利用勾股定理求解即可;(2)先用勾股定理的逆定理证明90ACD ∠=︒,然后根据三角形面积公式求解即可.【详解】解:(1)如图所示,连结AC .∵在Rt ABC 中,90ABC ∠=︒.∴由勾股定理,得222AC BC AB =+.∴15cm AC =.(2)∵2217289AD ==,2222158289AC CD +=+=,∴222AD AC CD =+.∴90ACD ∠=︒.∴四边形ABCD 的面积211=91281511422ABC ACDS S cm =+⨯⨯+⨯⨯=.【点睛】本题主要考查了勾股定理和勾股定理的逆定理,熟知勾股定理和勾股定理的逆定理是解题的关键. 2、(1)2x =-或4x =(2)△ABC 的面积为5(3)13【分析】(1)直接利用两点之间的距离公式计算即可;(2)利用两点之间的距离公式可求得AB 、BC 、AC 的线段长度,利用勾股定理的逆定理可判断出△ABC 为直角三角形,然后利用直角三角形的面积计算公式计算即可;(3)所求代数式可以看成是点(0,2)-与点(,0)x 的距离和点(12,3)与点(,0)x 的距离之和,最短为点(0,2)-与点(12,3)的距离之和,依此求解.(1)解:∵AB =∴()()2221212AB x x y y =-+-又∵()1,2A ,(),6B x ,且5AB =, ∴()221(26)25x -+-=,即2x =-或4x =.(2)解:5AB ==,BC =AC∴222AB BC AC =+,∴△ABC 为直角三角形,∴11522ABC S BC AC ∆=⋅==. (3)=∴该代数式可看成是点(0,2)-与点(,0)x 的距离和点(12,3)与点(,0)x 的距离之和,当点(,0)x 在点(0,2)-与点(12,3)13=,的最小值为13.【点睛】本题考查两点之间的距离,勾股定理和逆定理的应用,最短路线问题.(1)中理解题意,正确计算是解题关键;(2)中能计算三条线段长度,并判断三角形为直角三角形是解题关键;(3)中需注意因为带着平方,所以点(0,2)-和点(12,3)不是唯一的,但因为点(,0)x 的纵坐标为0,所以必须保证上述两点的纵坐标一正一负,点(,0)x 才有可能在它们连接后的线段上.3、258【分析】设CD =AD =x ,则BD =4-x ,在Rt △DBC 中由勾股定理建立方程可求得x 的值,从而求得CD 的长.【详解】设CD =AD =x ,则BD =AB -AD =4-x∵BC =3∴在Rt △DBC 中,由勾股定理得:222CD BD BC -=即222(4)3x x --=解方程得:258x =即258AD =【点睛】本题主要考查了勾股定理,关键是通过勾股定理建立方程.4、24平方米【分析】利用割补法,将图形补齐,连接AC ,根据勾股定理判定ABC 是直角三角形,即可求出四边形面积.【详解】解:如图,连接AC ,在ACD △中,∵AD =4米,CD =3米,∠ADC =90°,∴AC =5米,又∵22222251213AC BC AB +=+==,∴ABC 是直角三角形,∴这块地的面积=ABC S-ACD S =11512342422⨯⨯-⨯⨯=(平方米)【点睛】本题主要考查勾股定理的判定,利用辅助线构造直角三角形,再进行面积求值,熟练掌握勾股定理的应用是本题的关键.5、(1)a+3(2(3)①<;②>(4)见解析【分析】(1)由题意可以得知管道长度为d1=PB+BA(km),根据BP⊥l于点P得出PB=3,故可以得出d1的值为a+3.(2)由条件根据勾股定理可以求出KB的值,由轴对称可以求出A′K的值,在Rt△KBA′由勾股定理可以求出A′B(3)①把a=4代入d1=a+3和d2②把a=7代入d1=a+3和d2(4)分类进行讨论当d1>d2,d1=d2,d1<d2时就可以分别求出a的范围,从而确定选择方案.(1)解:∵如图1,由题意得:d1=PB+BA=a+3;故答案为:a+3;(2)因为BK2=a2-1,A'B2=BK2+A'K2=a2-1+72=a2+48,所以d2(3)①当a=4时,d1=7,d2=8,d1<d2;②当a=7时,d1=10,d2,d1>d2;故答案为:<,>;(4)d12-d22=(a+3)2-2=6a-39.①当6a-39>0,即a>132时,d12-d22>0,∴d1-d2>0,∴d1>d2;②当6a-39=0,即a=132时,d12-d22=0,∴d1-d2=0,∴d1=d2;③当6a-39<0,即a<132时,d12-d22<0,∴d1-d2<0,∴d1<d2综上可知:当a>132时,选方案二;当a=132时,选方案一或方案二;当1<a<132时,选方案一.【点睛】本题考查了轴对称的性质的运用,最短路线问题数学模式的运用,勾股定理的运用,数的大小的比较方法的运用,综合考查了学生的作图能力,运用数学知识解决实际问题的能力,以及观察探究和分类讨论的数学思想方法.。
八年级数学下册第18章勾股定理专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、图中字母A所代表的正方形的面积为().A.64 B.8 C.16 D.62、我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称之为“赵爽弦图”.现在勾股定理的证明已经有400多种方法,下面的两个图形就是验证勾股定理的两种方法,在验证著名的勾股定理过程,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.在验证过程中它体现的数学思想是()A.函数思想B.数形结合思想C.分类思想D.统计思想AC=米,在点C正上方找一点3、为了测量学校的景观池的长AB,在BA的延长线上取一点C,使得5D(即DC BC∠=︒,30⊥),测得60CDB∠=︒,则景观池的长AB为()ADCA.5米B.6米C.8米D.10米4、梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米5、若以下列各组数值作为三角形的三边长,则不能围成直角三角形的是()A.4、6、8 B.3、4、5C.5、12、13 D.1、36、如图,在Rt△ABC中,AB=6,BC=8,AD为∠BAC的平分线,将△ADC沿直线AD翻折得△ADE,则DE的长为()A.4 B.5 C.6 D.77、如图,以Rt△ABC(AC⊥BC)的三边为边,分别向外作正方形,它们的面积分别为S1﹑S2﹑S3,若S1+S2+S3=12,则S1的值是()A.4 B.5 C.6 D.78、一个直角三角形有两边长为3cm,4cm,则这个三角形的另一边为()A.5cm B cm C.7cm D.5cm cm9、如图,点A在点O的北偏西30的方向5km处,AB OA⊥.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点B在点A的北偏东30方向5km处B.点B在点A的北偏东60︒方向5km处C.点B在点A的北偏东30方向处D.点B在点A的北偏东60︒方向km处10、△ABC中,∠A,∠B,∠C所对的边分别是a,b,c下列条件中不能说明△ABC是直角三角形的是()A.b2- c2=a2B.a:b:c= 5:12:13C.∠A:∠B:∠C =3:4:5 D.∠C =∠A -∠B第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,校园内有一块长方形草地,为了满足人们的多样化品求,在草地内拐角位置开出了一条路,走此路可以省____________m 的路.2、已知Rt ABC 中,90C ∠=︒,6AC =,8BC =,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D 处,折痕交另一直角边于E ,交斜边于F ,则CDE △的面积__.3、如图Rt △ABC ,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”:当AC =6,BC =8时,则阴影部分的面积为_____.4、如图,在ABC 中,AD BC ⊥,且BD CD =,延长BC 至E ,使得CE CA =,连接AE .若5AB =,4=AD ,则ABE △的周长为______.5、已知跷跷板长为3.9米,小明和小红坐在两端玩跷跷板,在这个过程中,跷跷板的两端端点在水平方向的距离的最小值为3.6米,此时较高端点距离地面的高度等于 _____米.三、解答题(5小题,每小题10分,共计50分)1、如图1,在平面直角坐标系中,已知直线AC :y =2x -6,交直线AO :y =12x 于点A .(1)直接写出点A 的坐标________;(2)若点E 在直线AC 上,当S △AOE =6时,求点E 的坐标;(3)如图2,若点B 在x 轴正半轴上,当△BOC 的面积等于△AOC 的面积一半时,求∠ACO +∠BCO 的大小.2、问题提出:在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是4km 和3km ,km(1)AB a a =>,现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.如何铺设使得管道长度较短?方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图2是方案二的示意咨图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).(1)在方案一中,1d =______km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,2d =_______km (用含a 的式子表示).(3)①当4a =时,比较大小:1d _______2d (填“>”、“=”或“<”);②当7a =时,比较大小:1d ______2d (填“>”、“=”或“<”);(4)请你参考方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案还是方案二?3、如图,在四边形ABCD 中,AD BC =,AD BC ∥,过点A 作AE BC ⊥于E ,E 恰好为BC 的中点,2AE BE =.(1)直接写出AE 与AD 之间的数量关系:______;位置关系:______;(2)点P 在BE 上,作EF DP ⊥于点F ,连接AF .求证:DF EF -.4、(问题背景)学校数学兴趣小组在专题学习中遇到一个几何问题:如图1,已知等边ABC ,D 是ABC 外一点,连接AD 、CD 、BD ,若30ADC ∠=︒,3AD =,5BD =,求CD 的长.该小组在研究如图2中OMN OPQ ≅中得到启示,于是作出如图3,从而获得了以下的解题思路,请你帮忙完善解题过程.解:如图3所示,以DC 为边作等边CDE △,连接AE .∵ABC ,DCE 是等边三角形,∴BC AC =,DC EC =,60BCA DCE ∠=∠=︒.∴BCA ACD ∠+∠= ACD +∠,∴BCD ACE ∠=∠,∴ ,∴5AE BD ==,∵30ADC ∠=︒,60CDE ∠=︒,∴90ADE ADC CDE ∠=∠+∠=︒.∵3AD =,∴CD DE == .(尝试应用)如图4,在ABC 中,45ABC ∠=︒,AB =4BC =,以AC 为直角边,A 为直角顶点作等腰直角ACD △,求BD 的长.(拓展创新)如图5,在ABC 中,4AB =,8AC =,以BC 为边向往外作等腰BCD △,BD CD =,120BDC ∠=︒,连接AD ,求AD 的最大值.5、在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.-参考答案-一、单选题1、A【分析】根据勾股定理和正方形的性质即可得出结果.【详解】解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积, 所以A =289-225=64.故选:A .【点睛】本题考查了勾股定理,以及正方形的面积公式,勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.2、B【分析】利用各类数学思想的概念及相关应用,进行判断分析即可.【详解】解:两个图都验证了勾股定理即:222+=a b c 的成立,故属于数形结合思想.故选:B .【点睛】本题主要是考查了数形结合思想在勾股定理的证明中的应用,明确数形结合思想的含义及其与勾股定理的证明的关系,是解决本题的关键,另外,数形结合思想还可用于函数与方程、不等式当中,后面学习一定要注意该思想的应用.3、D【分析】利用勾股定理求出CD 的长,进而求出BC 的长,AB BC AC =- 即可求解.【详解】解:∵DC BC ⊥,∴90DCB ∠=︒ ,∵30ADC ∠=︒,5AC =,∴210AD AC == ,∴CD =,∵60CDB ∠=︒,∴30B ∠=︒ ,∴2BD CD ==,∴15BC = ,∴15510m AB BC AC =-=-= ,故选:D .【点睛】本题考查勾股定理的应用,解题关键是掌握勾股定理.4、C【分析】根据题意画出图形,再根据勾股定理进行解答即可.【详解】解:如图所示:AB =10米,BC =6米,由勾股定理得:AC 米.故选:C .【点睛】本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键.5、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、42+62≠82,不符合勾股定理的逆定理,故本选项符合题意;B 、32+42=52,符合勾股定理的逆定理,故本选项不符合题意;C 、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;D 、12+32=2,符合勾股定理的逆定理,故本选项符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6、B【分析】在Rt ABC ∆中利用勾股定理求出AC 长,利用折叠性质:得到ADE ADC ∆∆≌,求出对应相等的边,设DE =x ,在Rt BDE ∆中利用勾股定理,列出关于x 的方程,求解方程即可得到答案.【详解】解:∵AB =6,BC =8,∠ABC =90°,∴AC 22226810BC ,∵AD 为∠BAC 的平分线,将△ADC 沿直线AD 翻折得△ADE ,ADE ADC ∴∆∆≌,∴A 、B 、E 共线,AC =AE =10,DC =DE ,∴BE =AE ﹣AB =10﹣6=4,在Rt△BDE 中,设DE =x ,则BD =8﹣x ,∵BD 2+BE 2=DE 2,∴(8﹣x )2+42=x 2,解得x=5,∴DE=5,故选:B.【点睛】本题主要是考查了直角三角形的勾股定理以及折叠中的三角形全等的性质,熟练利用折叠得到全等三角形,找到直角三角形中的各边的关系,利用勾股定理列方程,并求解方程,这是解决该类问题的关键.7、C【分析】根据正方形的面积公式结合勾股定理就可发现大正方形的面积是两个小正方形的面积和,即可得出答案.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S3+S2=S1,∵S1+S2+S3=12,∴2S1=12,∴S1=6,故选:C.【点睛】题考查了勾股定理和正方形面积的应用,注意:分别以直角三角形的边作相同的图形,则两个小图形的面积等于大图形的面积.8、D【分析】根据勾股定理解答即可.【详解】解:设这个三角形的另一边为x cm,若x为斜边时,由勾股定理得:5x=,若x为直角边时,由勾股定理得:x=综上,这个三角形的另一边为5cm,故选:D.【点睛】本题考查勾股定理,利用分类讨论思想是解答的关键.9、D【分析】过A作AC∥OM交ON于C,作AD∥ON,求出AB及∠DAB即可得到答案.【详解】过A作AC∥OM交ON于C,作AD∥ON,如图:∵∠MON=90°,∠AOC=30°,∴∠AOM=120°,由作图可知,OB平分∠AOM,∴∠AOB =12∠AOM =60°,∴∠B =30°,在Rt △AOB 中,OB =2OA =10,∴AB =∵∠AOC =30°,∠ACO =90°,∴∠CAO =60°,∴∠DAB =90°-∠BAC =∠CAO =60°,∴B 在A 北偏东60°方向处,故选:D .【点睛】本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.10、C【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】A. b 2- c 2=a 2,根据勾股定理逆定理可以判断,△ABC 是直角三角形,故不符合题意;B. a :b :c= 5:12:13,设5,12,13a k b k c k ===,则2222222169,25144169c k a b k k k =+=+=, 则222c a b =+,根据勾股定理逆定理可以判断,△ABC 是直角三角形,故不符合题意;C. ∠A :∠B :∠C = 3:4:5,设∠A 、∠B 、∠C 分别是3,4,5x x x ,则12180x =︒,15x =︒,则45,60,75A B C ∠=︒∠=︒∠=︒,所以△ABC是不直角三角形,故符合题意;D. ∠C =∠A -∠B,又∠A+∠B+∠C=180°,则∠A=90°,是直角三角形,故不符合题意,故选C.【点睛】本题考查了直角三角形的判定,涉及了勾股定理的逆定理、三角形内角和定理等知识,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题1、2【分析】根据矩形的性质,得到这是个直角三角形,根据勾股定理,计算斜边长为5,直角边的和与斜边的差即为所求.【详解】如图,∵四边形是长方形,∴∠ACB=90°,∵AC=3,BC=4,∴AB,∴AC+BC-AB=3+4-5=2(m),故答案为:2.【点睛】本题考查了矩形的性质,勾股定理,准确理解矩形性质,灵活运用勾股定理是解题的关键.2、16532或103【分析】折叠是一种轴对称变换,根据轴对称的性质、折叠前后图形的形状和大小不变.【详解】解:如图,当锐角B 翻折时,点B 与点D 重合,DE =BE ,D 为AC 的中点116322CD AC ∴==⨯= 设CE =x在Rt CDE △中,222CD CE DE +=2223(8)x x ∴+=-96416x ∴=- 解得5516x =155165321632S ∴=⨯⨯= 如图,当锐角A 翻折时,点A 与点D 重合,DE =AE ,D 为BC 的中点118422CD BC ∴==⨯= 设CE =x在Rt CDE △中,222CD CE DE +=2224(6)x x ∴+=-163612x ∴=- 解得53x =15104233S ∴=⨯⨯= 故答案为:16532或103. 【点睛】 本题考查图形的翻折变换、勾股定理等知识,是重要考点,难度一般,掌握相关知识是解题关键. 3、24根据勾股定理求出AB ,分别求出三个半圆的面积和△ABC 的面积,两小半圆与直角三角形的和减去大半圆即可得出答案.【详解】解:在Rt △ACB 中∠ACB =90°,AC =6,BC =8,由勾股定理得:AB =10, 阴影部分的面积2221618111068242222222S πππ⎛⎫⎛⎫⎛⎫=⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故答案为:24.【点睛】本题主要考查勾股定理和圆有关的不规则图形的阴影面积.利用规则图形面积的和差关系求阴影面积是这类题型的关键.勾股定理是解决三角形中线段问题最有效的方法之一.4、16+【分析】根据线段垂直平分线的性质可得AC =AB ,利用勾股定理可求出BD 的长,进而得出DE 的长,利用勾股定理可得AE 的长,即可得出△ABE 的周长.【详解】∵AD BC ⊥,BD CD =,5AB =,∴AD 是线段BC 的垂直平分线,∴AC =AB =5,∵AD =4,∴BD ,∴CD =BD =3,∴DE=CE+CD=AC+CD=8,BE=DE+BD=11,∴AE∴△ABE的周长=AB+BE+AE=5+11+故答案为:16+【点睛】本题考查垂直平分线的性质,勾股定理,三角形面积的计算等知识,线段垂直平分线上的点到线段两端点的距离相等;熟练掌握垂直平分线性质以及勾股定理的应用是解题的关键.5、1.5##【分析】设较高端点距离地面的高度为h米,此时,跷跷板长即为直角三角形的斜边长,两端端点在水平方向的距离的最小值即为一条直角边长,利用勾股定理即可求出结果.【详解】解:设较高端点距离地面的高度为h米,根据勾股定理得:h2=3.92﹣3.62=2.25,∴h=1.5(米),故答案为:1.5.【点睛】本题考查了勾股定理的应用,掌握勾股定理是解决问题的关键.三、解答题1、(1)A(4,2);(2)E(2,-2)或(6,6);(3)∠ABO+∠DBO=45°【分析】(1)联立方程组可求解;(2)设点E 的坐标为(a ,b ),分两种情况讨论:当点E 在A 点上方时;当点E 在A 点下方时求解即可;(3)由面积关系可求OB 的长,由全等三角形的性质和等腰直角三角形的性质可求解.【详解】解:(1)联立方程组可得:1226y x y x ⎧=⎪⎨⎪=-⎩,解得:42x y =⎧⎨=⎩, ∴点A (4,2),故答案为(4,2);(2)∵直线y =2x -6与y 轴交于点M ,令2x -6=0,解得:x =3,∴点M (3,0),设点E 的坐标为(a ,b ),当点E 在A 点上方时,则AOE OME OMA S S S =-=1133222b ⨯-⨯⨯=6, 解得:b =6,把b =6代入y =2x -6得:x =6,∴E 的坐标为(6,6),当点E 在A 点下方时,则AOE OME OMA S S S =+=1133222b ⨯+⨯⨯=6, 解得:b =-2或2(舍去),把b =-2代入y =2x -6得:x =2,∴E 的坐标为(2,-2),综上:E (2,-2)或(6,6)(3)由(2)得:C (0,-6),∵△BOC的面积等于△AOC面积的一半,∴12×OC×OB=12×12×OC×4,∴BO=2,如图,作点B关于y轴的对称点B',连接B'C,AB',过点A作AH⊥x轴于H点,∴OB=OB'=2,BB'⊥CO,∴BC=B'C,又∵BB'⊥CO,∴∠BCO=∠B'CO,∵AH=B'O=2,B'H=6=CO,∠AHB'=∠B'OC=90°,∴△AHB'≌△B'OC(SAS),∴∠AB'H=∠B'CO,AB'=B'C,∴∠AB'H+∠CB'O=∠B'CO+∠CB'O=90°,∴∠B'CA=∠ACO+∠B'CO=45°,综上所述:当点B在x轴正半轴上时,∠ACO+∠BCO=45°.【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,勾股定理等知识,灵活运用这些性质解决问题是本题的关键.2、(1)a+3(2(3)①<;②>(4)见解析【分析】(1)由题意可以得知管道长度为d1=PB+BA(km),根据BP⊥l于点P得出PB=3,故可以得出d1的值为a+3.(2)由条件根据勾股定理可以求出KB的值,由轴对称可以求出A′K的值,在Rt△KBA′由勾股定理可以求出A′B(3)①把a=4代入d1=a+3和d2②把a=7代入d1=a+3和d2(4)分类进行讨论当d1>d2,d1=d2,d1<d2时就可以分别求出a的范围,从而确定选择方案.(1)解:∵如图1,由题意得:d1=PB+BA=a+3;故答案为:a+3;(2)因为BK2=a2-1,A'B2=BK2+A'K2=a2-1+72=a2+48,所以d2(3)①当a=4时,d1=7,d2=8,d1<d2;②当a=7时,d1=10,d2,d1>d2;故答案为:<,>;(4)d12-d22=(a+3)2-2=6a-39.①当6a-39>0,即a>132时,d12-d22>0,∴d1-d2>0,∴d1>d2;②当6a-39=0,即a=132时,d12-d22=0,∴d1-d2=0,∴d1=d2;③当6a-39<0,即a<132时,d12-d22<0,∴d1-d2<0,∴d1<d2综上可知:当a>132时,选方案二;当a=132时,选方案一或方案二;当1<a<132时,选方案一.【点睛】本题考查了轴对称的性质的运用,最短路线问题数学模式的运用,勾股定理的运用,数的大小的比较方法的运用,综合考查了学生的作图能力,运用数学知识解决实际问题的能力,以及观察探究和分类讨论的数学思想方法.3、(1)AE AD =;AE AD ⊥;(2)见解析【分析】(1)由点E 为BC 中点,可得2BC BE =,再由已知条件给出的等式,等量代换可得AE AD =;由已知AD BC ∥和AE BC ⊥可得AE AD ⊥.(2)过点A 作AH AF ⊥交DP 于点H ,易证AEF ADH ≅△△,AFH 是等腰直角三角形,通过等腰直角三角形斜边和直角边的关系,等量代换可出求证的等式成立.【详解】(1)解:∵点E 为BC 中点∴2BC BE =∵2AE BE =∴AE BC =∵AD BC =∴AE AD =∵AE BC ⊥∴90AEC ∠=︒∵AD BC ∥∴90AEC EAD ∠=∠=︒∴AE AD ⊥故答案为:AE AD =,AE AD ⊥.(2)证明:过点A 作AH AF ⊥交DP 于点H则90DAE FAH ∠=∠=︒,∴DAE EAH FAH EAH ∠-∠=∠-∠,即DAH EAF ∠=∠∵1180EAD ADP ∠+∠+∠=︒,2180EFD AEF ∠+∠+∠=︒,且12∠=∠,90DAE EFD ∠=∠=︒∴AEF ADF ∠=∠∵DAH EAF ∠=∠,AD AE =∴AEF ≌ADH (ASA ),∴DH EF =,AF AH =在Rt AFH △中,90FAH ∠=︒,由勾股定理得:222FH AF AH =+∴FH =∵DF FH HD =+∴DF EF = ∴DF EF -.【点睛】本题考查全等三角形的证明和勾股定理,合理做出辅助线,构造全等三角形是解决本题的关键.4、 [问题背景]DCE ∠;BCD ACE ≌;4;[尝试应用][拓展创新]【分析】[问题背景]根据等式的性质,三角形全等的判定与性质,勾股定理填空即可;[尝试应用]以AB 为直角边,A 为直角顶点作等腰Rt ABF ,连接,,AF BF CF ,进而证明BAD FAC △≌△,根据勾股定理求得FC ,即可求得BD 的长;[拓展创新] 以DA 为腰,作等腰DAG △,DA DG =,120ADG ∠=︒,过点D 作DH AG ⊥,同理证明ABD GCD ≌,进而根据含30度角的直角三角形的性质,勾股定理求得,DH AH ,根据三角形三边关系确定AD 最大值时,,,A C G 三点共线,进而即可求得AD 的最大值.【详解】[问题背景] 解:如图3所示,以DC 为边作等边CDE △,连接AE . ∵ABC ,DCE 是等边三角形,∴BC AC =,DC EC =,60BCA DCE ∠=∠=︒.∴BCA ACD ∠+∠=DCE ∠ACD +∠,∴BCD ACE ∠=∠,∴BCD ACE ≌,∴5AE BD ==,∵30ADC ∠=︒,60CDE ∠=︒,∴90ADE ADC CDE ∠=∠+∠=︒.∵3AD =,∴CD DE ==4.[尝试应用] 解:如图4所示,以AB 为直角边,A 为直角顶点作等腰Rt ABF ,连接,,AF BF CF .∵DAC △,FAB 是等腰直角三角形, ∴AF AB =,AD AC =,90FAB DAC ∠=∠=︒. ∴BAF FAD CAD FAD ∠+∠=∠+∠, ∴FAC BAD ∠=∠,∴BAD FAC △≌△,∴AF AB ==2FB ∴==∵45ABC ∠=︒,45ABF ∠=︒, ∴90FBC ABF ABC ∠=∠+∠=︒. ∵4BC =,∴BD FC =[拓展创新]解:如图,以DA 为腰,作等腰DAG △,DA DG =,120ADG ∠=︒,过点D 作DH AG ⊥,90,30DHA HAD ∴∠=︒∠=︒,12AH HG AG == 12HD AD ∴=AH AD ∴==即AD == ∵DBC △,DAG △是等腰三角形, ,DC DB DG DA ∴==∴GDA CDA CDB CDA ∠-∠=∠-∠ GDC ADB ∴∠=∠∴ABD GCD ≌4CG AB ∴==AD =AG = 则当AG 取得最大值时,AD 取得最大12AG CG AC AB AC ≤+=+=当,,A C G 三点共线时,AD 取得最大值,如图,AD ∴AG == 【点睛】本题考查了等腰三角形的性质与判定,三角形全等的性质与判定,勾股定理,线段最值问题,从题干部分理解作等腰三角形辅助线是解题的关键.5、(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解;②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解. 【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF = , 6OD = ,3OE = ,3OF = , ∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上,∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ ,解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上,∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a += , ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.。
八年级数学下册第18章勾股定理综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下列各组线段为边作三角形,能构成直角三角形的是()A.2,3,5 B.6,8,9 C.5,12,13 D.6,12,132、下列条件:(1)∠A=90°﹣∠B,②∠A:∠B:∠C=3:4:5,③∠A=2∠B=3∠C,④AB:BC:AC=3:4:5,能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为()A .10米B .12米C .15米D .20米4、在ABC 中,A ∠,B ,C ∠的对边分别是a ,b ,c ,且222a c b -=,则( )A .90A ∠=︒B .90B ∠=︒C .90C ∠=︒D .不确定哪个角是直角5、下列命题中,逆命题不正确的是( )A .如果关于x 的一元二次方程ax 2+bx +c =0(a ≠0)没有实数根,那么b 2﹣4ac <0B .线段垂直平分线上的任意一点到这条线段两个端点的距离相等C .全等三角形对应角相等D .直角三角形的两条直角边的平方和等于斜边的平方6、如图,在三角形ABC ,222AB AC BC +=,AB AC =且,H 是BC 上中点,F 是射线AH 上一点.E是AB 上一点,连接EF ,EC ,BF FE =,点G 在AC 上,连接BG ,2ECG GBC ∠=∠,AE =AG =CF 的长为( )A .B .C .D .97、下列各组数中,能作为直角三角形三边长的是( )A .1,2B .8,9,10CD 8、如图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它被第24届国际数学家大会选定为会徽,是国际数学界对我国古代数学伟大成就的肯定.“弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,若直角三角形的两条直角边分别为a 、b ,大正方形边长为3,小正方形边长为1,那么ab 的值为( )A .3B .4C .5D .69、已知直角三角形的斜边长为5cm ,周长为12cm ,则这个三角形的面积( )A .24cmB .25cmC .26cmD .212cm10、如图,在等腰1Rt OAA 中,190OAA ∠=︒,1OA =,以OA 1为直角边作等腰12Rt OA A ,以OA 2为直角边作等腰23Rt OA A ,则2n OA 的长度为( )A .2nB .C .2nD .2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、往直径为26cm 的圆柱形容器内装入一些水以后,截面如图所示,若水的最大深度为8cm ,则水面AB 的宽度为___cm .2、如图,直线1y x =+交x 轴于点A ,交y 轴于点B ,点A 1:坐标为(1,0),过点A 1作x 轴的垂线交直线1y x =+于点B 1,以点A 为圆心,AB 1长为半径画弧交x 轴于点A 2;过点A 2作x 轴的垂线交直线1y x =+于点B 2,以点A 为圆心,AB 2长为半径画弧交x 轴于点A 3;……按此做法进行下去,点B 2021的坐标为____.3、如果一个等腰三角形的底为8,腰长为5,则它的面积是_____.4、如图,在△DEF 中,∠D =90°,DG :GE =1:3,GE =GF ,Q 是EF 上一动点,过点Q 作QM ⊥DE 于M ,QN ⊥GF 于N ,EF =QM +QN 的长是___________.5、禅城区某一中学现有一块空地ABCD 如图所示,现计划在空地上种草皮,经测量90B =∠,3m,4,13m,12m AB BC m CD AD ====,若每种植1平方米草皮需要300元,总共需投入______元三、解答题(5小题,每小题10分,共计50分)1、如图,Rt △ABC 中,∠ACB =90°,分别以AC ,BC ,AB 为边作正方形,面积分别记作S 1、S2、S 3.求证:S 1+S 2=S 3.2、如图,在ABC 中,D 是BC 边上的一点,若AB =5,BD =3,AD =4,AC =8.(1)求ABD 的面积.(2)求BC 的长(结果保留根号).3、在平面直角坐标系xOy 中,对于点P 给出如下定义:点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.已知点()6,0A ,()0,6B .(1)在点()6,0D -,()3,0E ,()0,3F 中,______是点A 和点O 的“等距点”;(2)在点()2,1G --,()2,2H ,()3,6I 中,______是线段OA 和OB 的“等距点”;(3)点(),0C m 为x 轴上一点,点P 既是点A 和点C 的“等距点”,又是线段OA 和OB 的“等距点”.①当8m =时,是否存在满足条件的点P ,如果存在请求出满足条件的点P 的坐标,如果不存在请说明理由;②若点P 在OAB 内,请直接写出满足条件的m 的取值范围.4、如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =;(1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒).①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.5、如图,在Rt ABC △中,90C ∠=︒,AC BC =,在Rt △ABD 中,90D ∠=︒,AD 与BC 交于点E ,且DBE DAB ∠=∠.求证:∠=∠;(1)CAE DBC(2)222AC CE BD+=.4-参考答案-一、单选题1、C【分析】根据两小边的平方和是否等于最长边的平方进行判断是否是直角三角形.【详解】A、选项:222+=≠,不能构成直角三角形,故本选项不符合题意;23135B、选项:222+=≠,不能构成直角三角形,故本选项不符合题意;681009C、选项:222+==,能构成直角三角形,故本选项符合题意;51216913D、选项:22261218013+=≠,不能构成直角三角形,故本选项不符合题意;故选:C【点睛】考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.2、B【分析】利用三角形内角和定理和勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形进行分析即可.【详解】解:①∵∠A=90°﹣∠B,∴∠A+∠B=90°,∴∠C=90°,∴△ABC是直角三角形;②∵∠A:∠B:∠C=3:4:5,设∠A=3x,则∠B=4x,∠C=5x,∴3x+4x+5x=180,解得:x=15°,∴∠C=15°×5=75°,∴△ABC不是直角三角形;③∵∠A=2∠B=3∠C,∴11,23B AC A ∠=∠∠=∠∴1118023A B C A A A︒∠+∠+∠=∠+∠+∠=,∴∠A=(108011)°,∴△ABC为钝角三角形;④∵AB:BC:AC=3:4:5,设AB=3k,则BC=4k,AC=5k,∴AB2+BC2=AC2,∴△ABC是直角三角形;∴能确定△ABC是直角三角形的条件有①④共2个,故选:B.【点睛】此题主要考查了勾股定理逆定理以及三角形内角和定理,关键是掌握勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.3、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.【详解】解:如图,(1)AB(2)AB15,由于15则蚂蚁爬行的最短路程为15米.故选:C.【点睛】本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.4、A【分析】根据题意直接利用勾股定理的逆定理进行判断即可得出答案.【详解】解:∵在ABC 中,A ∠,B ,C ∠的对边分别是a ,b ,c ,且222a c b -=,∴222b c a +=.∴b 、c 是两直角边,a 是斜边,∴90A ∠=︒.故选:A .【点睛】本题考查勾股定理的逆定理.注意掌握如果三角形的三边长a ,b ,c 满足222+=a b c ,那么这个三角形就是直角三角形.5、C【分析】分别写出各个命题的逆命题,然后判断正误即可.【详解】解:A.逆命题为:如果一元二次方程ax 2+bx +c =0(a ≠0)中b 2﹣4ac <0,那么它没有实数根,正确,不符合题意;B.逆命题为:到线段距离相等的点在线段的垂直平分线上,正确,不符合题意;C.逆命题为:对应角相等的两三角形全等,错误,符合题意;D.逆命题为:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形,正确,不符合题意.故选:C【点睛】本题考查了原命题、逆命题,命题的真假,一元二次方程根的判别式,线段垂直平分线,全等三角形的判定与性质,勾股定理极其逆定理等知识,综合性较强,准确写出各选项的逆命题并准确判断是解题关键.6、D【分析】延长EA 到K ,是的AK =AG ,连接CK ,先由勾股定理的逆定理可以得到△ABC 是等腰直角三角形,∠BAC =90°,∠ACB =∠ABC =45°,由BF =FE ,得到∠FBE =∠FEB ,设∠BFE =x ,则()11=180=9022EBF BFE x ︒-︒-∠∠,然后证明CB =FC =FE ,得到∠FBC =∠FCA ,∠AFB =∠AFC 则1902FCA x ∠=︒-,()11=180=9022EBF BFE x ︒-︒-∠即可证明==90EFC AFE AFC +︒∠∠∠,推出CF =;设22ECG GBC y ==∠∠,证明△ABG ≌△ACK ,得到==45K AGB ACB GBC y =+︒+∠∠∠∠,==45ACK ABG ABC GBC y -=︒-∠∠∠∠,即可推出∠ECK =∠K ,得到EK =EC ,则EK AE AK AE AG =+=+=【详解】解:延长EA 到K ,是的AK =AG ,连接CK ,∵在三角形ABC ,222AB AC BC +=,AB AC =且,∴△ABC 是等腰直角三角形,∠BAC =90°,∴∠ACB =∠ABC =45°,∵BF =FE ,∴∠FBE =∠FEB ,设∠BFE =x ,则()11=180=9022EBF BFE x ︒-︒-∠∠,∵H 是BC 上中点,F 是射线AH 上一点,∴AH ⊥BC ,∴AH 是线段BC 的垂直平分线,∠FAC =45°,∴CB =FC =FE ,∴∠FBC =∠FCA ,∠AFB =∠AFC ∴1902FCA x ∠=︒-,()11=180=9022EBF BFE x ︒-︒-∠ ∴1180452AFB AFC FAC FCA x ∠=∠=︒-∠-∠=︒+, ∴1==452AFE AFB BFE x -︒-∠∠∠, ∴==90EFC AFE AFC +︒∠∠∠,∴222EF CF CE +=,∴2CF =, 设22ECG GBC y ==∠∠,∵AG =AK ,AB =AC ,∠KAC =∠GAB =90°,∴△ABG ≌△ACK (SAS ),==45K AGB ACB GBC y =+︒+∠∠∠∠,==45ACK ABG ABC GBC y -=︒-∠∠∠∠,∴==45ECK ACE ACK a +︒+∠∠∠,∴∠ECK =∠K ,∴EK =EC ,∵EK AE AK AE AG =+=+=∴EF EK ==∴9CF =,【点睛】本题主要考查了勾股定理和勾股定理的逆定理,等腰三角形的性质与判定,线段垂直平分线的性质与判定,全等三角形的性质与判定,三角形内角和定理等等,熟知相关知识是解题的关键.7、A【分析】比较较小的两边的平方和是否等于较长边的平方来判定即可.【详解】解:A、22212+=,能构造直角三角形,故符合题意;B、222081,不能构造直角三角形,故不符合题意;9C、222+≠,不能构造直角三角形,故不符合题意;D、222+≠,不能构造直角三角形,故不符合题意;故选:A.【点睛】此题考查勾股定理的逆定理,三角形的两边的平方和等于第三边的平方,则此三角形为直角三角形,熟练运用这个定理是解题关键.8、B根据大正方形的面积是9,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值.【详解】解:∵大正方形边长为3,小正方形边长为1,∴大正方形的面积是9,小正方形的面积是1,∴一个直角三角形的面积是(9-1)÷4=2,又∵一个直角三角形的面积是12ab=2,∴ab=4.故选:B.【点睛】本题考查了与弦图有关的计算,还要注意图形的面积和a,b之间的关系.9、C【分析】设该直角三角形的两条直角边分别为a、b,根据勾股定理和周长公式即可列出方程,然后根据完全平方公式的变形即可求出2ab的值,根据直角三角形的面积公式计算即可.【详解】解:设该直角三角形的两条直角边分别为a、b,根据题意可得:22251257 a ba b⎧+=⎨+=-=⎩①②将②两边平方-①,得224ab=∴12ab=∴该直角三角形的面积为2126ab cm 故选:C【点睛】此题考查的是直角三角形的性质和完全平方公式,根据勾股定理和周长列出方程是解决此题的关键.10、C【分析】利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.【详解】解:∵△OAA 1为等腰直角三角形,OA =1,∴AA 1=OA=1,OA 11;∵△OA 1A 2为等腰直角三角形,∴A 1A 2=OA 1OA 2OA 1=2=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 323;∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 3,OA 4OA 3=4=4,∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 545.∴2n OA 的长度为2n =2n ,故选C .【点睛】本题考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.二、填空题1、24【分析】连接OA,过点O作OD⊥AB交AB于点C交⊙O于D,再根据勾股定理求出AC的长,进而可得出AB的长.【详解】解:连接OA,过点O作OD⊥AB交AB于点C交⊙O于D.∵OC⊥AB,∴AC=CB,∵OA=OD=13cm,CD=8cm,∴OC=OD﹣CD=5(cm),∴12(cm)AC==,∴AB=2AC=24(cm),故答案为:24.【点睛】本题主要考查垂径定理,掌握垂径定理和勾股定理是解题的关键.2、()1011101121,2-【分析】根据题意可以写出A 和B 的前几个点的坐标,从而可以发现各点的变化规律,从而可以写出点B 2021的坐标.【详解】解:∵直线1y x =+,令0y =,则1x =-,()1,0A ∴-A 1(1,0),11AB x ⊥轴,将1x =代入1y x =+得2y =∴点B 1坐标为(1,2),在11Rt AA B △中,1112,2AA A B ==1AB ∴=()21,0A ∴同理,点B 2的坐标为(点A 3坐标为()1,0,点B 3的坐标为(,……∴点B n 的坐标为()1121,2n n --- 当n =2021时,点B 2021的坐标为()202112021121,2---,即()1011101121,2- 故答案为:()1011101121,2-本题考查一次函数图象上点的坐标特征、规律型,勾股定理,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.3、12【分析】先画好符合题意的图形,过A 作AD BC ⊥于,D 证明4,BD CD 再利用勾股定理求解即可.【详解】解:如图,过A 作AD BC ⊥于,D5,8,AB AC BC4,BD CD 223,AD AB BD 118312.22ABCS BC AD 故答案为:12.【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,掌握“作出适当的辅助线构建直角三角形,结合利用等腰三角形的三线合一证明3BD CD ==”是解本题的关键.4、4【分析】连接QG 解直角三角形求出DF ,再证明QM QN DF +=,即可解决问题.解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,DF , 4EF =222EF DE DF =+,2248168k k ∴=+,k ∴或, 4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故答案为:4.【点睛】本题考查解直角三角形,勾股定理,等腰三角形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.5、10800【分析】仔细分析题目,需要求得四边形的面积才能求得结果,在直角三角形ABC 中可求得AC 的长,由AC 、AD 、DC 的长度关系可得ACD △为直角三角形,CD 为斜边;由此可知,四边形ABCD 由t R ABC 和Rt ACD △构成,即可求解.【详解】解:在t R ABC 中,∵222222=345AC AB BC +=+=,∴AC =5.在ACD △中,2213CD =,2212AD =,而22212513+=,即222AC AD CD +=,∴90DAC ∠=︒, 即:11=22BAC DAC ABCD S SS BC AB CD AC +=+四边形 =11431253622⨯⨯+⨯⨯=.所以需费用:3630010800⨯=(元).故答案为10800.【点睛】本题考查了勾股定理,逆定理的相关知识,以及割补法求图形的面积,熟练掌握勾股定理及其逆定理是解答本题的关键.三、解答题1、见解析【分析】在直角三角形ABC 中,利用勾股定理求出AC 2+BC 2的值,根据S 1,S 2分别表示正方形面积,求出S 1+S 2的值即可.【详解】证明:由题意得S1=AC2,S2=BC2,S3=AB2.在Rt△ABC中,∠ACB=90°,则由勾股定理,得AC2+BC2=AB2,S1+S2=S3.【点睛】本题考查的是与勾股定理相关的图形面积问题,掌握“勾股定理”是解本题的关键.2、(1)6(2)【分析】(1)先利用勾股定理的逆定理说明△ABD是直角三角形,再根据三角形面积公式列式计算即可;(2)先利用勾股定理求出DC,然后根据BC=BD+DC求解即可.(1)解:∵在△ABD中,AB=5,BD=3,AD=4,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=90°,∴S△ABD=12AD•BD=12×4×3=6;(2)解:∵∠ADB=90°,∴∠ADC=180°﹣∠ADB=90°,∴DC2=AC2﹣AD2=82﹣42=48,∴DC=∴BC =BD +DC =【点睛】本题主要考查了勾股定理的逆定理和运用勾股定理解直角三角形,运用勾股定理判定△ABD 为直角三角形是解答本题的关键.3、(1)点E ;(2)点H ;(3)①存在,点P 的坐标为(7,7);②60m -<<【分析】(1)根据“等距点”的定义,即可求解;(2)根据“等距点”的定义,即可求解;(3)①根据点P 是线段OA 和OB 的“等距点”,可设点P (x ,x )且x >0,再由点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()222286x x x x -+=-+ ,即可求解;②根据点P 是线段OA 和OB 的“等距点”, 点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,根据OA =OB ,可得OP 平分线段AB ,再由点P 在OAB 内,可得0<<3a ,根据点P 是点A 和点C 的“等距点”,可得22AP CP = ,从而得到()()22226a m a a a -+=-+,整理得到()()()2666m a m m -=+-,即可求解. 【详解】解:(1)根据题意得:()6612AD =--= ,633AE =-= ,AF = , 6OD = ,3OE = ,3OF = , ∴AE OE = ,∴点()3,0E 是点A 和点O 的“等距点”;(2)根据题意得:线段OA 在x 轴上,线段OB 在y 轴上,∴点()2,1G --到线段OA 的距离为1,到线段OB 的距离为2,点()2,2H 到线段OA 的距离为2,到线段OB 的距离为2,点()3,6I 到线段OA 的距离为6,到线段OB 的距离为3,∴点()2,2H 到线段OA 的距离和到线段OB 的距离相等,∴点()2,2H 是线段OA 和OB 的“等距点”;(3)①存在,点P 的坐标为(7,7),理由如下:∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上,∴可设点P (x ,x )且x >0,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点C (8,0),()6,0A ,∴()()222286x x x x -+=-+ ,解得:7x = ,∴点P 的坐标为(7,7);②如图,∵点P 是线段OA 和OB 的“等距点”,且线段OA 在x 轴上,线段OB 在y 轴上,∴点P 在∠AOB 的角平分线上,可设点P (a ,a )且a >0,∵()6,0A ,()0,6B .∴OA =OB =6,∴OP 平分线段AB ,∵点P 在OAB 内,∴当点P 位于AB 上时, 此时点P 为AB 的中点,∴此时点P 的坐标为6060,22++⎛⎫ ⎪⎝⎭ ,即()3,3 , ∴0<<3a ,∵点P 是点A 和点C 的“等距点”,∴22AP CP = ,∵点(),0C m ,()6,0A ,∴()()22226a m a a a -+=-+, 整理得:()()()2666m a m m -=+- ,当6m = 时,点C (6,0),此时点C 、A 重合,则a =6(不合题意,舍去),当6m ≠时,62m a += , ∴6032m +<<,解得:60m -<< , 即若点P 在OAB 内,满足条件的m 的取值范围为60m -<<.【点睛】本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.4、(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,365s,或5s时,ΔADN为等腰三角形.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)①由△ABC的面积求出BD、AD、CD、AC;再分当MN∥BC时,AM=AN和当DN∥BC时,AD=AN两种情况得出方程,解方程即可;②分三种情况:AD=AN;DA=DN;和ND=NA,三种情况讨论即可【详解】解:(1)设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC5x,∴AB=AC,∴△ABC是等腰三角形;(2)①S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.当MN∥BC时,AM=AN,即10−t=t,此时t=5,当DN∥BC时,AD=AN,此时t=6,综上所述,若△DMN的边与BC平行时,t值为5或6;②ΔADN能成为等腰三角形,分三种情况:(ⅰ)若AD=AN=6,如图:则t =61=6s ;(ⅱ)若DA =DN ,如图:过点D 作DH AC ⊥于点H ,则AH =NH , 由1122ACD S AD CD AC DH =⋅=⋅,得11681022DH ⨯⨯=⨯⨯, 解得245DH =,在Rt ADH 中,185AH ===, 3625AN AH ∴==, 3615AN t s ∴==; (ⅲ)若ND =NA ,如图:过点N 作NQ AB ⊥于点Q ,则AQ =DQ =3,142NQ CD ==,5AN ∴==,51AN t s ∴==; 综上,点N 运动的时间为6s ,365s ,或5s 时,ΔADN 为等腰三角形. 【点睛】此题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是熟练掌握方程的思想方法和分类讨论思想.5、(1)证明见解析;(2)证明见解析【分析】(1)根据三角形内角和定理确定90CEA CAE ∠+∠=︒,90DEB DBC ∠+∠=︒,再根据等角的余角相等即可证明;(2)延长BD 交AC 延长线于点F .先根据全等三角形的判定定理得到ADF ADB ≌△△,进而得到2BF BD =,再根据全等三角形的判定定理得到ACE BCF ≌△△,进而得到2AE BD =,最后根据勾股定理即可证明.【详解】证明:(1)如下图所示,标出1∠,2∠,3∠.∵90ACB ∠=︒,90ADB ∠=︒,∴1390∠+∠=︒,290DBC ∠+∠=︒.∵1∠和2∠是对顶角,∴12∠=∠.∴3DBC ∠=∠,即CAE DBC ∠=∠.(2)在(1)中图延长BD 交AC 延长线于点F .由(1)可知3DBC ∠=∠,即3DBE ∠=∠.∵DBE DAB ∠=∠,∴3DAB ∠=∠.∵90ADB ∠=︒,∴90ADF ∠=︒.∴ADF ADB ∠=∠.在ADF 和ADB △中,∵3,,,DAB AD AD ADF ADB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ADF ADB ASA ≌△△.∴FD BD =.∴2BF BD =.∵90ACB ∠=︒,即90ACE ∠=︒,∴90BCF ∠=︒.∴ACE BCF ∠=∠.由(1)可知3DBC ∠=∠,即3CBF ∠=∠.在ACE 和BCF △中,,∵3,,,CBF AC BC ACE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ACE BCF ASA ≌△△.∴AE BF =.∴2AE BD =∵在Rt ACE 中,222AC CE AE +=,∴()222224AC CE BD BD +==.【点睛】本题考查三角形的内角和定理,等角的余角相等,全等三角形的判定定理和性质,勾股定理,综合应用以上知识点是解题关键,同时注意等价代换思想的使用.。
八年级数学下册第18章勾股定理综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要()A.8 cm B.10 cm C.12 cm D.15 cm2、下列各组数据中,能构成直角三角形的三边的长的一组是()A.1,2,3 B.4,5,6 C.5,12,13 D.13,14,153、点P(-3,4)到坐标原点的距离是()A.3 B.4 C.-4 D.54、如图,点A在点O的北偏西30的方向5km处,AB OA.根据已知条件和图上尺规作图的痕迹判断,下列说法正确的是()A.点B在点A的北偏东30方向5km处B.点B在点A的北偏东60︒方向5km处C.点B在点A的北偏东30方向处D.点B在点A的北偏东60︒方向km处5、如图,在△ABC中,BC=C=45°,若D是AC的三等分点(AD>CD),且AB=BD,则AB 的长为()A.2B C D.5 26、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则线段DE的长为()A.32B.3 C.910D.17、下列四组数据中,不能..作为直角三角形的三边长的是()A.5,13,12 B.6,8,10 C.9,12,15 D.3,4,68、如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则BE等于()A.2 B.103C.258D.1529、如图,A,B两地距公路l的距离分别为AC、BD,BD=4km,小华从A处出发到公路l上的点P处取一物品后去到B处,全程共18km,已知PC=5km,PD=3km,则A处距离公路l(AC)()A.13km B.12km C.km D.8km10、已知一个直角三角形两直角边边长分别为6和8,则斜边边长为()A .10B .C .15D .10或第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如今人们锻炼身体的意识日渐增强,但是发现少数人保护环境的意识仍显淡薄,应提醒注意.下图是房山某公园的一角,有人为了抄近道而避开路的拐角ABC ∠(90ABC ∠=︒),于是在草坪内走出了一条不该有的“捷径路AC ” .已知30AB =米,40BC =米,他们踩坏了______米的草坪,只为少走______米的路.2、如图,在平面直角在坐标系中,四边形OACB 的两边OA ,OB 分别在x 轴、y 轴的正半轴上,其中90AOB ACB ∠=∠=︒,且CO 平分ACB ∠,若BC =AC =C 的坐标为______.3、如图,等腰△ABC 中,AB =AC =5,BC =6,BD ⊥AC ,则BD =__________________.4、如图,△ABC中,∠ACB=90°,AC=4,BC=3,射线CD与边AB交于点D,点E、F分别为AD、BD中点,设点E、F到射线CD的距离分别为m、n,则m+n的最大值为________.5、如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为 _____.三、解答题(5小题,每小题10分,共计50分)的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均1、图1、图2、图3均是55为1,点A、B均在格点上,在图1、图2、图3中,只用无刻度的直尺,在给定的网格内按要求画图,所画图形的顶点均在格点上,不要求写出画法.(1)在图1中,画一个ABP △,使得其中一个内角为45°.(2)在图2中,画一个等腰ABQ △,使得ABQ △面积等于52.(3)在图3中,画一个四边形ABMN ,使得180A M ∠+∠=︒.2、已知一次函数26y x =--.(1)画出函数图象.(2)不等式26x -->0的解集是_______;不等式26x --<0的解集是_______.(3)求出函数图象与坐标轴的两个交点之间的距离.3、如图在55⨯的正方形网格中,每个小正方形的顶点称为格点.点A ,点B 都在格点上,按下列要求画图.(1)在图①中,AB为一边画ABC,使点C在格点上,且ABC是轴对称图形;(2)在图②中,AB为一腰画等腰三角形,使点C在格点上;(3)在图③中,AB为底边画等腰三角形,使点C在格点上.4、如图,把长方形纸片OABC放入直角坐标系中,使OA,OC分别落在x轴、y轴的正半轴上,连接AC,将△ABC沿AC翻折,点B落在点D,CD交x轴于点E,已知CB=8,AB=4(1)求AC所在直线的函数关系式;(2)求点E的坐标和△ACE的面积;(3)坐标轴上是否存在点P(不与A、C、E重合),使得△CEP的面积与△ACE的面积相等,若存在请直接写出点P的坐标.5、在△ABC中,AB=AC,点D在BA的延长线上,DE∥AC交BC的延长线于点E.(1)如图1,求证:DB=DE;(2)如图2,作△DBE的高EF,连结AE.若∠DEA=∠FEA,求证:∠AEB=45°;(3)如图3,在(2)的条件下,过点B作BG⊥AE于点G,BG交AC于点H,若CE=2,求AG的长.-参考答案-一、单选题1、B【分析】立体图形展开后,利用勾股定理求解.【详解】解:将长方体沿着AB边侧面展开,并连接'AB,如下图所示:由题意及图可知:'13138AB cm=,=+++=,''6AA cm两点之间,线段最短,故'AB的长即是细线最短的长度,''Rt AAB∆中,由勾股定理可知:'10===,AB cm故所用细线最短需要10cm.故选:B.【点睛】本题主要是考查了勾股定理求最短路径、两点之间线段最短以及立体图形的侧面展开图,因此,正确得到立体图形的侧面展开图,熟练运用勾股定理求边长,是解决此类问题的关键.2、C【分析】先计算两条小的边的平方和,再计算最长边的平方,根据勾股定理的逆定理判断解题.【详解】解:A.2221+23≠,不是直角三角形,故A不符合题意;B. 222≠,不是直角三角形,故B不符合题意;4+56C. 2225+12=13,是直角三角形,故C不符合题意;D. 22213+1415≠,不是直角三角形,故D不符合题意,故选:C.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.3、D【分析】利用两点之间的距离公式即可得.【详解】P-到坐标原点(0,0)5,解:点(3,4)故选:D.【点睛】本题考查了两点之间的距离公式,熟练掌握两点之间的距离公式是解题关键.4、D【分析】过A作AC∥OM交ON于C,作AD∥ON,求出AB及∠DAB即可得到答案.【详解】过A作AC∥OM交ON于C,作AD∥ON,如图:∵∠MON=90°,∠AOC=30°,∴∠AOM=120°,由作图可知,OB平分∠AOM,∠AOM=60°,∴∠AOB=12∴∠B=30°,在Rt△AOB中,OB=2OA=10,∴AB=∵∠AOC=30°,∠ACO=90°,∴∠CAO=60°,∴∠DAB=90°-∠BAC=∠CAO=60°,∴B在A北偏东60°方向处,故选:D.本题考查作图-基本作图、方向角、角平分线的作法等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.5、B【分析】作BE ⊥AC 于E ,根据等腰三角形三线合一性质可得AE =DE ,根据∠C =45°,得出∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,可得BE =CE ,利用勾股定理求出CE =BE =2,根据D 是AC 的三等分点得出AE =DE =121233AC AC ⨯==CD ,求出CD =1,利用勾股定理AB == 【详解】解:作BE ⊥AC 于E ,∵AB =BD ,∴AE =DE ,∵∠C =45°,∴∠EBC =180°-∠C -∠BEC =180°-45°-90°=45°,∴BE =CE ,在Rt △BEC 中,∴(22222+2BE CE CE BC ===,∴CE =BE =2,∵D 是AC 的三等分点,∴CD =13AC ,AD =AC -CD =1233AC AC AC -=, ∴AE =DE =121233AC AC ⨯==CD , ∴CE =CD +DE =2CD =2,∴AE =1,在Rt △ABE 中,根据勾股定理AB故选B .【点睛】本题考查等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段,掌握等腰三角形的性质,等腰直角三角形判定与性质,勾股定理,三等分线段是解题关键.6、C【分析】过点F 作FG ⊥AB 于点G ,由∠ACB =90°,CD ⊥AB ,AF 平分∠CAB ,可得∠CAF =∠FAD ,从而得到CE =CF ,再由角平分线的性质定理,可得FC =FG ,再证得Rt ACF Rt AGF ≅,可得3AG AC == ,然后设FG CF x == ,则4BF x =- ,再由勾股定理可得32CE FC == ,然后利用三角形的面积求出125CD = ,即可求解. 【详解】解:如图,过点F 作FG ⊥AB 于点G ,∵∠ACB =90°,CD ⊥AB ,∴∠CDA =90°,∴∠CAF +∠CFA =90°,∠FAD +∠AED =90°,∵AF 平分∠CAB ,∴∠CAF =∠FAD ,∴∠CFA =∠AED =∠CEF ,∴CE =CF ,∵AF 平分∠CAB ,∠ACF =∠AGF =90°,∴FC =FG ,∵AF AF =,∴Rt ACF Rt AGF ≅,∴3AG AC == ,∵AC =3,AB =5,∠ACB =90°,∴BC =4,2BG AB AG =-= ,设FG CF x == ,则4BF x =- ,∵222FG BG BF += ,∴()222x 24x +=- , 解得:32x =, ∴32CE FC == , ∵1122AB CD AC BC ⨯=⨯ , ∴125CD = ,∴910 DE CD CE=-=.故选:C【点睛】本题主要考查了勾股定理,角平分线的性质定理,等腰三角形的判定和性质,熟练掌握勾股定理,角平分线的性质定理,等腰三角形的判定和性质是解题的关键.7、D【分析】根据勾股定理的逆定理进行判断即可.【详解】解:A、22251213+=,故A不符合题意.B、2226810+=,故B不符合题意.C、22291215+=,故C不符合题意.D、222346+≠,故D符合题意.故选:D.【点睛】本题主要是考查了勾股定理的逆定理,熟练利用勾股定理来判定三角形是否为直角三角形,是解决本题的关键.8、C【分析】连接EA,根据勾股定理求出BC,根据线段垂直平分线的性质得到EA=EB,根据勾股定理列出方程,解方程即可.【详解】解:连接EA,∵∠ACB =90°,AC =3,AB =5,∴BC 4,由作图可知,MN 是线段AB 的垂直平分线,∴EA =EB ,则AC 2+CE 2=AE 2,即32+(4﹣BE )2=BE 2,解得,BE =258, 故选:C .【点睛】本题考查了线段垂直平分线的作法和性质、勾股定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.9、B【分析】由题意根据勾股定理先求出BP ,进而得出AP 并根据勾股定理即可得出AC 的长.【详解】解:∵43BD km PD km ==,,BD PD ⊥,∴5BP km =,∵18AP BP km +=,∴18513AP km =-=,∵5,PC km AC CP =⊥,∴12AC km =.故选:B.【点睛】本题考查勾股定理的实际应用,熟练掌握勾股定理即222+=a b c 进行分析是解题的关键.10、A【分析】已知两直角边边长分别为6和8,利用勾股定理求斜边即可.【详解】解: ∵一个直角三角形两直角边边长分别为6和8,斜边边长,∴斜边边长为10.故选A .【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确直角边或斜边,直接应用勾股定理,如果条件不明确时那条边是斜边,要注意讨论.二、填空题1、50 20【分析】根据勾股定理计算AC ,计算AB +BC -AC 的值即可.【详解】∵90ABC ∠=︒,30AB =,40BC =,∴AC (米),∴AB +BC -AC =30+40-50=20(米),故答案为:50,20.【点睛】本题考查了勾股定理,准确用定理计算是解题的关键.2、2128,55⎛⎫ ⎪⎝⎭【分析】取AB 的中点E ,连接OE ,CE 并延长交x 轴于点F ,根据直角三角形斜边 上的中线等于斜边的一半证明CE =OE =AE ,再进一步证明=90OEA ∠︒;由勾股定理求出AB =AO =BO =5;过点O 作OG ⊥OC 交CA 的延长线于点G ,证明△COG 访问团等腰直角三角形,可可求出OC =7;过点C 作CH ⊥x 轴,垂足为H ,设C (m ,n ),则OH =m ,CH =n ,AH =5-m ,根据勾股定理可得方程组2222227(5)m n m n ⎧+=⎪⎨-+=⎪⎩,求出方程组的解,取正值即可.【详解】解:取AB 的中点E ,连接OE ,CE 并延长交x 轴于点F ,如图,∵90ACB ∠=︒,OC 平分∠ACB , ∴11904522ACO ACB ∠=∠=⨯︒=︒∵,ACB AOB ∆∆均为直角三角形, ∴11,22CE AE AB OE AE AB ==== ∴OE CE AE ==∴,,ECO EOC EAC ECA EOA EAO ∠=∠∠=∠∠=∠∴2,2OEF EOC ECO ECO AEF ECA EAC ECA ∠=∠+∠=∠∠=∠+∠=∠∵OEA OEF AEF ∠=∠+∠∴22290OEA ECO ECA OCA ∠=∠+∠=∠=︒∴45EOA EAO ∠=∠=︒∴45ABO BOE ∠=∠=︒∴AOB ∆是等腰直角三角形,∴,AO BO OE AB =⊥∵BC AC ==由勾股定理得,AB =∴OE BE ==∴5AO BO ==过点O 作OE ⊥OC 交CA 的延长线于点G ,∵∠OCA =45°,∴∠G =45°,∴△COG 为等腰直角三角形,∴OC =OG ,∵∠BOC +∠COA =∠COA +∠AOG =90°,∴∠BOC =∠AOG ,∵∠OCB =∠OEA =45°,∴△COB ≌△GOA (ASA ),∴BC =AG =∵CG =AC +AG ==∵△OCE 为等腰直角三角形,∴OC =7过点C 作CH ⊥x 轴于点H ,设C (m ,n ),∴OH =m ,CH =n ,AH =5-m在Rt △CHO 和Rt △CHA 中,由勾股定理得,2222227(5)m n m n ⎧+=⎪⎨-+=⎪⎩解得,215m,285n =(负值舍去) ∴C (212855,) 故答案为:(212855,) 【点睛】本题主要考查了坐标玮图形的性质,全等三角形的判定和性质,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造全等三角形是本题的关键.3、245【分析】过点A 作AE BC ⊥交于点E ,由等腰三角形三线合一得132BE CE BC ===,由勾股定理求出AE ,由等面积法即可求出BD .【详解】如图,过点A 作AE BC ⊥交于点E ,∵ABC 是等腰三角形, ∴132BE CE BC ===,∴4AE =,∵BD AC ⊥,∴BC AE AC BD ⋅=⋅,即645BD ⨯=, 解得:245BD =, 故答案为:245. 【点睛】 本题考查等腰三角形的性质以及勾股定理,掌握等腰三角形三线合一是解题的关键. 4、2.5【分析】连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,首先根据中线的性质和三角形面积公式得出132FCE ABC S S ∆∆==,然后证明出当CD 的长度最小时,m +n 的值最大,然后根据垂线段最短和等面积法求出CD 的最小值,即可求出m +n 的最大值.【详解】解:连接CE ,CF ,作,EM CD FN CD ⊥⊥,分别交CD 于点M 和点N ,∵点E 是AD 的中点,点F 是BD 的中点,∴CE 是ACD ∆中AD 边上的中线,CF 是BCD ∆中BD 边上的中线, ∴12ACE DCE ACD S S S ∆∆∆==,12BCF DCF BCD S S S ∆∆∆==, ∴11111322222FCE DCE DCF ACD BCD ABC S S S S S S AC BC ∆∆∆∆∆∆=+=+==⨯⨯⨯=, ∴11322CD EM CD FN ++=, ∴()132CD EM FN +=,即()132CD m n +=, ∴()6CD m n +=,∴当CD 的长度最小时,m +n 的值最大,∴当CD AB ⊥时,CD 的长度最小,此时m +n 的值最大,∵△ABC 中,∠ACB =90°,AC =4,BC =3,∴AB 5, ∴162CD AB ⨯⨯=,解得:125CD =,∴将125CD =代入()6CD m n +=得: 2.5m n +=. 故答案为:2.5.【点睛】此题考查了勾股定理,中线的性质,三角形面积的应用,垂线段最短等知识,解题的关键是根据题意作出辅助线,正确分析出当CD AB ⊥时m +n 的值最大.5、79【分析】根据给出的数据找出规律:21a n =-,2b n =,21c n =+,由此求出n 的值,即可求出答案.【详解】由题可得:2321=-,422=⨯,2521=+,2831=-,623=⨯,21031=+,21541=-,824=⨯,21741=+,……,∴21a n =-,2b n =,21c n =+,∴当2165c n =+=时,8n =,∴28163x =-=,2816y =⨯=,∴631679x y +=+=,故答案为:79.【点睛】本题考查勾股定理,根据题目给出的数据找出规律是解题的关键.三、解答题1、(1)见解析(2)见解析(3)见解析【分析】(1)以AB为直角边画等腰直角三角形即可;(2)在点B右上一个格点处画点Q即可;(3)画出以AB为腰的等腰梯形ABMN即可.(1)解:如图所示,AB BP==ABP△是等腰直角三角形,其中∠APB=45°;(2)解:如图所示,AB AQ=1115332323112222 ABQS=⨯-⨯⨯-⨯⨯-⨯⨯=(3)解:如图所示,易证∠BAN =∠NMC ,故180BAN BMN ∠+∠=︒;【点睛】本题考查了网格作图,解题关键是熟悉网格特征,利用勾股定理等知识画图即可.2、(1)见解析;(2)x <-3;x >-3;(3)BC =【分析】(1)分别将x =0、y =0代入一次函数y =-2x -6,求出与之相对应的y 、x 值,由此即可得出点A 、B 的坐标,连点成线即可画出函数图象;(2)根据一次函数图象与x 轴的上下位置关系,即可得出不等式的解集;(3)由点A 、B 的坐标即可得出OA 、OB 的长度,再根据勾股定理即可得出结论.(或者直接用两点间的距离公式也可求出结论)【详解】(1)当x =0时,y =-2x -6=-6,∴一次函数y =-2x -6与y 轴交点C 的坐标为(0,-6);当y =-2x -6=0时,解得:x =-3,∴一次函数y =-2x -6与x 轴交点B 的坐标为(-3,0).描点连线画出函数图象,如图所示.(2)观察图象可知:当x<-3时,一次函数y=-2x-6的图象在x轴上方;当x>-3时,一次函数y=-2x-6的图象在x轴下方.∴不等式-2x-6>0的解集是x<-3;不等式-2x-6<0的解集是x>-3.故答案是:x<-3,x>-3;(3)∵B(-3,0),C(0,-6),∴OB=3,OC=6,∴BC=【点睛】本题考查了一次函数与一元一次不等式、一次函数图象以及勾股定理,解题的关键是:(1)找出一次函数与坐标轴的交点坐标;(2)根据一次函数图象与x轴的上下位置关系找出不等式的解集;(3)利用勾股定理求出直角三角形斜边长度.3、(1)见详解;(2)见详解;(3)见详解.【分析】(1)先根据以AB为边△ABC是轴对称图形,得出△ABC为等腰三角形,AB长为3,画以AB为腰的等腰直角三角形即可;(2)先根据勾股定理求出AB的长,利用平移画出点C即可;(3)先求出以AB为底等腰直角三角形腰长AC C即可.【详解】解:(1)∵以AB为边△ABC是轴对称图形,∴△ABC为等腰三角形,AB长为3,画以AB为直角边,点B为直角顶点△ABC如图也可画以AB为直角边,点A为直角顶点△ABC如图;(2)根据勾股定理ABAB,以点A为顶角顶点根据勾股定理构建横1竖3,或横3竖1;点A向左1格再向下平移3格得C1,连结AC1,C1B,得等腰△ABC1,点A向右3格再向上平移1格得C2,连结AC2,BC2,得等腰△ABC2,点A向右3格再向下平移1格得C3,连结AC3,BC3,得等腰△ABC3,点B向右3格再向上平移1格得C4,连结AC4,BC4,得等腰△ABC4,点B向右3格再向下平移1格得C5,连结AC5,BC5,得等腰△ABC5,点B向右1格再向上平移3格得C6,连结AC6,BC6,得等腰△ABC6;(3)AB为底边画等腰三角形,等腰直角三角形腰长为m,根据勾股定理222AB AC BC=+,22+m m=,解得m=1竖2,或横2竖1得图形,点A向右平移2格,再向下平移1格得点C1,连结AC1,BC1,得等腰三角形ABC1,点A向左平移1格,再向下平移2格得点C2,连结AC2,BC2,得等腰三角形ABC2.【点睛】本题考查网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质,掌握网格作图,图形平移性质,勾股定理应用,等腰直角三角形性质,轴对称性质是解题关键.4、(1)y=142x-+;(2)E(3,0),10;(3)P1(-2,0),P2(0,323),P3(0,-83).【分析】(1)先求出A、C的坐标,然后用待定系数法求解即可;(2)先证明CE=AE;设CE=AE=x,则OE=8-x,在直角△OCE中,OC2+OE2=CE2,则()22248-x x+=,求出x得到OE的长即可求解;(3)分P在x轴上和y轴上两种情况讨论求解即可.【详解】解:(1)∵OA ,OC 分别落在x 轴、y 轴的正半轴上,CB =8,AB =4.∴A (8,0)、C (0,4),设直线AC 解析式为y =kx +b ,∴804k b b +=⎧⎨=⎩, 解得:124k b ⎧=-⎪⎨⎪=⎩, ∴AC 所在直线的函数关系式为y =142x -+;(2)∵长方形OABC 中,BC ∥OA ,∴∠BCA =∠CAO ,又∵∠BCA =∠ACD ,∴∠ACD =∠CAO ,∴CE =AE ;设CE =AE =x ,则OE =8-x ,在直角△OCE 中,OC 2+OE 2=CE 2,则()2224+8-x =x ,解得:x =5;则OE =8-5=3,则E (3,0),∴S △ACE =12×5×4=10;(3)如图3-1所示,当P 在x 轴上时,∵S SSSS =S SSSS ,∴1102PE OC⋅=,∴5PE=,∵E点坐标为(3,0),∴P点坐标为(-2,0)或(8,0)(舍去,与A点重合)如图3-2所示,当P在y轴上时,同理可得1102PC OE⋅=,∴203 PC=,∵C点坐标为(0,4),∴P点坐标为(0,83-)或(0,323);综上所述,坐标轴上是在点P(-2,0)或(0,323)或(0,83-)使得△CEP的面积与△ACE的面积相等.【点睛】本题主要考查了求一次函数解析式,三角形面积,坐标与图形,勾股定理与折叠,等腰三角形的性质与判定,平行线的性质等等,解题的关键在于鞥个熟练掌握相关知识进行求解.5、(1)见详解;(2)见详解;(3【分析】(1)根据平行线的性质和等腰三角形的判定定理解答即可;(2)根据三角形的内角和解答即可;(3)过点C作CR⊥AE于R,过点R作RT⊥CE于T,先证明△ABG≌△CAR,再根据全等三角形的性质解答即可.【详解】证明:(1)∵AB=AC,∴∠B=∠ACB,∵DE∥AC,∴∠ACB=∠E,∴∠B=∠E,∴DB=DE;(2)令∠DEA=α,则∠FEA=α,∠FED=2α,∵EF是△DBE的高,∴EF⊥DB,∴∠DFE=90°,∴∠D=90°-∠DEF=90°-2α,∵∠B+∠DEB+∠D=180°,∴2∠DEB+90°-2α=180°,∴∠DEB=45°+α,∴∠AEB=∠DEB-∠DEA=45°+α-α=45°,(3)如图3,过点C作CR⊥AE于R,过点R作RT⊥CE于T,则∠CRE=∠CTR=∠ETR=90°,∵∠AEB=45°,∴∠RCE=∠ERT=45°=∠CRT,CE∴RC=2∵DE∥AC,∴∠CAR=∠DEA,∵BG⊥AE,∴∠BGE=90°,∴∠GBE=90°-∠AEB=45°,即∠GBE=∠AEB,∴∠ABG=∠ABC-∠GBE=∠DEB-∠AEB=∠DEA=∠CAR,又∵AB=AC,∠AGB=∠CRA=90°,∴△ABG≌△CAR(AAS),∴AG= RC【点睛】本题考查三角形综合题、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中等题型.。
沪科版初二数学下册第18章达标检测卷(150分,90分钟)一、选择题(每题4分,共40分)1.三角形的三边长为a , b , c ,且满足()a +b 2=c 2+2ab ,则这个三角形是( ) A .等边三角形 B .钝角三角形 C .直角三角形 D .锐角三角形2.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有( )A .1个B .2个C .3个D .4个3.一个直角三角形,有两边长分别为6和8,下列说法正确的是( )A .第三边长一定是10B .三角形的周长为24C .三角形的面积为24D .第三边长可能是2 74.如果将长为6 cm ,宽为5 cm 的长方形纸片折叠一次,那么这条折痕的长不可能是( )A .8 cmB .5 2 cmC .5.5 cmD .1 cm5.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最多能伸长13米,则云梯可以到达该建筑物的最大高度是( )(消防车的高度忽略不计)A .12米B .13米C .14米D .15米6.在如图所示的网格中,每个小正方形的边长都为1,△ABC 的顶点都在格点上,三边长分别为a 、b 、c ,则a 、b 、c 的大小关系是( )A .a <c <bB .a <b <cC .c <a <bD .c <b <a7.一次函数y =34x +3的图象与x 轴,y 轴分别交于A ,B 两点,则A ,B 两点之间的距离是( )A .3B .4C .5D .68.如图,在△ABC 中,AB =AC =5,BC =6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A .65B .95C .125D .165(第6题)(第8题)(第9题)(第10题)9.如图,在Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .53B .52C .4D .5 10.如图,在△ABC 中,∠BAC =90°,AB =3,AC =4,AD 平分∠BAC 交BC 于点D ,则BD 的长为( )A .157B .125C .207D .215二、填空题(每题5分,共20分)11.有一组勾股数,知道其中的两个数分别是17和8,则第三个数是________. 12.如图,正方形ABCD 的边长为4,E 为BC 上的一点,BE =1,F 为AB 上的一点,AF =2,P 为AC 上一个动点,则PF +PE 的最小值为________.(第12题)(第13题)(第14题)13.如图①是一面长方形彩旗完全展平时的尺寸图(单位:cm),其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,长方形DCEF为绸缎旗面.将穿好彩旗的旗杆竖直插在操场上,旗杆从旗顶到地面的高度为220 cm,在无风的天气里,彩旗自然下垂,如图②,则彩旗下垂时最低处离地面的高度h为________ cm.14.如图,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为________.三、解答题(19,20题每题10分,21,22题每题12分,23题14分,其余每题8分,共90分)15.若△ABC的三边长a,b,c满足a2+b2+c2+50=6a+8b+10c,则△ABC的形状是什么?16.一个零件的形状如图①所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件的尺寸如图②所示,那么这个零件符合要求吗?(第16题)17.如图,甲、乙两船同时从港口A出发,甲船以12海里/时的速度沿北偏东35°方向航行,乙船沿南偏东55°方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距40海里,求乙船航行的平均速度为多少.(第17题)18.如图,△ABC中,AD是BC边上的中线,以D为顶点作∠EDF=90°,DE,DF 分别交AB,AC于E,F,且BE2+CF2=EF2,求证:△ABC为直角三角形.(第18题)19.如图,一块长方体砖宽AN=5 cm,长ND=10 cm,B为CD上的一点,BD=8 cm,地面上点A处的一只蚂蚁想要沿长方体砖的表面爬到B处吃食,则蚂蚁需要爬行的最短路程是多少?(第19题)20.平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:,即=|x|+|y|(其中“+”是四则运算中的加法).(1)求点A(-1,3),B(3+2,3-2)的勾股值、;(2)求满足条件=3的所有点N围成的图形的面积.21.如图所示,在△ABC中,AB∶BC∶AC=3∶4∶5,且周长为36 cm,点P从点A 开始沿AB边向B点以每秒1 cm的速度移动;点Q从点B开始沿BC边向点C以每秒2 cm 的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?(第21题)22.小明、小华在一栋电梯前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能知道!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,如图,其中长方形CDEF表示楼体,CF=DE,∠ACF=∠BDE=90°,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上),问:(1)楼高多少米?(结果保留根号)(2)若每层楼按3米计算,你支持小明还是小华的观点?说明理由.(参考数据:3≈1.73,2≈1.41,5≈2.24)(第22题)23.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.(1)在图①中以格点为顶点画一个三角形,使三角形三边长分别为2,5,13;(2)在图②中以格点为顶点画一个面积为10的正方形;(3)观察图③中带阴影的图形,请你将它适当剪开,重新拼成一个正方形(要求:在图③中用虚线作出,并用文字说明剪拼方法).(第23题)参考答案与解析一、1.C 点拨:化简()a +b 2=c 2+2ab ,得a 2+b 2=c 2,所以该三角形是直角三角形,故选C .2.C3.D 点拨:分两种情况:①当两直角边长为6和8时,第三边长为10,三角形的周长为24,面积为24;②当斜边长为8时,第三边长为2 7,周长为14+2 7,面积为6 7.故选D . 4.A 5.A6.C 点拨:由题意知,c =4;由勾股定理可得,a =42+12=17,b =42+32=5,所以c <a <b.故选C .7.C 点拨:先求出一次函数y =34x +3的图象与两坐标轴的交点的坐标,得出两直角边的长,再利用勾股定理计算即可.8.C9.C 点拨:设线段BN 的长为x ,则AN =9-x.由题意得DN =AN =9-x.因为点D 为BC 的中点,所以BD =12BC =3.在Rt △BND 中,∠B =90°.由勾股定理,得BN 2+BD 2=DN 2,即x 2+32=(9-x)2,解得x =4.10.A 点拨:∵∠BAC =90°,AB =3,AC =4,∴BC =5,∴BC 边上的高为3×4÷5=125.∵AD 平分∠BAC ,∴点D 到AB ,AC 的距离相等,设为h ,则S △ABC =12×3h +12×4h =12×3×4,解得h =127,∴S △ABD =12×3×127=12BD·125,解得BD =157.故选A . 二、11.15 点拨:设第三个数是a.①若a 是三个数中最大的数,则a =82+172=353,不是整数,不符合题意;②若17是三个数中最大的数,则a =172-82=15,8、15、17是正整数,是一组勾股数,符合题意.12.17 点拨:作F 关于AC 在AD 上的对称点F′,连接EF′,交AC 于P′.当点P 在P′处,此时PF +PE 的值最小,PF +PE 的最小值=12+42=17.13.70 点拨:如题图①,连接DE ,已知EF =90cm ,DF =120cm ,根据勾股定理可得DE =150cm ,所以彩旗自然下垂时最低处离地面的高度h 为220-150=70(cm ).14.(2)n -1三、15.解:∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2+b 2+c 2-6a -8b -10c +50=0,即(a -3)2+(b -4)2+(c -5)2=0,∴a =3,b =4,c =5.∵32+42=52,即a 2+b 2=c 2,∴根据勾股定理的逆定理可判定△ABC 是直角三角形.点拨:本题利用配方法,先求出a ,b ,c 的值,再利用勾股定理的逆定理可判定△ABC 是直角三角形.16.解:在△ABD 中,因为AB 2+AD 2=82+62=102=BD 2,所以△ABD是直角三角形,且∠A=90°,在△DBC中,因为BD2+BC2=102+242=262=CD2,所以△BCD是直角三角形,且∠DBC=90°,所以这个零件符合要求.点拨:要判断一个三角形中是否有直角,首先必须算出三边的长,再利用勾股定理的逆定理进行验证.17.解:由题意可知△ABC为直角三角形,∠CAB=90°,且AC=12×2=24(海里),由勾股定理得AB=BC2-AC2=402-242=32(海里),32÷2=16(海里/时),即乙船航行的平均速度为16海里/时.18.证明:延长FD至M,使MD=FD,连接MB,ME,如图所示,∵D为BC的中点,∴BD=DC,又MD=FD,∠BDM=∠CDF,∴△BDM≌△CDF(SAS),∴∠DBM=∠C,BM=CF,∵∠EDF=90°,MD=FD,∴EM=EF,∵BE2+CF2=EF2,∴BE2+BM2=EM2,即△BEM为直角三角形,且∠EBM=90°.由∠DBM=∠C知,BM∥AC,∴∠BAC=180°-∠EBM=90°,即△ABC为直角三角形.(第18题)(第19题)19.解:如图,将长方体砖的部分侧面展开,连接AB,则AB的长即为从A处到B处的最短路程.在Rt△ABD中,因为AD=AN+ND=5+10=15(cm),BD=8 cm,所以AB =AD2+BD2=152+82=17(cm).因此蚂蚁需要爬行的最短路程为17 cm.(第20题)20.解:=|-1|+|3|=4.=|3+2|+|3-2|=3+2+2-3=4.(2)设N(x,y),∵=3,∴|x|+|y|=3.①当x≥0,y≥0时,x+y=3,即y=-x+3;②当x>0,y<0时,x-y=3,即y=x-3;③当x<0,y>0时,-x+y=3,即y=x+3;④当x≤0,y≤0时,-x-y=3,即y=-x-3.如图,满足条件=3的所有点N围成的图形是正方形,面积是18. 21.解:设AB为3x cm,则BC为4x cm,AC为5x cm,∵周长为36 cm,∴AB+BC+AC=36 cm,即3x+4x+5x=36,解得x=3,∴AB=9 cm,BC=12 cm,AC=15 cm.∴AB2+BC2=AC2,∴△ABC是直角三角形,且∠B=90°.过3秒时,BP=9-3×1=6(cm),BQ=2×3=6(cm),∴S△BPQ=12BP·BQ=12×6×6=18(cm2).故过3秒时,△BPQ的面积为18 cm2.点拨:本题先设适当的参数求出三角形的三边长,由勾股定理的逆定理得出三角形为直角三角形,再求出3秒后的BP,BQ的长,利用三角形的面积公式计算即可.22.解:(1)设楼高为x米,则CF=DE=x米.∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴AF=2x米,BD=x米,∴AC=AF2-FC2=3x米,∴3x+x=150-10,解得x=1403+1=70(3-1),∴楼高为70(3-1)米.(2)70(3-1)≈70×(1.73-1)=70×0.73=51.1.∵51.1<3×20=60,∴我支持小华的观点,这栋楼不到20层.23.解:(1)如图①所示,△ABC即为所求作的三角形.(2)如图②所示,正方形ABCD的面积为10.(3)如图③所示,正方形ABCD即为重新拼成的正方形.剪拼方法:沿图③中的虚线剪开,然后①②③分别对应拼接即可.。