初中几何截长补短专题突破
- 格式:docx
- 大小:97.04 KB
- 文档页数:3
中考数学几何模型1:截长补短模型有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系. 这一类题目一般可以采取“截长”或“补短”的方法来进行求解. 所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系. 所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等. 然后求出延长后的线段与最长的已知线段的关系. 有的是采取截长补短后,使之构成某种特定的三角形进行求解.例题1. 如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.变式练习>>>1. 已知△ABC的内角平分线AD交BC于D,∠B=2∠C. 求证:AB+BD=AC.例题2. 已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.变式练习>>>2. 已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.例题3. 如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.变式练习>>>3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.例题4. 在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,求线段AE长度的最大值.例题5.在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.例题6. 如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.达标检测领悟提升强化落实1. 如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.2. 如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.4. 如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DF A=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠F AE的度数;(2)求证:AF=CD+CF.5. 如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.6. 如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.7. 如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.(1)若AE=2,求EF的长;(2)求证:PF=EP+EB.答案例题1. 如图,AB∥CD,BE平分∠ABC,CE平分∠BCD,若E在AD上.求证:(1)BE⊥CE;(2)BC=AB+CD.【解答】证明:如图所示:(1)∵BE、CE分别是∠ABC和∠BCD的平分线,∴∠1=∠2,∠3=∠4,又∵AB∥CD,∴∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,∴∠BEC=90°,∴BE⊥CE.(2)在BC上取点F,使BF=BA,连接EF.在△ABE和△FBE中,,∴△ABE≌△FBE(SAS),∴∠A=∠5.∵AB∥CD,∴∠A+∠D=180°,∴∠5+∠D=180,∵∠5+∠6=180°,∴∠6=∠D,在△CDE和△CFE中,,∴△CDE≌△CFE(AAS),∴CF=CD.∵BC=BF+CF,∴BC=AB+CD,变式练习>>>1. 已知△ABC的内角平分线AD交BC于D,∠B=2∠C. 求证:AB+BD=AC.答案:略例题2. 已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC 的数量关系,并说明理由.【解答】解:在BC上取点G使得CG=CD,∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BOE=∠COD=60°,∵在△COD和△COG中,,∴△COD≌△COG(SAS),∴∠COG=∠COD=60°,∴∠BOG=120°﹣60°=60°=∠BOE,∵在△BOE和△BOG中,,∴△BOE≌△BOG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC.变式练习>>>2. 已知:△ABC中,AB=AC,D为△ABC外一点,且∠ABD=60°,∠ADB=90°﹣∠BDC.试判断线段CD、BD与AB之间有怎样的数量关系?并证明你的结论.【解答】解:AB=BD+CD,理由是:延长CD到E,使DE=BD,连接AE,∵∠ADB=90°﹣∠BDC,∴∠ADE=180°﹣(90°﹣)﹣∠BDC=90°﹣,∴∠ADB=∠ADE,在△ABD和△AED中∴△ABD≌△AED(SAS),∴∠E=∠ABD=60°,AB=AE,∵AB=AC,∴AE=AC,∴△ACE是等边三角形,∴AB=CE=CD+DE=BD+CD.例题3. 如图所示,在五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE.【解答】解:连接AC,延长DE到F,使EF=BC,连接AF,∵BC+DE=CD,EF+DE=DF,∴CD=FD,∵∠ABC+∠AED=180°,∠AEF+∠AED=180°,∴∠ABC=∠AEF,在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴AC=AF,在△ACD和△AFD中,,∴△ACD≌△AFD(SSS)∴∠ADC=∠ADF,即AD平分∠CDE.变式练习>>>3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,M是AB延长线上一点,N是CA延长线上一点,且∠MDN=60°.试探究BM、MN、CN之间的数量关系,并给出证明.【解答】解:CN=MN+BM证明:在CN上截取点E,使CE=BM,连接DE,∵△ABC为等边三角形,∴∠ACB=∠ABC=60°,又△BDC为等腰三角形,且∠BDC=120°,∴BD=DC,∠DBC=∠BCD=30°,∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°,在△MBD和△ECD中,,∴△MBD≌△ECD(SAS),∴MD=DE,∠MDB=∠EDC,又∵∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC﹣(∠BDN+∠EDC)=∠BDC﹣(∠BDN+∠MDB)=∠BDC﹣∠MDN=120°﹣60°=60°,∴∠MDN=∠EDN,在△MND与△END中,,∴△MND≌△END(SAS),∴MN=NE,∴CN=NE+CE=MN+BM.例题4. 在四边形ABDE中,C是BD边的中点.(1)如图(1),若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为AE=AB+DE;(直接写出答案)(2)如图(2),AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图(3),BD=8,AB=2,DE=8,若ACE=135°,则线段AE长度的最大值是10+4.(直接写出答案).【解答】解:(1)AE=AB+DE;(2)猜想:AE=AB+DE+BD.证明:在AE上取点F,使AF=AB,连结CF,在AE上取点G,使EG=ED,连结CG.∵C是BD边的中点,∴CB=CD=BD.∵AC平分∠BAE,∴∠BAC=∠FAC.在△ACB和△ACF中,,∴△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE.∵CB=CD,∴CG=CF∵∠ACE=120°,∴∠BCA+∠DCE=180°﹣120°=60°.∴∠FCA+∠GCE=60°.∴∠FCG=60°.∴△FGC是等边三角形.∴FG=FC=BD.∵AE=AF+EG+FG.∴AE=AB+DE+BD.(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.∵C是BD边的中点,∴CB=CD=BD.∵△ACB≌△ACF(SAS),∴CF=CB,∴∠BCA=∠FCA.同理可证:CD=CG,∴∠DCE=∠GCE∵CB=CD,∴CG=CF∵∠ACE=135°,∴∠BCA+∠DCE=180°﹣135°=45°.∴∠FCA+∠GCE=45°.∴∠FCG=90°.∴△FGC是等腰直角三角形.∴FC=BD.∵BD=8,∴FC=4,∴FG=4.∵AE=AB+4+DE.∵AB=2,DE=8,∴AE≤AF+FG+EG=10+4.∴当A、F、G、E共线时AE的值最大2,最大值为10+4.故答案为:10+4.例题5.在△ABC中,∠BAC=90°.(1)如图1,直线l是BC的垂直平分线,请在图1中画出点A关于直线l的对称点A′,连接A′C,A′B,A′C与AB交于点E;(2)将图1中的直线A′B沿着EC方向平移,与直线EC交于点D,与直线BC交于点F,过点F作直线AB 的垂线,垂足为点H.①如图2,若点D在线段EC上,请猜想线段FH,DF,AC之间的数量关系,并证明;②若点D在线段EC的延长线上,直接写出线段FH,DF,AC之间的数量关系.【解答】解:(1)如图1:;(2)①DF+FH=CA,证明:如图2,过点F作FG⊥CA于点G,∵FH⊥BA于H,∠A=90°,FG⊥CA,∴∠A=∠FGA=∠FHA=90°,∴四边形HFGA为矩形.∴FH=AG,FG∥AB,∴∠GFC=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB,由(1)和平移可知,∠ECB=∠EBC=∠GFC,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴CG=FD,∴DF+FH=GC+AG,即DF+FH=AC;②解:FH﹣DF=AC,理由是:过F作FH⊥BA于H,过点C作CG⊥FH于G,∵FH⊥BA于H,∠BAC=90°,CG⊥FH,∴∠CAH=∠CGH=∠FHA=90°,∴四边形ACGH为矩形.∴AC=GH,CG∥AB,∴∠GCF=∠EBC,∵直线l是BC的垂直平分线,∴BE=EC,∴∠EBC=∠ECB=∠FCD,∴∠GCF=∠FCD,由(1)和平移可知,∠FDC=∠A=90°,∴∠FDC=∠FGC=90°.∵在△FGC和△CDF中∴△FGC≌△CDF,∴FG=FD,∵FH﹣FG=GH,∴FH﹣DF=AC.例题6. 如图1,在△ABC中,∠ACB=2∠B,∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H 作直线l⊥AO于H,分别交直线AB、AC、BC、于点N、E、M.(1)当直线l经过点C时(如图2),求证:BN=CD;(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;(3)请直接写出BN、CE、CD之间的等量关系.【解答】(1)证明:连接ND,如图2所示:∵AO平分∠BAC,∴∠BAD=∠CAD,∵直线l⊥AO于H,∴∠AHN=∠AHE=90°,∴∠ANH=∠AEH,∴AN=AC,∴NH=CH,∴AH是线段NC的中垂线,∴DN=DC,∴∠DNH=∠DCH,∴∠AND=∠ACB,∵∠AND=∠B+∠BDN,∠ACB=2∠B,∴∠B=∠BDN,∴BN=DN,∴BN=DC;(2)解:当M是BC中点时,CE和CD之间的等量关系为CD=2CE,理由如下:过点C作CN'⊥AO交AB于N',过点C作CG∥AB交直线l于点G,如图3所示:由(1)得:BN'=CD,AN'=AC,AN=AE,∴∠ANE=∠AEN,NN'=CE,∴∠ANE=∠CGE,∠B=∠BCG,∴∠CGE=∠AEN,∴CG=CE,∵M是BC中点,∴BM=CM,在△BNM和△CGM中,,∴△BNM≌△CGM(ASA),∴BN=CG,∴BN=CE,∴CD=BN'=NN'+BN=2CE;(3)解:BN、CE、CD之间的等量关系:当点M在线段BC上时,CD=BN+CE;理由如下:过点C作CN'⊥AO交AB于N',如图3所示:由(2)得:NN'=CE,CD=BN'=BN+CE;当点M在BC的延长线上时,CD=BN﹣CE;理由如下:过点C作CN'⊥AO交AB于N',如图4所示:同(2)得:NN'=CE,CD=BN'=BN﹣CE;当点M在CB的延长线上时,CD=CE﹣BN;理由如下:过点C作CN'⊥AO交AB于N',如图5所示:同(2)得:NN'=CE,CD=BN'=CE﹣BN.达标检测领悟提升强化落实1. 如图,在△ABC中,∠BAC=60°,AD是∠BAC的平分线,且AC=AB+BD,求∠ABC的度数.【解答】解:如图,在AC上截取AE=AB,∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴BD=DE,∠B=∠AED,∵AC=AE+CE,AC=AB+BD,∴CE=BD,∴CE=DE,∴∠C=∠CDE,即∠B=2∠C,在△ABC中,∠BAC+∠B+∠C=180°,∴60°+2∠C+∠C=180°,解得∠C=40°,∴∠ABC=2×40°=80°.2. 如图,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F,试探究线段AB与AF,CF之间的数量关系,并证明你的结论.3. 如图,△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角∠NDM,角的两边分别交AB、AC边于M、N两点,连接MN.试探究BM、MN、CN之间的数量关系,并加以证明.【解答】解:探究结论:BM+CN=NM.证明:延长AC至E,使CE=BM,连接DE,∵△BDC是顶角∠BDC=120°的等腰三角形,△ABC是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ABD=∠DCE=90°,∴在△DCE和△DBM中,∴Rt△DCE≌Rt△DBM(SAS),∴∠BDM=∠CDE,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC﹣∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°∴DM=DE(上面已经全等)在△DMN和△DEN中∵∴△DMN≌△DEN(SAS),∴BM+CN=NM.4. 如图,▱ABCD中,E是BC边的中点,连接AE,F为CD边上一点,且满足∠DFA=2∠BAE.(1)若∠D=105°,∠DAF=35°.求∠FAE的度数;(2)求证:AF=CD+CF.【解答】(1)解:∵∠D=105°,∠DAF=35°,∴∠DFA=180°﹣∠D﹣∠DAF=40°(三角形内角和定理).∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD(平行四边形对边平行且相等).∴∠DFA=∠FAB=40°(两直线平行,内错角相等);∵∠DFA=2∠BAE(已知),∴∠FAB=2∠BAE(等量代换).即∠FAE+∠BAE=2∠BAE.∴∠FAE=∠BAE;∴2∠FAE=40°,∴∠FAE=20°;(2)证明:在AF上截取AG=AB,连接EG,CG.∵∠FAE=∠BAE,AE=AE,∴△AEG≌△AEB.∴EG=BE,∠B=∠AGE;又∵E为BC中点,∴CE=BE.∴EG=EC,∴∠EGC=∠ECG;∵AB∥CD,∴∠B+∠BCD=180°.又∵∠AGE+∠EGF=180°,∠AGE=∠B,∴∠BCF=∠EGF;又∵∠EGC=∠ECG,∴∠FGC=∠FCG,∴FG=FC;又∵AG=AB,AB=CD,∴AF=AG+GF=AB+FC=CD+FC.5. 如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.【解答】解:(1)∵四边形ABCD是正方形,且边长为4,∴∠ABF=90°,AB=AD=4,∵在Rt△ABF中,AB=2FB,∴FB=×4=2,∴AF==2,∵AG=AD=4,∴FG=AF﹣AG=2﹣4;(2)证明:在BC上截取BM=AE,连接AM,∵AG=AD,AB=AD,∴AG=AB,∵AE⊥AF,∴∠EAG=∠ABM=90°,在△AGE和△BAM中,,∴△AGE≌△BAM(SAS),∴∠AMB=∠AEG,∠BAM=∠AGD,∵AG=AD,∴∠AGD=∠ADG,∴∠BAM=∠ADG,∵∠BAD=90°,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD,∴∠AEG=∠EAD+∠ADG=∠FAB+∠BAM=∠FAM,∴∠FAM=∠AMB,∴AF=FM=BF+BM=BF+AE.6. 如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,连接AC,BD交于点E.(1)若BC=CD=2,M为线段AC上一点,且AM:CM=1:2,连接BM,求点C到BM的距离.(2)证明:BC+CD=AC.【解答】解:(1)∵AB=AD,∠BAD=60°,∴△ABD是等边三角形,∴∠ABD=∠ADB=60°.∵BC=CD,∴△ABC≌△ADC,∴∠BAC=∠DAC=30°,∠ACB=∠ACD=60°.∴∠AEB=∠BEC=90°,∠ABC=90°,∴CE=BC=1,BE=,AC=2BC=4.∵AM:CM=1:2,∴AM=,CM=,∴EM=,在Rt△BEM中由勾股定理得BM==.过点C作CF⊥BM于点F.∴.∴,∴CF=.即点C到BM的距离.(2)证明:延长BC到点F,使CF=CB,连接DF,∵AB=AD,∠ABD=60°,∴△ABD是等边三角形,∴∠ADB=60°,AD=BD,∴BC=CD,∴CF=CD.∵∠BCD=120°,∴∠DCF=180°﹣∠BCD=60°,∴△DCF是等边三角形,∴∠CDF=∠ADB=60°,DC=DF,∴∠ADC=∠BDF,又∵AD=BD,∴△ACD≌△BDF,∴AC=BF=BC+CF,即AC=BC+CD.7. 如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.(1)若AE=2,求EF的长;(2)求证:PF=EP+EB.【解答】解:(1)∵四边形ABCD是正方形,且BE⊥DP,AF⊥AE,∴AB=AD,∠BAD=∠EAF=∠BEF=90°,∴∠1+∠FAB=∠2+∠FAB=90°,∴∠1=∠2.∵∠3+∠5=∠4+∠6,且∠5=∠6,∴∠3=∠4.在△AEB和△AFD中,∵,∴△AEB≌△AFD,∴AE=AF=2,在Rt△EAF中,由勾股定理,得EF==2.(2)过点A作AM⊥EF于M,且∠EAF=90°,AE=AF,∴△EAF为等腰直角三角形.∴AM=MF=EM.∠AME=∠BEF=90°.∵点P是AB的中点,∴AP=BP.在△AMP和△BEP中,∵,∴△AMP≌△BEP,∴BE=AM,EP=MP,∴MF=BE,∴PF=PM+FM=EP+BE.。
截长补短法截长补短法是几何证明题中十分重要的方法。
通常来证明几条线段的数量关系。
截长补短法有多种方法。
截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
……补短法(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……例:HPGFB AC DE在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证)HPGFB AC DE方法二(好证不好想)HMPGFB AC DE例题不详解。
(第2页题目答案见第3、4页)FEDCAB(1)正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAF=45o 。
求证:EF=DE+BF(1)变形aEFD CAB正方形ABCD 中,点E 在CD 延长线上,点F 在BC 延长线上,∠EAF=45o 。
请问现在EF 、DE 、BF 又有什么数量关系?(1)变形bEFD C AB正方形ABCD 中,点E 在DC 延长线上,点F 在CB 延长线上,∠EAF=45o 。
请问现在EF 、DE 、BF 又有什么数量关系?(1)变形cj FEABCD正三角形ABC 中,E 在AB 上,F 在AC 上∠EDF=45o 。
DB=DC ,∠BDC=120o 。
请问现在EF 、BE 、CF 又有什么数量关系?(1)变形 dFEDCAB正方形ABCD 中,点E 在CD 上,点F 在BC 上,∠EAD=15o ,∠FAB=30o 。
AD=3求∆AEF 的面积(1)解:(简单思路)GFEDCA B延长CD 到点G ,使得DG=BF ,连接AG 。
由四边形ABCD 是正方形得∠ADG=∠ABF=90o AD=AB 又DG=BF所以∆ADG ≅∆ABF (SAS ) ∠GAD=∠FAB AG=AF由四边形ABCD 是正方形得∠DAB=90o=∠DAF+∠FAB =∠DAF+∠GAD=∠GAF所以∠GAE=∠GAF-∠EAF =90o -45o =45o∠GAE=∠FAE=45o 又AG=AF AE=AE所以∆EAG ≅∆EAF (SAS ) EF=GE=GD+DE=BF+DE变形a 解:(简单思路)GEFD CABEF= BF-DE在BC 上截取BG ,使得BG=DF ,连接AG 。
截长补短专题知识导航“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“c b a =+”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
截长法:在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。
补短法:①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。
即延长a ,得到b ,证:c b a =+。
②延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。
即延长a ,得到c ,证:a c b -=。
【核心考点1】角平分线相关截长补短1. 如图,BP 平分ABC ∠,D 为BP 上一点,E ,F 分别在BA ,BC 上,且满足DE DF =,若140BED ∠=︒,则BFD ∠的度数是( )A .40︒B .50︒C .60︒D .70︒【分析】作DG AB ⊥于G ,DH BC ⊥于H ,根据角平分线的性质得到DH DG =,证明Rt DEG Rt DFH ∆≅∆,得到DEG DFH ∠=∠,根据互为邻补角的性质得到答案.【解答】解:作DG AB ⊥于G ,DH BC ⊥于H ,D 是ABC ∠平分线上一点,DG AB ⊥,DH BC ⊥, DH DG ∴=,在Rt DEG ∆和Rt DFH ∆中, DG DHDE DF=⎧⎨=⎩, ()Rt DEG Rt DFH HL ∴∆≅∆,DEG DFH ∴∠=∠,又180DEG BED ∠+∠=︒, 180BFD BED ∴∠+∠=︒,BFD ∴∠的度数18014040=︒-︒=︒,故选:A .2. 已知,如图,ABC ∆中,2C B ∠=∠,12∠=∠,求证:AB AC CD =+.【分析】在AB 上截取AE AC =,由“SAS ”可证ADE ADC ∆≅∆,可证DE DC =,C AED ∠=∠,可证B BDE ∠=∠,可得BE DE DC ==,即结论可得. 【解答】证明:如图,在AB 上截取AE AC =,AE AC =,12∠=∠,AD AD =()ADE ADC SAS ∴∆≅∆DE DC ∴=,C AED ∠=∠, 2C B ∠=∠,AED B BDE ∠=∠+∠,B BDE ∴∠=∠ BE DE DC ∴==,AB AE BE =+, AB AC DC ∴=+。
初中几何截长补短辅助线的技巧几何学是初中阶段的一门重要学科,其中截长补短辅助线是学习几何的重要技巧之一。
通过截长补短辅助线,可以有效地解决一些几何问题,并且提高解题的效率。
本文将从几何学的基本概念开始,介绍截长补短辅助线的定义和作用,然后详细阐述截长补短辅助线的技巧和应用。
通过本文的学习,相信读者能够更加深入地理解几何学中的相关知识,提高解题能力。
一、几何学的基本概念几何学是研究空间形状、大小、相对位置和变化规律的数学学科。
在几何学中,我们需要关注的主要概念包括点、线、面、角等基本几何要素,以及直线、射线、线段、圆等几何图形。
在解题过程中,我们需要灵活地运用这些基本概念和几何定理,来解决各种几何问题。
二、截长补短辅助线的定义和作用在解决一些几何问题时,我们常常需要用到截长补短辅助线的技巧。
所谓截长补短,是指在原有的图形中,通过引入一条辅助线来改变图形的形状,从而使得问题的解决变得更加简单和直观。
截长补短辅助线的作用是通过改变图形的形状,使得原有的问题变得更容易解决。
三、截长补短辅助线的技巧截长补短辅助线的技巧主要包括以下几个方面:1.确定需要引入辅助线的位置:在解题过程中,我们需要根据问题的需要来确定引入辅助线的位置。
通常情况下,我们可以根据已知条件和问题的要求,来确定辅助线的位置。
需要注意的是,引入的辅助线应该是合理的,能够有效地改变原有图形的形状,使得问题的解决变得更加简单。
2.利用辅助线改变图形的形状:一旦确定了引入辅助线的位置,接下来就需要灵活地运用几何知识和技巧来改变图形的形状。
在改变图形形状的过程中,我们需要根据需要合理地调整辅助线的位置和长度,使得原有的问题变得更容易解决。
四、截长补短辅助线的应用截长补短辅助线的技巧在解决各种几何问题中有着广泛的应用。
在几何学中,我们常常需要通过引入辅助线来解决一些角度、长度、面积等问题。
通过灵活地运用截长补短辅助线的技巧,我们可以更加简便地解决这些问题,并且提高解题的效率。
专题06 全等三角形中的截长补短模型【模型展示】如图,在△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围。
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,把AB、AC、2AD集中在△ABE中,利用三角形三边的关系即可判断中线AD的取值【证明】延长AD至E,使DE=AD,连接BE,如图所示,△AD是BC边上的中线,△BD=CD在△BDE和△CDA中,BD=CD△BDE=△ADCDE=AE△△BDE△△CDA(SAS)△BE=AC=8在△ABE中,由三角形的三边关系得:AB-BE<AE<AB+BE△12-8<AE<12+8△2<AD<10【模型证明】如图,在△ABC中,D是BC边上的中点,DE△DF于点D,DE交AB于点E,DF 交AC于点F,连接EF,求证:BE+CF>EF.【证明】延长FD至点M,使DM=DF,连接BM,EM,如图所示,同上例得△BMD△△CFD(SAS)△BM=CF△DE△DF,DM=DF△EM=EF在△BME中,由三角形的三边关系得:BE+BM>EM如图,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【证明】延长AB至点N,使BN=DF,连接CN,如图所示∠∠ABC+∠D=180°,∠NBC+∠ABC=180°∠∠NBC=∠D在∠NBC和∠FDC中BN=DF∠NBC=∠DBC=DC∠∠NBC∠∠FDC(SAS)∠CN=CF,∠NCB=∠FCD∠∠BCD=140°,∠ECF=70°一、解答题1.阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC 中,AD 平分BAC ∠,2B C ∠=∠.求证:AB BD AC +=.李老师给出了如下简要分析:“要证AB BD AC +=就是要证线段的和差问题,所以有两个方法,方法一:‘截长法’如图2,在AC 上截取AE AB =,连接DE ,只要证BD =__________即可,这就将证明线段和差问题为证明线段相等问题,只要证出__________≌△__________,得出B AED ∠=∠及BD =_________,再证出∠__________=∠___________,进而得出ED EC =,则结论成立.此种证法的基础是‘已知AD 平分BAC ∠,将ABD △沿直线AD 对折,使点B 落在AC 边上的点E 处’成为可能.方法二:“补短法”如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可.此时先证∠__________C =∠,再证出_________≌△_________,则结论成立.”“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【答案】方法一:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:F ;AFD ;ACD【分析】方法一:在AC 上截取AE AB =,由SAS 可证ABD AED ∆≅∆可得B AED ∠=∠,BD=DE ,根据等角对等边得到CE=DE ,即可求证;方法二:延长AB 至点F ,使BF BD =,由AAS 可证AFD ACD ∆≅∆,可得AC=AF ,即可证明.【详解】方法一:在AC 上截取AE AB =,连接DE ,如图2∠AD 平分BAC ∠,∠BAD DAC ∠=∠,在ABD ∆和AED ∆中AE AB BAD DAC AD AD =⎧⎪∠=∠⎨⎪=⎩,∠ABD AED ∆≅∆,∠B AED ∠=∠,BD=DE ,∠2B C ∠=∠,∠2AED C ∠=∠而2AED C EDC C ∠=∠+∠=∠,∠EDC C ∠=∠,∠DE=CE ,∠AB+BD=AE+CE=AC ,故答案为:CE ;转化;ABD ;AED ;DE ;EDC ;C ;方法二:如图3,延长AB 至点F ,使BF BD =,∠F BDF ∠=∠∠2ABD F BDF F ∠=∠+∠=∠∠2ABD C ∠=∠∠F C ∠=∠在AFD ∆和ACD ∆中FAD CAD F CAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠AFD ACD ∆≅∆,∠AC=AF ,∠AC=AB+BF=AB+BD ,故答案为:F ;AFD ;ACD .【点睛】本题考查了全等三角形的判定和性质,属于截长补短类辅助线,核心思想为数学中的转化思想,此类题的关键是要找到最长边和最短边,然后确定截取辅助线的方式.2.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,ABC 是等边三角形,点D 是边BC 下方一点,120BDC ∠=︒,探索线段DA 、DB 、DC 之间的数量关系.解题思路:延长DC 到点E ,使CE BD =,连接AE ,根据180BAC BDC ∠+∠=︒,可证ABD ACE ∠=∠,易证得ABD ∠ACE ,得出ADE 是等边三角形,所以AD DE =,从而探寻线段DA 、DB 、DC 之间的数量关系.根据上述解题思路,请写出DA 、DB 、DC 之间的数量关系是______,并写出证明过程;【拓展延伸】(2)如图2,在Rt ABC 中,90BAC ∠=︒,AB AC =,若点D 是边BC 下方一点,90BDC ∠=︒,探索线段DA 、DB 、DC 之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为2cm 的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ 的平方为多少?【答案】(1)DA =DC +BD ,见解析;(2)()222AD DC BD =+;见解析;(3)2【分析】(1)由等边三角形知AB =AC ,∠BAC =60°,结合∠BDC =120°知∠ABD +∠ACD =180°,由∠ACE +∠ACD =180°知∠ABD =∠ACE ,证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,再证∠ADE 是等边三角形得DA =DE =DC +CE =DC +DB .(2)延长DC 到点E ,使CE =BD ,连接AE ,先证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,据此可得∠DAE =∠BAC =90°,由勾股定理知DA 2+AE 2=DE 2,继而可得2AD 2=(DC +BD )2;(3)由直角三角形的性质知QN =12MN =1,MQ 2)中的结论知()222PQ QN MQ =+,据此可得答案.【详解】解:(1)DA =DC +BD ,理由如下:∠∠ABC 是等边三角形,∠AB =AC ,∠BAC =60°,∠∠BDC =120°,∠∠ABD +∠ACD =360°-∠BAC -∠BDC =180°,又∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠ABC =60°,即∠BAD +∠DAC =60°,∠∠DAC +∠CAE =60°,即∠DAE =60°,∠∠ADE 是等边三角形,∠DA =DE =DC +CE =DC +DB ,即DA =DC +DB ,故答案为:DA =DC +BD ;(2)()222AD DC BD =+,如图2,延长DC 到点E ,使CE =BD ,连接AE ,∠∠BAC =90°,∠BDC =90°,∠∠ABD +∠ACD =360°-∠BAC -∠BDC =180°,∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,∠AB =AC ,CE =BD ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠DAE =∠BAC =90°,∠DA 2+AE 2=DE 2,∠()222AD DC BD =+;(3)如图3,连接PQ ,∠MN =2,∠QMN =30°,∠MQN =90°,∠QN =12MN =1,∠MQ =由(2)知()222PQ QN MQ =+.∠()(2221=222QN MQ PQ ++==【点睛】此题考查了全等三角形的判定和性质、勾股定理、等边三角形的性质,含30度角的直角三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.3.如图,在等边∠ABC 中,点P 是BC 边上一点,∠BAP =α(30°<α<60°),作点B 关于直线AP 的对称点D ,连接DC 并延长交直线AP 于点E ,连接BE .(1)依题意补全图形,并直接写出∠AEB 的度数;(2)用等式表示线段AE ,BE ,CE 之间的数量关系,并证明.分析:∠涉及的知识要素:图形轴对称的性质;等边三角形的性质;全等三角形的判定与性质……∠通过截长补短,利用60°角构造等边三角形,进而构造出全等三角形,从而达到转移边的目的.请根据上述分析过程,完成解答过程.【答案】(1)图见解析,∠AEB =60°;(2)AE =BE +CE ,证明见解析【分析】(1)依题意补全图形,如图所示:然后连接AD ,先求出60CAP α∠=︒-,然后根据轴对称的性质得到==PAD BAP α∠∠,AD =AB =AC ,∠AEC =∠AEB ,求出=260CAD α-︒∠,即可求出()1==180=1202ACD ADC CAD α︒-︒-∠∠∠,再由==120EAC AEC ACD α+︒-∠∠∠进行求解即可;(2)如图,在AE 上截取EG =BE ,连接BG .先证明∠BGE 是等边三角形,得到BG =BE =EG ,∠GBE =60°. 再证明∠ABG =∠CBE ,即可证明∠ABG ∠∠CBE 得到AG =CE ,则AE =EG +AG =BE +CE .【详解】解:(1)依题意补全图形,如图所示:连接AD ,∠∠ABC 是等边三角形,∠∠BAC =60°,AB =AC ,∠BAP α∠=,∠60CAP α∠=︒-,∠B 、D 关于AP 对称,∠==PAD BAP α∠∠,AD =AB =AC ,∠AEC =∠AEB ,∠()==60=260CAD PAD CAP ααα--︒--︒∠∠∠, ∠()1==180=1202ACD ADC CAD α︒-︒-∠∠∠, ∠==120EAC AEC ACD α+︒-∠∠∠,∠60AEC ∠=︒∠∠AEB =60°.(2)AE =BE +CE .证明:如图,在AE 上截取EG =BE ,连接BG .∠∠AEB =60°,∠∠BGE 是等边三角形,∠BG =BE =EG ,∠GBE =60°.∠∠ABC 是等边三角形,∠AB =BC ,∠ABC =60°,∠∠ABG +∠GBC =∠GBC +∠CBE =60°,∠∠ABG =∠CBE .在∠ABG 和∠CBE 中,AB CB ABG CBE BG BE ⎧⎪∠∠⎨⎪⎩=,=,=, ∠∠ABG ∠∠CBE (SAS ),∠AG =CE ,∠AE =EG +AG =BE +CE .【点睛】本题主要考查了全等三角形的性质,等边三角形的性质与判定,轴对称的性质,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质等等,熟知相关知识是解题的关键4.阅读材料:“截长补短法”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系.截长,即在长线段上截取一条线段等于其中一条短线段,再证明剩下的部分等于另一条短线段;补短,即延长其中一条短线段,使延长部分等于另一条线段,再证明延长后的线段等于长线段.依据上述材料,解答下列问题:如图,在等边ABC中,点E是边AC上一定点,点D是直线BC上一动点,以DE为边作等边DEF,连接CF.(1)如图,若点D在边BC上,试说明CE CF CD=,+=;(提示:在线段CD上截取CG CE连接EG.)(2)如图,若点D在边BC的延长线上,请探究线段CE,CF与CD之间的数量关系并说明理由.【答案】(1)证明见解析(2)FC=CD+CE【分析】(1)在CD上截取CG=CE,易证∠CEG是等边三角形,得出EG=EC=CG,证明∠DEG∠∠FEC(SAS),得出DG=CF,即可得出结论;(2)过D作DG AB,交AC的延长线于点G,由平行线的性质易证∠GDC=∠DGC=60°,得出∠GCD为等边三角形,则DG=CD=CG,证明∠EGD∠∠FCD(SAS),得出EG=FC,即可得出FC=CD+CE.(1)证明:在CD上截取CG=CE,如图1所示:∠∠ABC 是等边三角形,∠∠ECG =60°,∠∠CEG 是等边三角形,∠EG =EC =CG ,∠CEG =60°,∠∠DEF 是等边三角形,∠DE =FE ,∠DEF =60°,∠∠DEG +∠GEF =∠FEC +∠GEF =60°,∠∠DEG =∠FEC ,在∠DEG 和∠FEC 中,DE FE DEG FEC EG EC =⎧⎪∠=∠⎨⎪=⎩, ∠∠DEG ∠∠FEC (SAS ),∠DG =CF ,∠CD =CG +DG =CE +CF ,∠CE +CF =CD ;(2)解:线段CE ,CF 与CD 之间的等量关系是FC =CD +CE ;理由如下:∠∠ABC 是等边三角形,∠∠A =∠B =60°,过D 作DG AB ,交AC 的延长线于点G ,如图2所示:∠GD AB ,∠∠GDC =∠B =60°,∠DGC =∠A =60°,∠∠GDC =∠DGC =60°,∠∠GCD 为等边三角形,∠DG =CD =CG ,∠GDC =60°,∠∠EDF 为等边三角形,∠ED =DF ,∠EDF =∠GDC =60°,∠∠EDG =∠FDC ,在∠EGD 和∠FCD 中,ED DF EDG FDC DG CD =⎧⎪∠=∠⎨⎪=⎩, ∠∠EGD ∠∠FCD (SAS ),∠EG =FC ,∠FC =EG =CG +CE =CD +CE .【点睛】此题考查了平行线的性质,三角形全等及其性质,三角形全等的判定,等边三角形的性质等知识,作辅助线构建等边三角形是解题的关键.5.在“教、学、练、评一体化”学习活动手册中,全等三角形专题复习课,学习过七种作辅助线的方法,其中有“截长补短”作辅助线的方法.截长法:在较长的线段上截取一条线段等于较短线段;补短法:延长较短线段和较长线段相等.这两种方法统称截长补短法.请用这两种方法分别解决下列问题:已知,如图,在∠ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,求证:AB -AC >PB -PC【答案】见解析【分析】截长法:在AB 上截取AN =AC ,连结PN ,可证得∠APN ∠∠APC ,可得到PC =PN ,∠BPN 中,利用三角形的三边关系,即可求证;补短法:延长AC 至M ,使AM =AB ,连结PM ,证明∠ABP ∠∠AMP ,可得PB =PM ,在∠PCM 中,利用三角形的三边关系,即可求证.【详解】解:截长法:在AB 上截取AN =AC ,连结PN ,在∠APN和∠APC中∠AN=AC,∠1=∠2,AP=AP,∠∠APN∠∠APC,∠PC=PN,∠∠BPN中有PB-PN<BN,即PB-PC<AB-AC;补短法:延长AC至M,使AM=AB,连结PM,在∠ABP和∠AMP中,∠AB=AM,∠1=∠2,AP=AP,∠∠ABP∠∠AMP,∠PB=PM,又∠在∠PCM中有CM>PM-PC,即AB-AC>PB-PC.【点睛】本题主要考查了全等三角形的判定和性质,三角形的三边关系,理解截长补短法是解题的关键.6.例:截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:将∠ABD绕点A逆时针旋转60°得到∠ACE,可得AE=AD,CE=BD,∠ABD=∠ACE,∠DAE=60°,根据∠BAC+∠BDC=180°,可知∠ABD+∠ACD=180°,则∠ACE+∠ACD=180°,易知∠ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA 、DB 、DC 之间的等量关系是___________;(2)如图2,Rt ∠ABC 中,∠BAC =90°,AB =AC .点D 是边BC 下方一点,∠BDC =90°,探索三条线段DA 、DB 、DC 之间的等量关系,并证明你的结论.【答案】(1)DA=DB+DC;(2) 证明见解析.【分析】(1)由旋转60°可得AE =AD , CE =BD ,∠ABD =∠ACE ,∠DAE =60°,根据∠BAC +∠BDC =180°,可知∠ABD +∠ACD =180°,则 ∠ACE +∠ACD =180°,易知∠ADE 是等边三角形,所以AD =DE ,从而解决问题.(2) 延长DC 到点E,使CE=BD ,连接AE,由已知可得180ABD ACD ︒∠+∠=,根据180ACE ACD ︒∠+∠=,可得ABD ∠=ACE ∠,可证ABD ACE ≅,进而可得AD=AE,BAD CAE ∠=∠,可得90DAE BAC ︒∠=∠=,由勾股定理可得:222DA AE DE +=,进行等量代换可得结论.【详解】(1)结论:DA=DB+DC.理由:∠∠ABD 绕点A 逆时针旋转60°得到∠ACE ,∠AE=AD , CE=BD ,∠ABD=∠ACE ,∠DAE=60°,∠∠BAC+∠BDC=180°,∠∠ABD+∠ACD=180°,∠∠ACE+∠ACD=180°,∠D,C,E 三点共线,∠AE=AD ,∠DAE=60°,∠∠ADE 是等边三角形,∠AD=DE ,∠AD=DC+CE=DB+DC;(2)证明如下:如图所示,延长DC 到点E,使CE=BD ,连接AE,∠90BAC ︒∠=,90BDC ︒∠=,∠180ABD ACD ︒∠+∠=,∠180ACE ACD ︒∠+∠=,∠ABD ∠=ACE ∠,∠AB=AC,CE=BD,∠ABD ACE ≅(SAS),∠AD=AE, BAD CAE ∠=∠,∠90DAE BAC ︒∠=∠=,∠222DA AE DE +=,∠()222DA DB DC =+,【点睛】本题主要考查了截长补短的方法,通过全等三角形得到线段间的等量关系,正确作出辅助线找到全等三角形是解题的关键.7.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积. 解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明∠BAE∠∠DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S ∠ABC +S ∠ADC =S ∠ABC +S ∠ABE =S ∠AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积.【答案】(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH ≌,故可求解.【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S SS S S S =+=+==四边形, 故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴FGH FNK ≌, ∴FH=FK ,又FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm ,∴12=242FGH HFM MFN FMK FGHMN S S S S S MK FN =++=⨯⋅=五边形. 【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.8.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一长边相等,从而解决问题.(1)如图∠,∠ABC 是等边三角形,点D 是边BC 下方一点,连结DA DB DC 、、,且120BDC ∠=︒,探索线段DA DB DC 、、之间的数量关系.解题思路:延长DC 到点E ,使CE BD =,连接AE ,根据180BAC BDC ∠+=︒,则180ABD ACD ∠+∠=︒,因为180ACD ACE ∠+∠=︒可证ABD ACE ∠=∠,易证得∠ABD ∠∠ACE ,得出∠ADE 是等边三角形,所以AD DE =,从而探寻线段DA DB DC 、、之间的数量关系.根据上述解题思路,请直接写出DA DB DC 、、之间的数量关系是 ;【拓展延伸】(2)如图∠,在Rt∠ABC 中,90BAC ∠=︒,AB AC =.若点D 是边BC 下方一点,90BDC ∠=︒,探索线段DA DB DC 、、之间的数量关系,并说明理由;【知识应用】(3)如图∠,两块斜边长都为2cm 的三角板,把斜边重叠摆放在一起,已知30所对直角边等于斜边一半,则PQ 的长为_____________cm .(结果无需化简)【答案】(1)DA DB DC =+;(2DC DB =+ 证明见解析;(3. 【分析】(1)由等边三角形知AB =AC ,∠BAC =60°,结合∠BDC =120°知∠ABD +∠ACD =180°,由∠ACE +∠ACD =180°知∠ABD =∠ACE ,证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,再证∠ADE 是等边三角形得DA =DE =DC +CE =DC +DB .(2)延长DC 到点E ,使CE =BD ,连接AE ,先证∠ABD ∠∠ACE 得AD =AE ,∠BAD =∠CAE ,据此可得∠DAE =∠BAC =90°,由勾股定理知DA 2+AE 2=DE 2,继而可得2DA 2=(DB +DC )2;(3)由直角三角形的性质知QN =12MN =1,MQ 2)中的结论知=QN +QM 【详解】解:(1)DA =DC +DB ,理由:∠∠ABC 是等边三角形,∠AB =AC ,∠BAC =60°,∠∠BDC =120°,∠∠ABD +∠ACD =180°,又∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠ABC =60°,即∠BAD +∠DAC =60°,∠∠DAC +∠CAE =60°,即∠DAE =60°,∠∠ADE 是等边三角形,∠DA =DE =DC +CE =DC +DB ,即DA =DC +DB ,故答案为:DA =DC +DB ;(2DA =DB +DC 如图2,延长DC 到点E ,使CE =BD ,连接AE ,∠∠BAC =90°,∠BDC =90°∠∠ABD +∠ACD =180°,∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,∠AB =AC ,CE =BD ,在∠ABD 和∠ACE 中,AB AC ABD ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ABD ∠∠ACE (SAS ),∠AD =AE ,∠BAD =∠CAE ,∠∠DAE =∠BAC =90°,∠DA 2+AE 2=DE 2,∠2DA 2=(DB +DC )2,=DB +DC ;(3)如图3,连接PQ ,∠MN=2,∠QMN=30°,MN=1,∠QN=12∠MQ由(2=QN+QM∠PQ,.【点睛】此题考查了全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.9.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE易证得∠ABD∠∠ACE,得出∠ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是______;【拓展延伸】(2)如图2,在Rt∠ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC=90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为4cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长为______cm.【答案】(1)DA=DB+DCDA=DB+DC;理由见解析=(3)PQ cm【分析】(1)延长DC到点E,使CE=BD,连接AE,由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°,知∠ABD+∠ACD=180°,则∠ABD=∠ACE,证得∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,再证明∠ADE是等边三角形,等量代换可得结论;(2)同理可证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,由勾股定理得222+=,DA AE DE等量代换即得结论;(3)由直角三角形的性质可得QN的长,由勾股定理可得MQ的长,由(2)知=+,由此可求得PQ长.QN QM(1)(1)延长DC到点E,使CE=B D,连接AE,∠∠ABC是等边三角形,∠AB=AC,∠BAC=60°,∠∠BDC=120°,∠∠BAC+∠BDC=180°,∠∠ABD+∠ACD=180°,又∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE,∠∠ABD∠∠ACE(SAS),∠AD=AE,∠BAD=∠CAE,∠∠BAC=60°,∠∠BAD+∠DAC=60°,∠∠DAE=∠DAC+∠CAE=60°,∠∠ADE是等边三角形,∠DA=DE=DC+CE=DC+DB,(2)=DB+DC,理由如下:延长DC到点E,使CE=BD,连接AE,∠∠BAC =90°,∠BDC =90°,∠∠ABD +∠AC D=180°又∠∠ACE +∠ACD =180°,∠∠ABD =∠ACE ,∠AB=AC ,CE=BD ,∠∠ABD ∠∠ACE (SAS ),∠AD=AE ,∠BAD=∠CAE ,∠∠DAE=∠BA C =90°,∠222DA AE DE +=,∠()222DA DB DC =+,DB DC =+,(3)如图所示:连接PQ ,∠4MN cm =,∠QMN =30°, ∠122QN MN cm ==,根据勾股定理得QM ,由(2QN QM =+,∠PQ cm ==,【点睛】此题是三角形的综合题,主要考查了全等三角形的判定和性质、直角三角形和等边三角形的性质,熟练掌握全等三角形的判定和性质是解题的关键.10.现阅读下面的材料,然后解答问题:截长补短法,是初中数学几何题中一种常见辅助线的做法.在证明线段的和、差、倍、分等问题中有着广泛的应用.截长法:在较长的线段上截一条线段等于较短线段,而后再证明剩余的线段与另一段线段相等.补短法:就是延长较短线段与较长线段相等,而后证延长的部分等于另一条线段.请用截长法解决问题(1)(1)已知:如图1等腰直角三角形ABC 中,90B ∠=︒,AD 是角平分线,交BC 边于点D .求证:AC AB BD =+.请用补短法解决问题(2)(2)如图2,已知,如图2,在ABC ∆中,2B C ∠=∠,AD 是ABC ∆的角平分线.求证:AC AB BD =+.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)根据截长法,在AC 上截取AE AB =,连接DE ,通过题目条件可证()ADB ADE SAS ∆≅∆,进而证得DEC ∆是等腰直角三角形,等量代换即可得;(2)根据补短法,延长AB 到F ,使AF AC =,连接DF ,根据已知条件可证()FAD CAD SAS ∆≅∆,进而可证BD BF =,等量代换即可得证.【详解】(1)证明:如图1,在AC 上截取AE AB =,连接DE ,∠AD 是角平分线,∠BAD EAD ∠=∠在ADB ∆和ADE ∆中AB AE BAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∠()ADB ADE SAS ∆≅∆∠90AED B ∠=∠=,DE DB =又∠ABC ∆是等腰直角三角形,∠45C ∠=,∠DEC ∆是等腰直角三角形,∠DE EC =,∠AC AE EC AB BD =+=+.(2)如图2,延长AB 到F ,使AF AC =,连接DF ,∠AD 是ABC ∆的角平分线,∠FAD CAD ∠=∠在FAD ∆和CAD ∆中AF AC FAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∠()FAD CAD SAS ∆≅∆,∠C F ∠=∠∠2ABC C ∠=∠,ABC F BDF ∠=∠+∠,∠F BDF ∠=∠,∠BD BF =,∠AC AF AB BD ==+.【点睛】本题考查了截长法和补短法两种方法证明线段和的问题,三角形全等的判定和性质的应用,角平分线的性质应用,等量代换的应用,掌握三角形全等的判定和性质是解题的关键.11.数学课上,小白遇到这样一个问题:如图1,在等腰Rt ABC ∆中,90BAC ∠=︒,AB AC =,AD AE =,求证ABE ACD ∠=∠; 在此问题的基础上,老师补充:过点A 作AF BE ⊥于点G 交BC 于点F ,过F 作FP CD ⊥交BE 于点P ,交CD 于点H ,试探究线段BP ,FP ,AF 之间的数量关系,并说明理由.小白通过研究发现,AFB ∠与HFC ∠有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:(1)求证ABE ACD ∠=∠;(2)猜想AFB ∠与HFC ∠的数量关系,并证明;(3)探究线段BP ,FP ,AF 之间的数量关系,并证明. 【答案】(1)见解析;(2)HFC BFA ∠=∠,证明见解析;(3)BP AF PF =+,证明见解析【分析】(1)利用SAS 证明ABE ACD ≅可得结论;(2)设ABE ACD x ∠=∠=,推出=45BFA x ∠︒+,=45HFC x ∠︒+,即可证明HFC BFA ∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,证明∠ABE∠∠CAM ,得出BE AM =和M BEA ∠=∠,从而证明∠NFC∠∠MFC ,得到FM FN =和M FNC ∠=∠,可得PN=PE ,从而得出BP=AF+PF.【详解】解:(1)∠在∠ABE 和∠ACD 中,==AB AC A A AE AD ⎧⎪∠=∠⎨⎪⎩,ABE ACD ∴∆≅∆(SAS ),ABE ACD ∴∠=∠;(2)设ABE ACD x ∠=∠=, AF BE ⊥,90BAF x ∴∠=︒-,()=9045=45BFA x x ∴∠︒-︒-︒+,ACD x ∠=,45HCF x ∴∠=︒-,FP CD ⊥,()9045=45HFC x x ∴∠=︒-︒-︒+,HFC BFA ∴∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,90BAF FAC ∠+∠=︒,90BAF ABG ∠+∠=︒,FAC ABG ∴∠=∠,在∠ABE 和∠CAM 中,===BAE ACM AB AC ABE CAM ∠∠⎧⎪⎨⎪∠∠⎩, ABE CAM ∴∆≅∆(ASA ),BE AM ∴=,M BEA ∠=∠,BFA MFC NFC ∠=∠=∠,FC FC =,45ACB BCM ∠=∠=︒,NFC MFC ∴∆≅∆(ASA ),FM FN ∴=,M FNC ∠=∠,FNC BEA ∴∠=∠,PN PE ∴=,∠BP BE PE AM PE AF FM PE =-=-=+-AF FN PN AF PF =+-=+.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度.12.【初步探索】截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系;【灵活运用】(2)如图2,∠ABC为等边三角形,直线a∠AB,D为BC边上一点,∠ADE交直线a于点E,且∠ADE=60°.求证:CD+CE=CA;【延伸拓展】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD.若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.【答案】(1)DA=DC+DB,证明见详解;(2)见详解;(3)∠EAF=11802DAB︒-∠,证明见详解.【分析】(1)由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,再证∠ADE是等边三角形得DA=DE=DC+CE=DC+DB;(2)首先在AC上截取CM=CD,由∠ABC为等边三角形,易得∠CDM是等边三角形,继而可证得∠ADM∠∠EDC,即可得AM=EC,则可证得CD+CE=CA;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先判定∠ADG∠∠ABE,再判定∠AEF∠∠AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,进而推导得到2∠FAE+∠DAB=360°,即可得出结论.【详解】(1)如图1,延长DC到点E,使CE=BD,连接AE,∠∠ABC是等边三角形,∠AB=AC,∠BAC=60°,∠∠BDC=120°,∠∠ABD+∠ACD=180°,又∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE,∠∠ABD∠∠ACE(SAS),∠AD=AE,∠BAD=∠CAE,∠∠BAC=60°,即∠BAD+∠DAC=60°,∠∠DAC+∠CAE═60°,即∠DAE=60°,∠∠ADE是等边三角形,∠DA=DE=DC+CE=DC+DB,即DA=DC+DB;(2)证明:在AC上截取CM=CD,∠∠ABC是等边三角形,∠∠ACB=60°,∠∠CDM是等边三角形,∠MD=CD=CM,∠CMD=∠CDM=60°,∠∠AMD=120°,∠∠ADE=60°,∠∠ADE=∠MDC ,∠∠ADM=∠EDC ,∠直线a∠AB ,∠∠ACE=∠BAC=60°,∠∠DCE=120°=∠AMD ,在∠ADM 和∠EDC 中,ADM EDC MD CDAMD ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠ADM∠∠EDC(ASA),∠AM=EC ,∠CA=CM+AM=CD+CE ;即CD+CE=CA.(3)∠EAF=11802DAB ︒-∠; 证明:如图3,在DC 延长线上取一点G ,使得DG=BE ,连接AG ,∠∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∠∠ADC=∠ABE ,又∠AB=AD ,∠∠ADG∠∠ABE (SAS ),∠AG=AE ,∠DAG=∠BAE ,∠EF=BE+FD=DG+FD=GF ,AF=AF ,∠∠AEF∠∠AGF (SSS ),∠∠FAE=∠FAG ,∠∠FAE+∠FAG+∠GAE=360°,∠2∠FAE+(∠GAB+∠BAE )=360°,∠2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∠∠EAF=11802DAB︒-∠.【点睛】本题属于三角形综合题,主要考查了全等三角形的判定和性质,以及等边三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.13.截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,∠ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证∠ABD∠∠ACE,得出∠ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt∠ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.【答案】(1)DA=DB+DC;(2=DB+DC(或写成2DA2=(DB+DC)2),证明详见解析.【分析】(1)由等边三角形知AB=AC,∠BAC=60°,结合∠BDC=120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,再证∠ADE是等边三角形得DA=DE=DC+CE=DC+DB.(2)延长DC到点E,使CE=BD,连接AE,先证∠ABD∠∠ACE得AD=AE,∠BAD=∠CAE,据此可得∠DAE=∠BAC=90°,由勾股定理知DA2+AE2=DE2,继而可得2DA2=(DB+DC)2.【详解】解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∠∠ABC是等边三角形,∠AB=AC,∠BAC=60°,∠∠BDC=120°,∠∠ABD+∠ACD=180°,又∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE,∠∠ABD∠∠ACE(SAS),∠AD=AE,∠BAD=∠CAE,∠∠ABC=60°,即∠BAD+∠DAC=60°,∠∠DAC+∠CAE═60°,即∠DAE=60°,∠∠ADE是等边三角形,∠DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为DA=DC+DB;(2DA=DB+DC(或写成2DA2=(DB+DC)2).延长DC到点E,使CE=BD,连接AE.∠∠BAC=90°,∠BDC=90°,∠∠ABD+∠ACD=180°.∠∠ACE+∠ACD=180°,∠∠ABD=∠ACE.又∠AB=AC,CE=BD,∠∠ABD∠∠ACE.∠AD =AE ,∠BAD=∠CAE .∠∠DAE=∠BAC=90°.∠DA 2+AE2=DE 2.∠2DA 2=(DB +DC )2.=DB +DC .【点睛】此题是三角形的综合题,主要考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.14.【阅读】在证明线段和差问题时,经常采用截长补短法,再利用全等图形求线段的数量关系.截长法:将较长的线段截取为两段,证明截取的两段分别与给出的两段相等.补短法:延长较短两条线段中的一条,使得与较长线段相等,证明延长的那一段与另一条较短线段相等.【应用】把两个全等的直角三角形的斜边重合,90CAD CBD ∠=∠=︒,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC BC 、于M 、N .(1)若30ACD ∠=︒,60MDN ∠=︒,证明:AM BN MN +=;经过思考,小红得到了这样的解题思路:利用补短法,延长CB 到点E ,使BE AM =,连接DE ,先证明DAM DBE ≌,再证明MDN EDN △≌△,即可求得结论.按照小红的思路,请写出完整的证明过程;(2)当90ACD MDN ∠+∠=︒时,AM MN BN 、、三条线段之间有何数量关系?(直接写出你的结论,不用证明)(3)如图∠,在(2)的条件下,若将M 、N 改在CA BC 、的延长线上,完成图∠,其余条件不变,则AM MN BN 、、之间有何数量关系?证明你的结论.【答案】(1)证明见解析(2)AM BN MN +=(3)BN AM MN -=,证明见解析【分析】(1)根据题意得AD =BD ,延长CB 到E ,使BE AM =,连接DE ,利用全等三角形的判定得出()SAS DAM DBE △≌△,()SAS MDN EDN △≌△,再根据全等三角形的性质结合图形即可证明;(2)证明方法与(1)一致,证明即可;(3)在CB 截取BE AM =,连接DE ,利用全等三角形的判定得出()SAS DAM DBE △≌△,()SAS MDN EDN △≌△再根据全等三角形的性质结合图形即可得出结果.(1)证明:根据题意得:AD =BD ,延长CB 到E ,使BE AM =,连接DE∠90A CBD ∠=∠=︒,∠90A EBD ∠=∠=︒,在DAM △和DBE 中AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,∠()SAS DAM DBE △≌△,∠∠=∠BDE MDA ,DM DE =,∠60MDN ADC ∠=∠=︒,∠ADM NDC ∠=∠,∠BDE NDC ∠=∠,∠60NDC NDB ∠+∠=︒∠60BDE NDB NDE ∠+∠=∠=︒∠MDN NDE ∠=∠,在MDN △和EDN △中DM DE MDN NDE DN DN =⎧⎪∠=∠⎨⎪=⎩∠()SAS MDN EDN △≌△,∠MN NE =,。
我可以为你提供一些使用截长补短法解决几何压轴题的思路,但由于具体的题目内容会有所不同,我无法直接提供具体的题目。
如果你有具体的几何压轴题需要帮助,请提供相关的题目信息,我会尽力为你提供详细的解答。
使用截长补短法的一般思路如下:
1.
观察图形:仔细观察几何图形,确定需要使用截长补短法的线段
或边。
2.
确定目标:确定需要证明或求解的目标,例如证明两条线段相等、求某个角度的大小等。
3.
截长或补短:根据具体情况,选择合适的方法进行截长或补短。
截长是指在较长的线段上截取一段与较短线段相等的部分,补短
则是指在较短的线段上延长一段与较长线段相等的部分。
4.
构造全等三角形:通过截长或补短,构造出与原始图形中的某些
三角形全等的新三角形。
5.
利用全等性质:利用全等三角形的性质,证明或求解目标。
6.
整理结论:根据证明或求解的结果,整理出最终的结论。
需要注意的是,截长补短法是一种几何证明和求解的方法,需要灵活运用三角形全等的性质和定理。
在具体应用时,需要根据题目条件和图形特点进行适当的调整和变化。
如果你有具体的几何压轴题需要帮助,请提供相关的题目信息,我会尽力为你提供详细的解答。
模型介绍有一类几何题其命题主要是证明三条线段长度的“和”或"差”及其比例关系.这一类题目一般可以采取“截长”或“补短”的方法来进行求解.所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系.所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等.然后求出延长后的线段与最长的已知线段的关系.有的是采取截长补短后,使之构成某种特定的三角形进行求解.①截长:在较长的线段上截取另外两条较短的线段.如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS).②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破.如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS).例题精讲考点一:截长型【例1】.如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C等于_______.解:在DC上截取DE=DB,连接AE.设∠BCA=α,∵AB+BD=DC,DE=DB,∴CE=AB.∵AD⊥BC,DB=DE,∴直线AD是BE的垂直平分线,∴AB=AE,∴CE=AE,∴∠BCA=∠CAE.∵AB=AE,∴∠CBA=∠AEB.∵∠AEB是△CAE的一个外角,∴∠AEB=∠BCA+∠CAE,∴∠CBA=∠AEB=2α,∴∠CBA+∠BCA=3α=180°﹣120°=60°,∴α=20°,∴∠BCA=20°.变式训练【变式1-1】.如图,△ABC中,AC=BC,AD平分∠BAC,若AC+CD=AB,求∠C的度数.解:在AB上截取AC=AE,设∠B=x°,∵AC=BC,∴∠BAC=∠B=x°∵AD平分∠BAC,∴∠EAD=∠CAD,在△EAD和△CAD中,∴△EAD≌△CAD,∴∠C=∠AED,CD=DE,∵AC+CD=AB,AB﹣BE+AE,AE=AC,∴BE=DE=DC,∴∠B=∠BDE=x°,∴∠C=∠AED=∠B+∠BDE=2x°,在△ABC中,x+x+2x=180°,∴x=45,即∠C=2x°=90°.【变式1-2】.如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180°,若BE=3,CE=4,S△ACE=14,则S△ACD=________.解:在AE 上截取AM =AD ,连接CM ,∵AC 平分∠BAD ,∴∠1=∠2,在△AMC 和△ADC 中,12AC AC AD AM =⎧⎪∠=∠⎨⎪=⎩,∴△AMC ≌△ADC (SAS ),∴3D ∠=∠,∵∠B +∠D =180°,43=180∠+∠︒,∴4=B ∠∠,∵CE ⊥AB ,∴90CEM CEB ∠=∠=︒,在EMC △和EBC 中,4B CEM CEB CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EMC ≌△EBC (AAS ),∴ME =EB =3,∵CE =4,S △ACE =14,∴21474AE ⨯==,∴AM =AE -EM =7-3=4,∴1144822AMC S AM CE =⨯=⨯⨯= ,∴8ADC AMC S S ==.故答案为:8.【变式1-3】.已知在△ABC 中,∠B =2∠C ,∠BAC 的平分线AD 交BC 边于点D .求证:AC =AB +BD.证明:在AC 上截取AE =AB ,连接DE .∵∠BAC 的平分线AD 交BC 边于点D ,∴∠BAD =∠DAC ,在△ABD 与△AED中,,∴△ABD≌△AED(SAS),∴BD=DE,∠B=∠AED,∵∠B=2∠C,∠AED=∠C+∠EDC,∴∠AED=2∠C,∴∠C=∠EDC,∴CE=DE,∴CE=BD,∴AC=AE+EC=AB+BD.考点二:补短型【例2】.已知:如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°求证:BD+DC=AB.证明:延长BD到F,使BF=BA,连接AF,CF,∵∠ABD=60度,∴△ABF为等边三角形,∴AF=AB=AC=BF,∠AFB=60°,∴∠ACF=∠AFC,又∵∠ACD=60°,∴∠AFB=∠ACD=60°∴∠DFC=∠DCF,∴DC=DF.∴BD+DC=BD+DF=BF=AB,即BD+DC=AB.变式训练【变式2-1】.如图,四边形ABCD中,AB∥DC,点E为AD上一点,连接BE,CE,且BE、CE 分别平分∠ABC 、∠BCD .求证:BC =AB +DC .证明:延长BE 交CD 的延长线于点F ,∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵AB ∥CD ,∴∠F =∠ABE ,∠A =∠FDA ,∴∠F =∠CBE ,∴CF =BC ,∵CE 平分∠BCD ,∴BE =EF (三线合一),在△ABE 和△DFE 中,,∴△ABE ≌△FDE (ASA ),∴FD =AB ,∵CF =DF +CD ,∴CF =AB +CD ,∴BC =AB +CD .【变式2-2】.【问题背景】如图1:在四边形ABCD 中,AB AD =,120BAD ∠=︒,E 、F 分别是BC 、CD 上的点,且60EAF ∠=︒,小王同学探究此问题的方法是:延长FD 到点G ,使DG BE =,连接AG ,再证明AEF AGF ≅△△,可得出结论.【探索延伸】如图2,若在四边形ABCD 中,AB AD =,E 、F 分别是BC ,CD 上的点12BAD ∠,上述结论是否仍然成立【学以致用】如图3,四边形ABCD 是边长为5的正方形,45EBF ∠=︒,求DEF 的周长.解:(1)【问题背景】如图1在ABE △和ADG 中,∵DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADG SAS ≅△△,∴AE AG =,BAE DAG ∠=∠,∵18EAF BAD ∠=∠,∴GAF DAG DAF BAE DAF BAD EAF EAF ∠=∠+∠=∠+∠=∠-∠=∠,∴EAF GAF ∠=∠,在AEF 和GAF 中,∵AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AEF AGF SAS ≅△△,∴EF FG =,∵FG DG DF BE DF =+=+,∴EF BE DF =+;故答案为:EF BE DF =+.(2)【探索延伸】解:结论EF BE DF =+仍然成立;理由:如图2,延长FD 到点G .连接AG ,在ABE △和ADG 中,∵DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,∴()ABE ADG SAS ≅△△,∴AE AG =,BAE DAG ∠=∠,∵13EAF BAD ∠=∠,∴GAF DAG DAF BAE DAF BAD EAF EAF ∠=∠+∠=∠+∠=∠-∠=∠,∴EAF GAF ∠=∠,在AEF 和GAF 中,∵AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩,∴()AEF AGF SAS ≅△△,∴EF FG =,∵FG DG DF BE DF =+=+,∴EF BE DF =+;(3)【学以致用】解:如图3,延长DC 到点G ,连接BG ,在AEB △与CGB △中,∵AE CG A BCG AB BC =⎧⎪∠=∠⎨⎪=⎩,∴()AEB CGB SAS ≅△△,∴BE BG =,ABE CBG ∠=∠.∵45EBF ∠=︒,90ABC ∠=︒,∴45ABE CBF ∠+∠=︒,∴45CBF CBG ∠+∠=︒,在EBF △与GBF 中,∵BE BG EBF GBF BF BF =⎧⎪∠=∠⎨⎪=⎩,∴()EBF GBF SAS ≅△△,∴EF GF =,∴DEF 的周长5510EF ED DF AE CF DE DF AD CD =++=+++=+=+=.实战演练1.如图,在△ABC 中,BD 平分∠ABC ,∠C =2∠CDB ,AB =12,CD =3,则△ABC 的周长为()A .21B .24C .27D .30解:如图,在AB 上截取BE =BC ,连接DE,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,在△CBD 和△EBD 中,CB BE CBD DBE BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△CBD ≌△EBD (SAS ),∴∠CDB =∠BDE ,∠C =∠DEB ,∵∠C =2∠CDB ,∴∠CDE =∠DEB ,∴∠ADE =∠AED ,∴AD =AE ,∴△ABC 的周长=AD +AE +BE +BC +CD =AB +AB +CD =27,故选C .2.如图,AD ⊥BC ,AB +BD =DC ,∠B =54°,则∠C =27°.解:在DC 上截取DE =BD ,连接AE,∵AD ⊥BC ,DE =BD ,∴AD 是BE 的垂直平分线,∴AB =AE ,∴∠B =∠AEB =54°,∵AB +BD =DC ,DE +EC =DC ,∴AB =EC ,∴AE =EC ,∴∠C =∠EAC ,∵∠C+∠EAC=∠AEB=54°,∴∠C=∠EAC=∠AEB=27°,故答案为:27°.3.已知:如图,在△ABC中,AC=BC,∠C=100°,AD平分∠CAB.求证:AD+CD=AB.证明:如图,在AB上截取AE=AC,延长AD到F使AF=AB,连接DE、BF.又∵∠1=∠2,AD是公共边BE,在△ADC和△ADE中,,∴△ADC≌△ADE,∴∠AED=∠C=100°,则得∠DEB=80°∵CA=CB,AD平分∠BAC,∴∠1=∠2=20°,∠3=40°∵AF=AB,∠2=20°,∴∠F=∠ABF=1/2(180°﹣∠2)=80°则∠F=∠DEB∴∠4=80°﹣∠3=40°,∴∠3=∠4,∠F=∠DEC,在△BDF和△BDE中,,∴△DBE≌△DBF(AAS)∴DF=DE=CD∴AB=AF=AD+DF=AD+DC.4.如图,△ABC中,∠BAC=60°,点D、E分别在AB、AC上,∠BCD=∠CBE=30°,BE、CD相交于点O,OG⊥BC于点G,求证:OE+OD=2OG.证明:延长OE至点M,使OM=OC,连接CM,∵∠BCD=∠CBE=30°,∴OB=OC,∠MOC=30°+30°=60°,∵OM=OC,∴△OMC为等边三角形,∴CM=OC=OB,∠M=60°,∴∠DBO=∠MCE,在△BOD和△CME中,,∴△BOD≌△MCE,∴DO=EM,∴OE+OD=OM=OB,在Rt△OBG中,∠OBG=30°,OG⊥BC,∴2OG=OB,∴OE+OD=2OG.5.如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证:(1)BQ=CQ;(2)BQ+AQ=AB+BP.证明:(1)∵BQ是∠ABC的角平分线,∴∠QBC=∠ABC.∵∠ABC+∠ACB+∠BAC=180°,且∠BAC=60°,∠ACB=40°,∴∠ABC=80°,∴∠QBC==40°,∴∠QBC=∠C,∴BQ=CQ;(2)延长AB至M,使得BM=BP,连接MP.∴∠M=∠BPM,∵△ABC中∠BAC=60°,∠C=40°,∴∠ABC=80°,∵BQ平分∠ABC,∴∠QBC=40°=∠C,∴BQ=CQ,∵∠ABC=∠M+∠BPM,∴∠M=∠BPM=40°=∠C,∵AP平分∠BAC,∴∠MAP=∠CAP,在△AMP和△ACP中,∵∴△AMP≌△ACP,∴AM=AC,∵AM=AB+BM=AB+BP,AC=AQ+QC=AQ+BQ,∴AB+BP=AQ+BQ.6.如图,△ABC两条角平分线BD,CE相交于点O,∠A=60°,求证:CD+BE=BC.证明:在BC上找到F使得BF=BE,,∵∠A=60°,BD、CE是△ABC的角平分线,∴∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°,∴∠BOE=∠COD=60°,在△BOE和△BOF中,,∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°,∴∠COF=∠BOC﹣∠BOF=60°,在△OCF和△OCD中,,∴△OCF≌△OCD(ASA),∴CF=CD,∵BC=BF+CF,∴BC=BE+CD.7.如图,梯形ABCD中,AB∥CD,∠ABC和∠BCD的平分线的交点E在AD上.求证:(1)点E是AD的中点;(2)BC=AB+CD.证明:延长CE交BA的延长线于点F.∵CE和BE分别是∠ABC和∠BCD的平分线,即∠ECB=∠DCB,∠EBC=∠CBA,又∵AB∥CD,∴∠DCB+∠CBA=180°,∴∠ECB+∠EBC=90°,∴∠CEB=90°,即BE⊥EC,∵AB∥CD∴∠DCE=∠F,又∵∠DCE=∠ECB,∴∠F=∠ECB∴BF=BC,EC=EF.在△DCE和△AFE中,,∴△DCE≌△AFE,∴DE=AE,即E是AD的中点,DC=AF,∴BC=BF=AB+CD.8.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.解:(1)答:∠A=90°.理由如下:在BC上截取BE=BA,连接DE.∵BC=AB+AD,∴CE=AD,∵BD是△ABC的角平分线,∴∠ABD=∠EBD,∵AB=BE,BD=BD,∴△ABD≌△EBD,∴AD=DE=CE,∠A=∠DEB,∴∠C=∠EDC,∴∠A=∠DEB=∠C+∠EDC=2∠C,∵AB=AC,∴∠C=∠B,∵∠A+∠ABC+∠C=180°,∴4∠C=180°,∴∠C=45°,∠A=2∠C=90°,即∠A=90°;(2)解:在BC上截取CF=CD,连接DF.∵BC=BA+CD,∴BF=BA,∵∠ABD=∠FBD,BD=BD,∴△ABD≌△FBD,∴∠A=∠DFB,∵CD=CF,∴∠CDF=∠CFD,∴∠C+2∠DFC=180°,∵∠A+∠DFC=180°,∴2∠A﹣∠C=180°,∵∠A+2∠C=180°,解得:∠A=108°,答:∠A的度数是108°.(3)证明:在BC上截取BQ=BD,连接DQ,延长BA到W使BW=BQ,连接DW.∵∠A=100°,AC=AB,∴∠C=∠ABC=40°,∵BD平分∠ABC,∴∠DBQ=20°,∵BD=BQ,∴∠DQB=∠BDQ=(180°﹣∠DBQ)=80°,∴∠CDQ=∠DQB﹣∠C=40°=∠C,∴DQ=CQ,∵在△WBD和△QBD中,∴△WBD≌△QBD,∴∠W=∠DQB=80°,DW=DQ=CQ,∵∠BAC=100°,∴∠WAD=180°﹣∠BAC=180°﹣100°=80°,即∠WAD=∠W,∴AD=DW=DQ=CQ,∴BC=BD+DA.9.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.证明:在AC上截取AE=AB,连接DE,如图1:∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC;(2)延长AE、BC交于F,∵AB=BF,BE平分∠ABF,∴AE=EF,在△ADE和△FCE中,,∴△ADE≌△FCE(ASA),∴AD=CF,∴AB=BF=BC+CF=BC+AD.10.在菱形ABCD中,∠BAD=60°,点E、F分别在边AB、AD上,且AE=DF,BF与DE交于点G.(1)如图①,连接BD.求证:△ADE≌△DBF;(2)如图②,连接CG.求证:BG+DG=CG.证明:(1)∵四边形ABCD是菱形,∠BAD=60°,∴AB=BC=CD=AD,∠C=∠BAD=60°,∴△ABD和△CBD都是等边三角形,∴AD=DB,∠BDF=∠DAE=60°,在△ADE和△DBF中,,∴△ADE≌△DBF(SAS);(2)如图②,延长GB到点H,使BH=DG,连接CH、BD,由(1)知△ADE≌△DBF,△CBD是等边三角形,∴∠ADE=∠DBF,∠CBD=∠BCD=60°,∴∠DBF+∠CBH=180°﹣∠CBD=120°,∵四边形ABCD是菱形,∠BAD=60°,∴BC=CD,∠ADC=180°﹣∠BAD=120°,∴∠ADE+∠CDG=120°,∴∠CBH=∠CDG,在△CBH和△CDG中,,∴△CBH≌△CDG(SAS),∴CH=CG,∠BCH=∠DCG,∵∠BCD=∠DCG+∠BCG=60°,∴∠BCH+∠BCG=60°,即∠GCH=60°,∴△CGH是等边三角形,∴GH=CG,∵GH=BG+BH=BG+DG,∴BG+DG=CG.11.如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,点E、F分别在直线BC、CD上,且∠EAF=∠BAD.(1)当点E、F分别在边BC、CD上时(如图1),请说明EF=BE+FD的理由;(2)当点E、F分别在边BC、CD延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出EF、BE、FD之间的数量关系,并说明理由.解:(1)EF=BE+DF,理由:延长EB至G,使BG=DF,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABG=180°,∴∠ADC=∠ABG,在△ABG和△ADF中,,∴△ABG≌△ADF(SAS),∴AG=AF,∠BAG=∠DAF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAE+∠BAG=∠EAF,即∠EAG=∠EAF,在△EAG和△EAF中,,∴△EAG≌△EAF(SAS),∴GE=EF,∴EF=BE+DF;(2)(1)中结论不成立,EF=BE﹣FD,在BE上截取BM=DF,连接AM,∵∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ABC=∠ADF,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∵∠BAM+∠MAD=∠DAF+∠MAD,∴∠BAD=∠MAF,∵∠EAF=∠BAD,∴∠EAF=∠MAF,∴∠EAF=∠EAM,在△AME和△AFE中,,∴△AME≌△AFE(SAS),∴ME=EF,∴ME=BE﹣BM=BE﹣DF,∴EF=BE﹣FD.12.如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE 交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想.解:(1)如图1中,在射线CD上取一点K,使得CK=BE,在△BCE和△CBK中,,∴△BCE≌△CBK(SAS),∴BK=CE,∠BEC=∠BKD,∵CE=BD,∴BD=BK,∴∠BKD=∠BDK=∠ADC=∠CEB,∵∠BEC+∠AEF=180°,∴∠ADF+∠AEF=180°,∴∠A+∠EFD=180°,∵∠A=60°,∴∠EFD=120°,∴∠CFE=180°﹣120°=60°;(2)结论:BF+CF=2CN.理由:如图2中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=CB,∠A=∠CBD=60°,∵AE=BD,∴△ABE≌△BCD(SAS),∴∠BCF=∠ABE,∴∠FBC+∠BCF=60°,∴∠BFC=120°,如图2中,延长CN到Q,使得NQ=CN,连接FQ,∵NM=NF,∠CNM=∠FNQ,CN=NQ,∴△CNM≌△QNF(SAS),∴FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,∴∠PBC+∠PCB=∠PCB+∠FCM=120°,∴∠PFQ=∠FCM=∠PBC,∵PB=PF,∴△PFQ≌△PBC(SAS),∴PQ=PC,∠CPB=∠QPF=60°,∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.13.如图1,点A和点B分别在y轴正半轴和x轴正半轴上,且OA=OB,点C和点D分别在第三象限和第二象限上,且OC⊥OD,OC=OD,点C的坐标为(m,n),且满足(m﹣2n)2+|n+2|=0.(1)求点C坐标;(2)求证:AC=BD,AC⊥BD;(3)求∠BEO度数;(4)如图2,点P在OA上,点Q在OB上且OP=OQ,直线ON⊥BP,交AB于点N,MN⊥AQ交BP延长线于点M,请猜想ON,MN,BM的数量关系并证明.解:(1)∵(m﹣2n)2+|n+2|=0又∵(m﹣2n)2≥0,|n+2|≥0,∴n=﹣2,m=﹣4,∴点C坐标为(﹣4,﹣2);(2)如图1中,作OH⊥BD于H,OF⊥AC于F.∵OA=OB,OD=OC,∠AOB=∠COD=90°,∴∠BOD=∠AOC,∴△BOD≌△AOC(SAS),∴BD=AC,∴HO=OF(全等三角形对应边上的高相等),∴OE平分∠BEC,∵△BOD≌△AOC,∴∠OBD=∠OAC,设BD交y轴于点R,则∠ARE=∠BRO,∴∠AEB=∠BOA=90°,即AC⊥BD;(3)由(2)知,AC⊥BD,则∠FEH=90°,∴∠OHE=∠OFE=∠FEH=90°,故四边形OHEF为矩形,而HO=OF,故四边形OHEF为正方形,而OE为该正方形的对角线,∴∠BEO=45°;(4)结论:BM=MN+ON.理由:如图2中,过点B作BH∥y轴交MN的延长线于H.∵OQ=OP,OA=OB,∠AOQ=∠BOP=90°,∴△AOQ≌△BOP(SAS),∴∠OBP=∠OAQ,∵∠OBA=∠OAB=45°,∴∠ABP=∠BAQ,∵NM⊥AQ,BM⊥ON,∴∠ANM+∠BAQ=90°,∠BNO+∠ABP=90°,∴∠ANM=∠BNO=∠HNB,∵∠HBN=∠OBN=45°,BN=BN,∴△BNH≌△BNO(ASA),∴HN=NO,∠H=∠BON,∵∠HBM+∠MBO=90°,∠BON+∠MBO=90°,∴∠HBM=∠BON=∠H,∴MH=MB,∴BM=MN+NH=MN+ON.14.如图所示:△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B 在y轴上(1)如图1所示,若C的坐标是(2,0),点A的坐标是(﹣2,﹣2),求:点B的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交于点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由;(3)如图3角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,两个结论①为定值;②为定值,只有一个结论成立,请你判断正确的结论加以证明,并求出定值.解:(1)过点A作AD垂直OC于D.∵∠DAC+∠ACD=90°,∠ACD+∠BCD=90°,∴∠BCD=∠DAC,在△ADC和△COB中,,∴△ADC≌△COB(AAS),∴AD=OC,CD=OB,∴点B坐标为(0,4);(2)延长BC,AE交于点F,∵AC=BC,AC⊥BC,∴∠BAC=∠ABC=45°,∵BD平分∠ABC,∴∠COD=22.5°,∠DAE=90°﹣∠ABD﹣∠BAD=22.5°,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD,在△ABE和△FBE中,,∴△ABE≌△FBE(ASA),∴AE=EF,∴BD=2AE;(3)作AE⊥OC,则AF=OE,∵∠CBO+∠OCB=90°,∠OCB+∠ACO=90°,∴∠ACO=∠CBO,在△BCO和△ACE中,,∴△BCO≌△ACE(AAS),∴CE=OB,∴OB+AF=OC.∴=1.。
专题11截长补短模型模型的概述:该模型适用于求证线段的和差倍分关系,该类题目中常出现等腰三角形、角平分线等关键词,可以采用截长补短法构造全等三角形来完成证明。
其中截长指在长线段中截取一段等于已知线段,补短指将短线段延长,使短线段加上延长线段长度等于长线段。
图解:已知线段AB 、CD 、EF ,简述利用截长补短法证明AB=CD+EF 的方法截长法:在线段AB 上,截取AG=CD ,判断线段GB 和线段EF 长度是否相等补短法:延长线段CD 至点H ,使DH=EF ,判断线段AB 和线段GH 长度是否相等【过关练】1.(2022秋·湖北黄石·八年级黄石八中校考期中)如图,△ABC 中,∠B =2∠A ,∠ACB 的平分线CD 交AB 于点D ,已知AC =16,BC =9,则BD 的长为()A .6B .7C .8D .9【答案】B 【分析】如图,在CA 上截取,CN CB 连接,DN 证明,CBD CND ≌利用全等三角形的性质证明,BD ND 求解9,7,CN AN 再证明,DN AN 从而可得答案.【详解】解:如图,在CA 上截取,CN CB 连接,DN CD ∵平分,ACB ,BCD NCD ,CD CD ∵ ,CBD CND SAS ≌,,,BD ND B CND CB CN9,16,BC AC ∵9,7,CN AN AC CN ,CND NDA A ∵,B NDA A 2,B A ∵,A NDA ,ND NA 7.BD AN 故选:.B 【点睛】本题考查的是全等三角形的判定与性质,等腰三角形的判定,掌握以上知识是解题的关键.2.如图,在ABC 中,AD 平分BAC ,2B ADB ,5AB ,6CD ,则AC 的长为()A .3B .9C .11D .15【答案】C 【分析】在AC 上截取AE=AB ,连接DE ,证明△ABD ≌△AED ,得到∠B=∠AED ,AB=AE ,再证明CD=CE ,进而代入数值解答即可.【详解】在AC 上截取AE=AB ,连接DE ,∵AD 平分∠BAC ,∴∠BAD=∠DAC ,在△ABD 和△AED 中,BAD DA AE AB AD AD C ,∴△ABD ≌△AED (SAS ),∴∠B=∠AED ,∠ADB =∠ADE ,AB=AE ,又∠B=2∠ADB∴∠AED=2∠ADB ,∠BDE=2∠ADB ,∵∠AED=∠C+∠EDC=2∠ADB ,∠BDE=∠C+∠DEC=2∠ADB ,∴∠DEC =∠EDC ,∴CD=CE ,∵5AB ,6CD ,∴AC =AE+CE=AB+CD =5+6=11.故选:C .【点睛】本题考查全等三角形的判定和性质;利用了全等三角形中常用辅助线-截长补短法构造全等三角形,然后利用全等三角形解题,这是解决线段和差问题最常用的方法,注意掌握.3.如图,△ABC 中,AB=AC ,D 、E 分别在CA 、BA 的延长线上,连接BD 、CE ,且∠D+∠E=180°,若BD=6,则CE 的长为__.【答案】6【分析】在AD 上截取AF=AE ,连接BF ,易得△ABF ≌△ACE ,根据全等三角形的性质可得∠BFA=∠E ,CE=BF ,则有∠D=∠DFB ,然后根据等腰三角形的性质可求解.【详解】解:在AD 上截取AF=AE ,连接BF ,如图所示:∵AB=AC ,∠FAB=∠EAC ,ABF ACE ≌△△,BF=EC ,∠BFA=∠E ,∵∠D+∠E=180°,∠BFA+∠DFB=180°,∠DFB=∠D ,BF=BD ,∵BD=6,CE=6.故答案为6.【点睛】本题主要考查全等三角形的性质与判定及等腰三角形的性质与判定,熟练掌握全等三角形的判定方法及等腰三角形的性质与判定是解题的关键.4.如图,ABC 中,AD 平分BAC ,20C ,AB BD AC ,则B 的度数为_______.【答案】40【分析】如图(见解析),在线段AC 上取点E ,使得AE AB ,先根据角平分线的定义得出BAD EAD ,再根据三角形全等的判定定理与性质得出BD ED ,B AED ,然后根据线段的和差、等量代换得出ED CE ,最后根据等腰三角形的性质、三角形的外角性质即可得.【详解】如图,在线段AC 上取点E ,使得AE ABAD ∵平分BACBAD EAD\Ð=Ð在ABD △和AED △中,AB AE BAD EAD AD AD()ABD AED SAS BD ED ,B AED又AB BD AC AE CE∵BD CEED CE20CDE C40AED CDE C40B AED故答案为:40 .【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的性质等知识点,通过作辅助线,构造全等三角形是解题关键.5.(2022秋·八年级单元测试)如图,已知ABC 中,60A ,D 为AB 上一点,且2,4AC AD BD B ACD ,则DCB 的度数是_________.【答案】20°【分析】延长AB 至点E 使BE AD ,连接CE ,证明AEC △是等边三角形,设ACD x ,则4 ABC x ,再证明 △△A D C EBC SA S ,即可得到结果.【详解】解:如图,延长AB 至点E 使BE AD ,连接CE .∴2 AE AD DB BE AD BD ,∵2 AC AD BD ,∴AE AC .∵60A ,∴AEC △是等边三角形,∴60 E ACE ,∵4 ABC ACD ,∴设ACDx ,则4 ABC x .在ADC △与EBC 中,∵AD BE A E AC EC,∴ △△A D C EBC SA S ,∴ ACD ECB x .∵ ABC E BCE ,∴460 x x ,∴20x ,∴60202020 BCD .故答案是20 .【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,准确分析计算是解题的关键.6.如图,在△ABC 中,∠ACB=∠ABC=40o ,BD 是∠ABC 的角平分线,延长BD 至点E ,使得DE=DA ,则∠ECA=________.【答案】40°【分析】在BC 上截取BF=AB ,连接DF ,由题意易得∠A=100°,∠ABD=∠DBC=20°,易得△ABD ≌△FBD ,进而可得DF=AD=DE ,由此可证△DEC ≌△DFC ,然后根据全等三角形的性质、三角形内角和及外角的性质可求解.【详解】解:在BC 上截取BF=AB ,连接DF ,∵∠ACB=∠ABC=40°,BD 是∠ABC 的角平分线,∠A=100°,∠ABD=∠DBC=20°,∠ADB=60°,∠BDC=120°,∵BD=BD ,△ABD ≌△FBD ,∵DE=DA ,DF=AD=DE ,∠BDF=∠FDC=∠EDC=60°,∠A=∠DFB=100°,∵DC=DC ,△DEC ≌△DFC ,1006040DCB DCE DFC FDC ;故答案为40°.【点睛】本题主要考查全等三角形的判定与性质、三角形内角和及外角的性质,熟练掌握三角形全等的判定条件及外角性质是解题的关键.7.(2022秋·全国·八年级专题练习)如图,在ABC 中,,AC BC AD 平分BAC 交BC 于点D ,若AC CD AB ,求C 的度数.【答案】90C【分析】在AB 上截取AE AC ,连接DE ,证明ADC ADE △≌△,再证明DE BE ,设B x ,再得到 BAC B EDB x ,证明2,C x 然后利用内角和定理求解即可.【详解】解:如图,在AB 上截取AE AC ,连接DE .∵AD 平分BAC ,EAD CAD .∵, AE AC AD AD ,ADC ADE ≌,∴,,CD DE AED C ∵AC CD AB ,AE BE AB ,∴CD BE ,∴DE BE ,∴B EDB .∵AC BC ,∴BAC B ∠∠.设 BAC B EDB x ,则2 AED B EDB x C .∵在ABC 中,2180x x x ,解得45x ,∴90C .【点睛】本题考查的是角平分线的定义,三角形全等的判定与性质,三角形的内角和定理,等腰三角形的性质,掌握以上知识是解题的关键.8.如图,已知四边形ABCD 中,AD ∥BC ,若∠DAB 的平分线AE 交CD 于E ,连接BE ,且BE 恰好平分∠ABC ,则AB 的长与AD+BC 的大小关系是()A.AB>AD+BC B.AB<AD+BC C.AB=AD+BC D.无法确定所以BC =BF ,所以AB =AF+BF =AD+BC ;故选C .【点睛】本题考查全等三角形的判定和性质,截长补短是证明线段和差关系的常用方法.9.已知:如图所示,四边形ABCD 中,,AD BC O 是CD 上一点,且AO平分,BAD BO 平分ABC ,若3,4AO BO ,求四边形ABCD 的面积.【答案】12.【分析】在AB 上截AE AD ,根据SAS 易证AOD AOE ≌,∠AOD=∠AOE ,根据平行线和角平分线的性质可得出∠AOB=90°,则90AOD BOC AOE BOE ,可得BOE BOC ,继而证明△BOE ≌△BOC ,可得S 四ABCD =2S △AOB ,即可得出答案.【详解】解:在AB 上截AE AD ,∵AO 平分∠BAD ,∴∠DAO=∠EAO ,在△AOD 和△AOE 中,AD=AE DAO EAO AO AO∴AOD AOE ≌,AOD AOE ,AD BC ∵‖,AO 平分BAD ,BO 平分ABC ,∴∠AOB=90°,90AOD BOC AOE BOEBOE BOC ,∵BO 平分∠ABC ,10.(2021秋·福建福州·八年级校考阶段练习)如图,在四边形ABCD 中,∠DAB =∠BCD =90°,AB =AD ,若这个四边形的面积是4,则BC +CD 等于()A .2B .4C .D .【答案】B 【分析】延长CB 到点E ,使BE =DC ,连接AE ,AC ,可以证明△ADC ≌△ABE ,可得△EAC 是等腰直角三角形,再根据△EAC 的面积等于四边形的面积是4,可得EC 的长,进而可得结论.【详解】解:如图,延长CB 到点E ,使BE =DC ,连接AE ,AC ,∵∠DAB =∠BCD =90°,∴∠D +∠ABC =180°,∵∠ABE +∠ABC =180°,∴∠D =∠ABE ,在△ADC 和△ABE 中,11.(2020秋·江苏无锡·八年级统考期中)如图,ABC 与ADC △有一条公共边AC ,且AB=AD ,∠ACB=∠ACD=x ,则∠BAD=________.(用含有x 的代数式表示)【答案】180°-2x【分析】在CD 上截取CE=CB ,证明△ABC ≌△AEC 得AE=AB ,∠B=∠AEC,可进一步证明∠D+∠B=180°,再根据四边形内角和定理可得结论.【详解】解:在CD 上截取CE=CB ,如图所示,在△ABC 和△AEC 中,CE CB ACE ACB AC AC∴△ABC ≌△AEC(SAS)∴AE=AB ,∠B=∠AEC,∵AB=AD ,∴AD=AE ,∴∠D=∠AED ,∵∠AED+∠AEC=180°,∴∠D+∠B=180°,∵∠DAB+∠ABC+∠BCD+∠CDA=360°∴∠DAB+∠BCD =360°-∠ABC-∠CDA=360°-180°=180°,∵∠BCD =∠ACB +∠ACD =x+x=2x∴∠DAB=180°-∠BCD=180°-2x故答案为:180°-2x【点睛】本题考查了全等三角形的判定与性质,等腰三角形的性质以及四边形的内角和等知识,作辅助线构造全等三角形是解答此题的难点.12.(2021秋·广东佛山·八年级佛山市南海区石门实验学校校考阶段练习)如图,在等腰△ABC 中,AB =AC ,∠BAC =120°,点D 是线段BC 上一点,∠ADC =90°,点P 是BA 延长线上一点,点O 是线段AD 上一点,OP =OC ,下面的结论:①∠APO =∠ACO ;②∠APO +∠DCO =30°;③AC =AO +AP ;④PO =PC ,其中正确的有______.【答案】①②③④【分析】连接BO,由线段垂直平分线的性质定理,等腰三角形的判定与性质,三角形的内角和定理,角的和差求出∠APO=∠ACO,∠APO+∠DCO=30°,由三角形的内角和定理,角的和差求出∠POC=60°,再由等边三角的判定证明△OPC是等边三角形,得出PC=PO,∠PCO=60°,由角的和差,等边三角形的判定与性质,全等三角形的判定与性质,线段的和差和等量代换求出AO+AP=AC,即可得出结果.【详解】解:连接BO,如图1所示:∵AB=AC,AD⊥BC,∴BO=CO,∴∠OBC=∠OCB,又∵OP=OC,∴OP=OB,∴∠OBP=∠OPB,又∵在等腰△ABC中∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠OBC+∠OBP=∠OCB+∠ACO,∴∠OBP=∠ACO,∴∠APO=∠ACO,故①正确;又∵∠ABC=∠PBO+∠CBO=30°,∴∠APO+∠DCO=30°,故②正确;∵∠PBC +∠BPC +∠BCP =180°,∠PBC =30°,∴∠BPC +∠BCP =150°,又∵∠BPC =∠APO +∠CPO ,∠BCP =∠BCO +∠PCO ,∠APO +∠DCO =30°,∴∠OPC +∠OCP =120°,又∵∠POC +∠OPC +∠OCP =180°,∴∠POC =60°,又∵OP =OC ,∴△OPC 是等边三角形,∴PC =PO ,∠PCO =60°,故④正确;在线段AC 上截取AE =AP ,连接PE ,如图2所示:∵∠BAC +∠CAP =180°,∠BAC =120°,∴∠CAP =60°,∴△APE 是等边三角形,∴AP =EP ,又∵△OPC 是等边三角形,∴OP =CP ,又∵∠APE =∠APO +∠OPE =60°,∠CPO =∠CPE +∠OPE =60°,∴∠APO =∠EPC ,在△APO 和△EPC 中,AP EP APO EPC OP CP,∴△APO ≌△EPC (SAS ),∴AO =EC ,又∵AC =AE +EC ,AE =AP ,∴AO +AP =AC ,故③正确;故答案为:①②③④.【点睛】本题考查了全等三角形的判定与性质、线段垂直平分线的性质定理、等腰三角形的判定与性质、等边三角形的判定与性质、角的和差、线段的和差、等量代换等相关知识点;作辅助线构建等腰三角形、等边三角形、全等三角形是解题的关键.13.(2022秋·浙江·八年级专题练习)(1)如图(1),在四边形ABCD 中,AB AD ,180B D ,E ,F 分别是,BC CD 上的动点,且12EAF BAD ,求证:EF BE DF .(2)如图(2),在(1)的条件下,当点E ,F 分别运动到,BC CD 的延长线上时,,,EF BE DF 之间的数量关系是______.【答案】(1)详见解析;(2)EF BE DF【分析】(1)延长FD 到点G ,使DG BE ,连接AG ,先证明()ABE ADG SAS ≌,得到AE AG BAE DAG ,,然后证明AEF AGF ≌,得到EF FG ,根据FG DG DF BE DF ,可得EF BE DF ;(2)在BC 上截取BG DF ,连接AG ,先证明△ABG ≌△ADF (SAS ),得到AG=AF ,∠BAG=∠DAF ,再证明△EAG ≌△EAF (SAS ),得到EG=EF ,根据BG=DF ,即可得EF=BE-BG=BE-DF .【详解】(1)如图,延长FD 到点G ,使DG BE ,连接AG .B ADC ADC∵B ADF,在△ABG和△ADF中ABB BG∠在△EAG 和△EAF 中AG AF EAG EAF AE AE∠∠,∴△EAG ≌△EAF(SAS ),∴EG=EF ,∵BG=DF ,∴EF=BE-BG=BE-DF .【点睛】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键.14.如图,△ABC 是等边三角形,△BDC 是顶角∠BDC=120°的等腰三角形,M 是AB 延长线上一点,N 是CA 延长线上一点,且∠MDN=60°.试探BM ,MN ,CN 之间的数量关系,并给出证明.【答案】CN=MN+BM ,见解析【分析】采用“截长补短”法,在CN 上截取点E ,使CE=BM ,连接DE ,结合等边及等腰三角形的性质利用SAS 可证△MBD ≌△ECD ,继而可证△MND ≌△END ,由全等的性质可得结论.【详解】解:CN=MN+BM .证明:如图,在CN 上截取点E ,使CE=BM ,连接DE ,∵△ABC 为等边三角形,∴∠ACB=∠ABC=60°.又∵△BDC 为等腰三角形,且∠BDC=120°,∴BD=CD ,∠DBC=∠BCD=30°.∴∠ABD=∠ABC+∠DBC=∠ACB+∠BCD=∠ECD=90°.90MBD ABD ECD在△MBD 和△ECD 中,BD CD MBD ECD BM CE,,,∴△MBD ≌△ECD (SAS ).∴MD=ED ,∠MDB=∠EDC .又∵∠MDN=60°,∠BDC=120°,∴∠EDN=∠BDC-(∠BDN+∠EDC )=∠BDC-(∠BDN+∠MDB )=∠BDC-∠MDN=120°-60°=60°.∴∠MDN=∠EDN .在△MND 与△END 中,ND ND MDN EDN MD ED,,,∴△MND ≌△END (SAS ).∴MN=NE .∴CN=NE+CE=MN+BM .【点睛】本题考查了等边及等腰三角形的性质及全等三角形的判定和性质,并采用了截长补短法,灵活利用已知条件证明三角形全等是解题的关键.15.(2023·全国·九年级专题练习)通过类比联想、引申拓展典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.【解决问题】如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ,连接EF ,则EF BE DF ,试说明理由.证明:延长CD 到G ,使DG BE ,在ABE 与ADG △中,90AB AD B ADG BE DG∴ABE ADG △≌△理由:(SAS )进而证出:AFE △≌___________,理由:(__________)进而得EF BE DF .【变式探究】如图,四边形ABCD 中,AB AD ,90BAD 点E 、F 分别在边BC 、CD 上,45EAF .若B 、D 都不是直角,则当B 与D 满足等量关系________________时,仍有EF BE DF.请证明你的猜想.【拓展延伸】如图,若AB AD ,90 ∠BAD ,45EAF ,但12EAF BAD ,90B D ,连接EF ,请直接写出EF 、BE 、DF之间的数量关系.【答案】(1)AFE AFG △≌△,理由:SAS ;(2)180B D ,证明见解析;(3)BE+DF=EF .【分析】(1)在前面已证的基础上,得出结论AE AG ,进而证明AFE AFG △≌△,从而得出结论;(2)利用“解决问题”中的思路,同样去构造AFE AFG △≌△即可;(3)利用前面两步的思路,证明全等得出结论即可.【详解】(1)ABE ADG ∵ ≌,,,AE AG BAE DAG BE DG ,则BAE FAD FAD ADG FAG ,45EAF ∵,45FAG ,在AFG 与AFE △中,AE AG EAF GAF AF AF∠∠AFE AFG △≌△,理由:(SAS )EF FG FD DG FD BE ;(2)满足180B D 即可,证明如下:如图,延长FD 至G ,使BE DG ,180B ADF ∵,180ADF ADG ,B ADG ,在ABE 与ADG △中,AB AD B ADG BE DGABE ADG SAS ≌,,,AE AG BAE DAG BE DG ,则BAE FAD FAD ADG FAG ,45EAF ∵,45FAG ,在AFG 与AFE △中,AE AG EAF GAF AF AF∠∠AFE AFG △≌△,理由:(SAS )EF FG FD DG FD BE ;(3)BE+DF=EF.证明如下:,如图,延长FD至G,使BE DG【点睛】本题考查了截长补短的方法构造全等三角形,能够理解前面介绍的方法并继续探究是解决问题的关键.16.(2022秋·江苏·八年级专题练习)在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P 为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答:.(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.由(1)可知:∠PBM=∠PCN=90°,∴∠PCH=90°,∴∠PBM=∠PCH,在△PBM和△PCH中,PBM PCH PB PC,∴△PBM ≌△PCH (SAS ),∴PM =PH ,∠BPM =∠CPH ,∵∠BPM +∠CPN =60°,∴∠CPN +∠CPH =60°,∴∠MPN =∠HPN ,在△MPN 和△HPN 中,PM PH MPN HPN PN PN,∴△MPN ≌△HPN (SAS ),∴MN =HN =BM +CN ,故答案为:一定成立.(3)解:在AC 上截取CK =BM ,连接PK ,如图所示,在△PBM 和△PCK 中,90PBM PCK BM CK,∴△PBM ≌△PCK (SAS ),∴PM =PK ,∠BPM =∠CPK ,∵∠BPM +∠BPN =60°,∴∠CPK+∠BPN =60°,∴∠KPN =60°,∴∠MPN =∠KPN ,在△MPN 和△KPN 中,PM PK MPN KPN PN PN,∴△MPN ≌△KPN (SAS ),∴MN =KN ,∵KN =NC ﹣CK =NC ﹣BM ,∴MN =NC ﹣BM .【点睛】本题考查的是全等三角形的判定和性质、等边三角形的性质,掌握全等三角形的判定定理和性质定理是解题的关键.17.(2022秋·浙江·八年级专题练习)如图,四边形ABCD 中,180B D ,150BCD ,CB CD ,M 、N 分别为AB 、AD 上的动点,且75MCN .求证:MN BM DN .【答案】见解析【分析】延长AB 至点E ,使得BE DN ,连接CE ,根据同角的补角相等得CBE CDN ,根据SAS 证明CBE CDN ,则BCE DCN ,进而证明75ECM MCN ,根据SAS 证明ECM NCM ,得到MN ME ,则MN BM BE BM DN .【详解】证明:延长AB 至点E ,使得BE DN ,连接CE ,∵四边形ABCD 中,180B D ,180ABC CBE ,CBE CDN ,在CBE 和CDN 中,CB CD CBE CDN BE DN,()CBE CDN SAS ,BCE DCN ,CN CE ,150BCD ∵,75MCN ,75MCE MCB BCE MCB DCN ,MCN MCE ,在ECM 和NCM 中,MC MC MCN MCE CN CE,()ECM NCM SAS ,MN ME BM BE BM DN .【点睛】本题主要考查了全等三角形的判定与性质,作辅助线构造全等三角形是解决问题的关键.18.(2022秋·江苏·八年级专题练习)(1)问题背景:如图1:在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是,延长FD 到点G .使DG =BE .连结AG ,先证明 ABE ≌ ADG ,再证明 AEF ≌ AGF ,可得出结论,他的结论应是______________;(2)探索延伸:如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是BC ,CD 上的点,且∠EAF 12∠BAD ,上述结论是否仍然成立,并说明理由;(3)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以45海里/小时的速度前进,同时舰艇乙沿北偏东50°的方向以60海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两地分别到达E 、F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.在 ABE 和 ADG 中,DG BE B ADG AB AD,∴ ABE ≌ ADG (SAS ∴AE =AG ,∠BAE =∠∵∠AOB =30°+90°+(90°﹣70°∴∠EOF 12∠AOB ,又∵OA =OB ,∠OAC +∠OBC =(∴符合探索延伸中的条件,∴结论EF =AE +BF 成立,19.如图,ABC 是等边三角形,180BAD BCD ,8BD ,2CD ,则AD ________.【答案】6【分析】在线段BD 上取一点E ,使得BE=CD ,连接AE ,由,,,A B C D 四点共圆得∠ABE ACD ,再证明ABE ACD ,△ADE 是等边三角形,得AD DE AE ,再由线段的和差关系可得结论.【详解】解:在线段BD 上取一点E ,使得BE=CD ,连接AE ,∵180BAD BCD∴,,,A B C D 四点共圆,∴∠ABD ACD∴∠ABE ACD∵△ABC 是等边三角形,∴AB AC BC ,60DAE ,∴△ABE ACD ,∠60BAE CAF ,∴,BAE CAD BAF CAD ,∴∠60CAD CAE ,即60DAE ,∴△ADE 是等边三角形,∴AD DE AE ,∵=8BD ,2CD ,∴6DE BD BE BD CD ,∴6AD DE .【点睛】此题主要考查了全等三角形的判定与性质,以及四点共圆的判定,证明∠ABE ACD 是解答此题的关键.20.(2023·全国·九年级专题练习)例:截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC 是等边三角形,点D 是边BC 下方一点,∠BDC =120°,探索线段DA 、DB 、DC 之间的数量关系.解题思路:将△ABD 绕点A 逆时针旋转60°得到△ACE ,可得AE =AD ,CE =BD ,∠ABD =∠ACE ,∠DAE =60°,根据∠BAC +∠BDC =180°,可知∠ABD +∠ACD =180°,则∠ACE +∠ACD =180°,易知△ADE 是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是___________;(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.21.(2022·全国·九年级专题练习)如图1,在Rt△ABC中,∠ABC=90°,BA=BC,直线MN是过点A的直线CD⊥MN于点D,连接BD.(1)观察猜想张老师在课堂上提出问题:线段DC,AD,BD之间有什么数量关系.经过观察思考,小明出一种思路:如图1,过点B作BE⊥BD,交MN于点E,进而得出:DC+AD=BD.(2)探究证明将直线MN绕点A顺时针旋转到图2的位置写出此时线段DC,AD,BD之间的数量关系,并证明(3)拓展延伸在直线MN绕点A旋转的过程中,当△ABD面积取得最大值时,若CD长为1,请直接写BD的长.22.(2022秋·江苏·八年级专题练习)在ABC 中,60ABC ,点D 、E 分别在AC 、BC 上,连接BD 、DE 和AE ;并且有AB BE ,AED C .(1)求CDE 的度数;(2)求证:AD DE BD .【答案】(1)60 ;(2)见解析【分析】(1)由AB BE ,60ABC ,可得ABE 为等边三角形,由AEB EAC C ,CDE EAC AED ,AED C ,可证60CDE AEB(2)延长DA 至F ,使AF DE ,连接FB ,由60BED AED ,60BAF C ,且C AED ,可证()FBA DBE SAS ≌由 DB FB ,可证FBD 为等边三角形,可得BD FD ,可推出结论,【详解】解:(1)∵AB BE ,60ABC ,∴ABE 为等边三角形,∴60BAE AEB ,∵AEB EAC C ,CDE EAC AED ,∵AED C ,∴60CDE AEB(2)如图,延长DA 至F ,使AF DE ,连接FB ,由(1)得ABE 为等边三角形,∴60AEB ABE ,∵60BED AEB AED AED ,又∵60BAF ABE C C ,且C AED ,∴BED BAF ,在FBA 与DBE 中,AB BE BAF BED AF DE∴()FBA DBE SAS ≌∴ DB FB ,DBE FBA∴DBE ABD FBA ABD ,∴60ABE FBD又∵ DB FB ,∴FBD 为等边三角形∴BD FD ,又∵FD AF AD ,且AF DE ,∴FD DE AD BD ,【点睛】本题考查等边三角形的判定与性质,三角形全等判定与性质,线段和差,三角形外角性质,关键是引辅助线构造三角形全等证明等边三角形.23.(2022秋·江苏·八年级专题练习)如图,在△ABC 中,AB =AC ,∠BAC =30°,点D 是△ABC 内一点,DB =DC ,∠DCB =30°,点E 是BD 延长线上一点,AE =AB .(1)求∠ADB 的度数;(2)线段DE ,AD ,DC 之间有什么数量关系?请说明理由.【答案】(1)120°;(2)DE =AD +CD ,理由见解析∴CD=ME.∵DE=DM+ME,∴DE=AD+CD.【点睛】本题考查的是全等三角形的判定和性质、等边三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.24.如图,在△ABC中,AB=BC,∠ABC=60°,线段AC与AD关于直线AP对称,E是线段BD与直线AP的交点.(1)若∠DAE=15°,求证:△ABD是等腰直角三角形;(2)连CE,求证:BE=AE+CE.【答案】(1)见解析;(2)见解析【分析】(1)首先根据题意确定出△ABC是等边三角形,然后根据等边三角形的性质推出∠BAC=60°,再根据线段AC与AD关于直线AP对称,以及∠DAE=15°,推出∠BAD=90°,即可得出结论;(2)利用“截长补短”的方法在BE上取点F,使BF=CE,连接AF,根据题目条件推出△ABF≌△ACE,得出AF=AE,再进一步推出∠AEF=60°,可得到△AFE是等边三角形,则得到AF=FE,从而推出结论即可.【详解】证明:(1)∵在△ABC中,AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=BC,∠BAC=∠ABC=∠ACB=60°,∵线段AC与AD关于直线AP对称,【点睛】本题考查全等三角形的判定与性质,以及等边三角形的判定与性质等,掌握等边三角形的判定与性质,以及全等三角形的常见辅助线的构造方法是解题关键.25.(2022秋·全国·八年级专题练习)在ABC 中,AE ,CD 为ABC 的角平分线,AE ,CD 交于点F .(1)如图1,若=60B .①直接写出AFC 的大小;②求证:AC AD CE .(2)若图2,若90B Ð=°,求证:ACF AFD CEF DEF S S S S △△△△.DAF HAF AF AF∴△ADF ≌△AHF (SAS ),∴∠AFD =∠AFH ,∵∠AFD =∠CFE ,∴∠AFH =∠CFE ,由①可知,∠AFC =120°,∴∠CFE =180°-120°=60°,∴AFH =∠CFE =60°,∴∠CFH =60°,即:∠CFH =∠CFE ,在△CFH 和△CFE 中,CFH CFE CF CF HCF ECF∴△CFH ≌△CFE (ASA ),∴CE =CH ,∵AC =AH +CH ,∴AC =AD +CE ;(2)证:如图所示,在AC 上取S 、T 两点,使得AD =AS ,CE =CT ,连接SF ,SE ,TF ,TE ,∵AE 平分∠BAC ,∴∠DAF =∠SAF ,在△ADF 和△ASF 中,【点睛】本题考查全等三角形的判定与性质,以及三角形角平分线相关的证明问题,掌握基本的辅助线添加思想,熟练运用全等三角形的判定与性质是解题关键.26.(2022秋·浙江·八年级专题练习)如图ABC 中,60,,ABC AD CE 分别平分,BAC ACB AD CE 、、相交于点P .(1)求CPD 的度数;(2)求证:AE CD AC【答案】(1)∠CPD=60°;(2)详见解析【分析】(1)根据三角形的内角和定理及角平分线的定义,三角形的外角性质即可求出;(2)在AC 上截取AF=AE ,先证明△APE ≌△APF (SAS ),再证明△CFP ≌△CDP (ASA ),根据全等三角形的性质证明AE CD AC 即可.【详解】解:(1)∵∠ABC=60°,∴∠BAC+∠ACB=180°-60°=120°,又∵AD 、CE 分别平分 、BAC ACB ,∴12CAD BAC ,12ACE ACB ∴111()60222CAD ACE BAC ACB BAC ACB ,又∵∠CPD 是△ACP 的外角,∴∠CPD=∠CAD+∠ACE=60°,∴∠CPD=60°.(2)如图,在AC 上截取AF=AE ,连接PF ,∵∠CPD=60°,∴∠APC=120°,∠APE=60°∵AD 平分∠BAC ,CE 平分∠ACB ,∴∠BAD=∠CAD ,∠ACE=∠BCE在△APE 与△APF 中AE AF BAD CAD AP AP,∴△APE ≌△APF (SAS )∴∠APF=∠APE=60°,∴∠CPF=∠AOC-∠APF=60°,在△CFP 与△CDP 中,ACE BCE CP CP CPD CPF∴△CFP ≌△CDP (ASA )∴CD=CF∴AC=AF+CF=AE+CD ,即AE CD AC .【点睛】本题考查了全等三角形的判定及性质、三角形内角和定理与角平分线的角度计算问题,解题的关键是通过在AC 上截取AF=AE 构造全等三角形.27.(2022秋·全国·八年级期末)(1)阅读理解:问题:如图1,在四边形ABCD 中,对角线BD 平分ABC ,180A C .求证:DA DC .思考:“角平分线+对角互补”可以通过“截长、补短”等构造全等去解决问题.方法1:在BC 上截取BM BA ,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC ,连接DN ,得到全等三角形,进而解决问题.结合图1,在方法1和方法2中任选一种....,添加辅助线并完成证明.(2)问题解决:如图2,在(1)的条件下,连接AC ,当60DAC 时,探究线段AB ,BC ,BD 之间的数量关系,并说明理由;(3)问题拓展:如图3,在四边形ABCD 中,180A C ,DA DC ,过点D 作DE BC ,垂足为点E ,请直接写出线段AB 、CE 、BC之间的数量关系.【答案】(1)证明见解析;(2)AB BC BD ;理由见解析;(3)2BC AB CE .【分析】(1)方法1:在BC 上截取BM BA ,连接DM ,得到全等三角形,进而解决问题;方法2:延长BA 到点N ,使得BN BC ,连接DN ,得到全等三角形,进而解决问题;(2)延长CB 到点P ,使BP BA ,连接AP ,证明ΔΔPAC BAD ≌,可得PC BD ,即PC BP BC AB BC (3)连接BD ,过点D 作DF AC 于F ,证明ΔΔDFA DEC ≌,RtΔRtΔBDF BDE ≌,进而根据2BC BE CE BA AF CE BA CE 即可得出结论.【详解】解:(1)方法1:在BC 上截BM BA ,连接DM ,如图.BD ∵平分ABC ,ABD CBD .在ΔABD 和ΔMBD 中,BD BD ABD MBD BA BM,ΔΔABD MBD ≌,A BMD ,AD MD .180BMD CMD ∵,180C A .C CMD .DM DC ,DA DC .方法2:延长BA 到点N ,使得BN BC ,连接DN ,如图.BD ∵平分ABC ,NBD CBD .在ΔNBD 和ΔCBD 中,BD BD NBD CBD BN BC,ΔΔNBD CBD ≌.BND C ,ND CD .180NAD BAD ∵,180C BAD .BND NAD ,DN DA ,DA DC .(2)AB 、BC 、BD 之间的数量关系为:AB BC BD .(或者:BD CB AB ,BD AB CB ).延长CB 到点P ,使BP BA ,连接AP ,如图2所示.由(1)可知AD CD ,60DAC ∵.ΔADC 为等边三角形.AC AD ,60ADC .180BCD BAD ∵,36018060120ABC .18060PBA ABC .BP BA ∵,ΔABP 为等边三角形.60PAB ,AB AP .60DAC ∵,PAB BAC DAC BAC ,即PAC BAD .在ΔPAC 和ΔBAD 中,PA BA PAC BAD AC AD,ΔΔPAC BAD ≌.PC BD ,PC BP BC AB BC ∵,AB BC BD .(3)AB ,CE ,BC 之间的数量关系为:2BC AB CE .(或者:2BC CE AB ,2AB CE BC )解:连接BD ,过点D 作DF AC 于F ,如图3所示.180BAD C ∵,180BAD FAD .FAD C .在ΔDFA 和ΔDEC中,DFA DEC FAD C DA DC,ΔΔDFA DEC ≌,DF DE ,AF CE .在RtΔBDF 和RtΔBDE 中,BD BD DF DE,RtΔRtΔBDF BDE ≌.BF BE ,2BC BE CE BA AF CE BA CE ,2BC BA CE .【点睛】本题考查了三角形全等的性质与判定,正确的添加辅助线是解题的关键.28.等边ABC 中,点H 、K 分别在边BC 、AC 上,且AK CH ,连接AH 、BK 交于点F .(1)如图1,求AFB 的度数;图1(2)连接CF ,若90BFC ,求BF AF的值;(3)如图2,若点G 为AC 边的中点,连接FG ,且2AF FG ,则BFG 的大小是___________.图2【答案】(1)120 ;(2)2;(3)120【分析】(1)由ABC 是等边三角形,可得出AB AC BC ,60BAC ABC ACB ∠∠∠,再利用AK CH ,可证 ΔΔABK CAH SAS ≌,得出CAH ABK ,由BFH ABK BAF CAH BAF 可求出BFH ,最后由补角定义求出AFB .(2)在BF 上取点D ,使BD AF ,由120AFB 可证150AFC ,再利用AB AC ,ABD CAF ,BD AF 可证明 ΔΔABD CAF SAS ≌,进而求出150ADB CFA ,再用补角的性质得知120AFD ,在AFD △中利用外角的性质可求出30FAD ADB AFD ,进而证出AFD △为等腰三角形,最后可证出2BF BD DF AF 即可求解.(3)延长BF 至E ,使AFE 为等边三角形,延长FG 交CE 于T ,可得出 ΔΔABF ACE SAS ≌,进而得出120AEC AFB ,利用角的和差得出60FET AFE ,则证出//AF EC ,进而证出 ΔΔAFG CTG AAS ≌,再利用2AF FG ,AF EF 证出EFT 为等边三角形,进而证出120BFG .【详解】(1)∵ABC 是等边三角形,∴AB AC BC ,60BAC ABC ACB ∠∠∠,在ABK 和CAH 中,AB CA ,BAK ACH ,AK CH ,∴ ΔΔABK CAH SAS ≌,∴CAH ABK ,∴60BFH ABK BAF CAH BAF ,。
全等三角形模型——截长补短与倍长中线截长补短截长:即在一条较长的线段上截取一段较短的线段在线段AB 上截取AD AC=补短:即在较短的线段上补一段线段使其和较长的线段相等延长AC ,使得AD AB =1.ABC D 中,AD 是BAC Ð的平分线,且AB AC CD =+.若60BCA Ð=°,则ABC Ð的大小为( )A .30°B .60°C .80°D .100°【分析】可在AB 上取AC AC ¢=,则由题中条件可得BC C D ¢=¢,即2C AC D B Ð=Т=Ð,再由三角形的外角性质即可求得B Ð的大小.【解答】解:如图,在AB 上取AC AC ¢=,AD Q 是角平分线,DAC DAC ¢\Ð=Ð,ACD \D @△()AC D SAS ¢,CD C D ¢\=,又AB AC CD =+Q ,AB AC C B ¢¢=+,BC C D \¢=¢,DCBAAB CD260C AC D B ¢\Ð=Ð=Ð=°,30B \Ð=°.故选:A .2.阅读:探究线段的和.差.倍.分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在ABC D 中,2B C Ð=Ð,AD 平分BAC Ð.求证:AB BD AC +=.证明:在AC 上截取AE AB =,连接DE(2)如图2,//AD BC ,EA ,EB 分别平分DAB Ð,CBA Ð,CD 过点E ,求证:AB AD BC =+.【分析】(1)在AC 上截取AE AB =,连接DE ,证明ABD AED D @D ,得到B AED Ð=Ð,再证明ED EC =即可;(2)由等腰三角形的性质知AE FE =,再证明ADE FCE D @D 即可解决本题.【解答】证明:在AC 上截取AE AB =,连接DE ,如图1:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2BC Ð=Ð,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=;(2)延长AE 、BC 交于F ,AB BF =Q ,BE 平分ABF Ð,AE EF \=,在ADE D 和FCE D 中,DAE F AE EFAED CEF Ð=Ðìï=íïÐ=Ðî,()ADE FCE ASA \D @D ,AD CF \=,AB BF BC CF BC AD \==+=+.3.如图,在ABC D 中,AD 平分BAC Ð交BC 于D ,在AB 上截取AE AC =.(1)求证:ADE ADC D @D ;(2)若6AB =,5BC =,4AC =,求BDE D的周长.【分析】(1)根据SAS 证明ADE ADC D @D 即可;(2)根据全等三角形的性质和线段之间的关系进行解答即可.【解答】证明:(1)AD Q 平分BAC Ð,EAD CDA \Ð=Ð,在ADE D 与ADC D 中,AE AC EAD CDA AD AD =ìïÐ=Ðíï=î,()ADE ADC SAS \D @D ,(2)ADE ADC D @D Q ,ED DC \=,BDE \D 的周长6457BE BD DE AB AE BC DC DC AB AC BC DC DC AB AC BC =++=-+-+=-+-+=-+=-+=4.(2020秋•武昌区期中)如图,ABC D 中,60ABC Ð=°,AD 、CE 分别平分BAC Ð、ACB Ð,AD 、CE 相交于点P(1)求CPD Ð的度数;(2)若3AE =,7CD =,求线段AC 的长.【分析】(1)利用60ABC Ð=°,AD 、CE 分别平分BAC Ð,ACB Ð,即可得出答案;(2)由题中条件可得APE APF D @D ,进而得出APE APF Ð=Ð,通过角之间的转化可得出CPF CPD D @D ,进而可得出线段之间的关系,即可得出结论.【解答】解:(1)60ABC Ð=°Q ,AD 、CE 分别平分BAC Ð,ACB Ð,120BAC BCA \Ð+Ð=°,1()602PAC PCA BAC BCA Ð+Ð=Ð+Ð=°,120APC \Ð=°,60CPD \Ð=°.(2)如图,在AC 上截取AF AE =,连接PF .AD Q 平分BAC Ð,BAD CAD \Ð=Ð,在APE D 和APF D 中AE AF EAP FAP AP AP =ìïÐ=Ðíï=î,()APE APF SAS \D @D ,APE APF \Ð=Ð,120APC Ð=°Q ,60APE \Ð=°,60APF CPD CPF \Ð=Ð=°=Ð,在CPF D 和CPD D 中,FPC DPC CP CPFCP DCP Ð=Ðìï=íïÐ=Ðî,()CPF CPD ASA \D @D CF CD \=,3710AC AF CF AE CD \=+=+=+=.5.如图,在ABC D 中,60BAC Ð=°,AD 是BAC Ð的平分线,且AC AB BD =+,求ABC Ð的度数.【分析】在AC上截取AE AB=,根据角平分线的定义可得BAD CADÐ=Ð,然后利用“边角边”证明ABDD和AEDD全等,根据全等三角形对应边相等可得BD DE=,全等三角形对应角相等可得B AEDÐ=Ð,再求出CE BD=,从而得到CE DE=,根据等边对等角可得C CDEÐ=Ð,根据三角形的一个外角等于与它不相邻的两个内角的和可得2AED CÐ=Ð,然后根据三角形的内角和定理列方程求出CÐ,即可得解.【解答】解:如图,在AC上截取AE AB=,ADQ平分BACÐ,BAD CAD\Ð=Ð,在ABDD和AEDD中,AE ABBAD CAD AD AD=ìïÐ=Ðíï=î,()ABD AED SAS\D@D,BD DE\=,B AEDÐ=Ð,AC AE CE=+Q,AC AB BD=+,CE BD\=,CE DE\=,C CDE\Ð=Ð,即2B CÐ=Ð,在ABCD中,180BAC B CÐ+Ð+Ð=°,602180C C\°+Ð+Ð=°,解得40CÐ=°,24080ABC\Ð=´°=°.6.如图,五边形ABCDE 中,AB AE =,BC DE CD +=,120BAE BCD Ð=Ð=°,180ABC AED Ð+Ð=°,连接AD .求证:AD 平分CDE Ð.【分析】连接AC ,将ABC D 绕A 点旋转120°到AEF D ,由AB AE =,120BAE Ð=°,得到AB 与AE 重合,并且AC AF =,又由180ABC AED Ð+Ð=°,得到180AEF AED Ð+Ð=°,即D ,E ,F 在一条直线上,而BC DE CD +=,得CD DF =,则易证ACD AFD D @D ,于是ADC ADF Ð=Ð.【解答】证明:如图,连接AC ,将ABC D 绕A 点旋转120°到AEF D ,AB AE =Q ,120BAE Ð=°,AB \与AE 重合,并且AC AF =,又180ABC AED Ð+Ð=°Q ,而ABC AEF Ð=Ð,180AEF AED Ð+Ð=°Q ,D \,E ,F 在一条直线上,而BC EF =,BC DE CD +=,CD DF \=,又AC AF =Q ,ACD AFD \D @D ,ADC ADF \Ð=Ð,即AD 平分CDE Ð.7.已知:如图,在ABC D 中,D 是BA 延长线上一点,AE 是DAC Ð的平分线,P 是AE 上的一点(点P 不与点A 重合),连接PB ,PC .通过观察,测量,猜想PB PC +与AB AC +之间的大小关系,并加以证明.【分析】根据全等三角形的判定与性质,可得FP CP =,根据三角形的两边之和大于第三边,可得答案.【解答】解:PB PC AB AC +>+,理由如下:在BA 的延长线上截取AF AC =,连接PF ,在FAP D 和CAP D 中,AF AC FAP CAP AP AP =ìïÐ=Ðíï=î,()FAP CAP SAS \D @D ,FP CP \=.在FPB D 中,FP BP FA AB +>+,即PB PC AB AC +>+.8.已知ABC D 中,AB AC =,BE 平分ABC Ð交边AC 于E .(1)如图(1),当108BAC Ð=°时,证明:BC AB CE =+;(2)如图(2),当100BAC Ð=°时,(1)中的结论还成立吗?若不成立,是否有其他两条线段之和等于BC,若有请写出结论并完成证明.【分析】(1)如图1中,在BC 上截取BD BA =.只要证明BEA BED D @D ,CE CD =即可解决问题;(2)结论:BC BE AE =+.如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,再证明EA EH EF CF ===即可解决问题;【解答】解:(1)如图1中,在BC 上截取BD BA =.BA BD =Q ,EBA EBD Ð=Ð,BE BE =,BEA BED \D @D ,BA BD \=,108A BDE Ð=Ð=°,AB AC =Q ,36C ABC \Ð=Ð=°,72EDC Ð=°,72CED \Ð=°,CE CD \=,BC BD CD AB CE \=+=+.(2)结论:BC BE AE =+.理由:如图2中,在BA 、BC 上分别截取BF BE =,BH BE =.则EBH EBF D @D ,EF EH \=,100BAC Ð=°Q ,AB AC =,40ABC C \Ð=Ð=°,20EBA EBC \Ð=Ð=°,80BFE H EAH \Ð=Ð=Ð=°,AE EH \=,BFE C FEC Ð=Ð+ÐQ ,40CEF C \Ð=Ð=°,EF CF \=,BC BF CF BE AE \=+=+.9.(2020秋•建华区期末)阅读下面文字并填空:数学习题课上李老师出了这样一道题:“如图1,在ABC D 中,AD 平分BAC Ð,2B C Ð=Ð.求证:AB BD AC +=.”李老师给出了如下简要分析:要证AB BD AC +=,就是要证线段的和差问题,所以有两个方法:方法一:“截长法”.如图2,在AC 上截取AE AB =,连接DE ,只要证BD = EC 即可,这就将证明线段和差问题 为证明线段相等问题,只要证出△ @△ ,得出B AED Ð=Ð及BD = ,再证出Ð = ,进而得出ED EC =,则结论成立.此种证法的基础是“已知AD 平分BAC Ð,将ABD D 沿直线AD 对折,使点B 落在AC 边上的点E 处”成为可能.方法二:“补短法”.如图3,延长AB 至点F ,使BF BD =.只要证AF AC =即可,此时先证Ð C =Ð,再证出△ @△ ,则结论成立.“截长补短法”是我们今后证明线段或角的“和差倍分”问题常用的方法.【分析】方法一、如图2,在AC 上截取AE AB =,由“SAS ”可证ABD AED D @D ,可得B AED Ð=Ð,BD DE =,由角的数量关系可求DE CE =,即可求解;方法二、如图3,延长AB 至点F ,使BF BD =,由“AAS ”可证AFD ACD D @D ,可得AC AF =,可得结论.【解答】解:方法一、在AC 上截取AE AB =,连接DE ,如图2:AD Q 平分BAC Ð,BAD DAC \Ð=Ð,在ABD D 和AED D 中,AE AB BAD DAC AD AD =ìïÐ=Ðíï=î,()ABD AED SAS \D @D ,B AED \Ð=Ð,BD DE =,又2B C Ð=ÐQ ,2AED C \Ð=Ð,而2AED C EDC C Ð=Ð+Ð=Ð,C EDC \Ð=Ð,DE CE \=,AB BD AE CE AC \+=+=,故答案为:EC ,转化,ABD ,AED ,DE ,EDC ,C Ð;方法二、如图3,延长AB 至点F ,使BF BD =,F BDF \Ð=Ð,2ABD F BDF F \Ð=Ð+Ð=Ð,2ABD C Ð=ÐQ ,F C \Ð=Ð,在AFD D 和ACD D 中,FAD CAD F CAD AD Ð=ÐìïÐ=Ðíï=î,()AFD ACD AAS \D @D ,AC AF \=,AC AB BF AB BD \=+=+,故答案为F ,AFD ,ACD .倍长中线倍长中线:即延长三角形的中线,使得延长后的线段是原中线的两倍.其目的是构造一对对顶的全等三角形;其本质是转移边和角.其中BD CD =,延长AD 使得DE AD =,则BDE CDA △≌△.10.三角形ABC 中,AD 是中线,且4AB =,6AC =,求AD 的取值范围是 .【分析】延长AD 到E ,使AD DE =,连接BE ,证ADC EDB D @D ,推出8AC BE ==,在ABE D 中,根据三角形三边关系定理得出AB BE AE AB BE -<<+,代入求出即可.【解答】解:延长AD 到E ,使AD DE =,连接BE ,AD Q 是BC 边上的中线,BD CD \=,在ADC D 和EDB D 中,Q AD DE ADC EDB DC BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,4AC BE \==,在ABE D 中,AB BE AE AB BE -<<+,64264AD \-<<+,15AD \<<,故答案为:15AD <<.11.(2021春•碑林区校级期中)问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,ABCD 中,若4AB =,3AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下ED ABC的解决方法:延长AD 到点E ,使DE AD =,则得到ADC EDB D @D ,小明证明BED CAD D @D 用到的判定定理是: (用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以ABC D 的边AB ,AC 为边向外作ABE D 和ACD D ,AB AE =,AC AD =,90BAE CAD Ð=Ð=°,M 是BC 中点,连接AM ,DE .当3AM =时,求DE 的长.【分析】问题背景:先判断出BD CD =,由对顶角相等BDE CDA Ð=Ð,进而得出()ADC EDB SAS D @D ;问题解决:先证明()ADC EDB SAS D @D ,得出3BE AC ==,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,同(1)的方法得出()BMN CMA SAS D @D ,则BN AC =,进而判断出ABN EAD Ð=Ð,进而判断出ABN EAD D @D ,得出AN ED =,即可求解.【解答】解:问题背景:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC D 和EDB D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,故答案为:SAS;问题解决:如图1,延长AD 到点E ,使DE AD =,连接BE ,AD Q 是ABC D 的中线,BD CD \=,在ADC EDB D @D 中,AD ED CDA BDE CD BD =ìïÐ=Ðíï=î,()ADC EDB SAS \D @D ,BE AC \=,在ABE D 中,AB BE AE AB BE -<<+,4AB =Q ,3AC =,4343AE \-<<+,即17AE <<,DE AD =Q ,12AD AE \=,\1722AD <<;拓展应用:如图2,延长AM 到N ,使得MN AM =,连接BN ,由问题背景知,()BMN CMA SAS D @D ,BN AC \=,CAM BNM Ð=Ð,AC AD =Q ,//AC BN ,BN AD \=,//AC BN Q ,180BAC ABN \Ð+Ð=°,90BAE CAD Ð=Ð=°Q ,180BAC EAD \Ð+Ð=°,ABN EAD \Ð=Ð,在ABN D 和EAD D 中,AB EA ABN EAD BN AD =ìïÐ=Ðíï=î,()ABN EAD SAS \D @D ,AN DE \=,MN AM =Q ,2DE AN AM \==,3AM =Q ,6DE \=.12.如图,ABC D 中,D 为BC 的中点.(1)求证:2AB AC AD +>;(2)若5AB =,3AC =,求AD 的取值范围.【分析】(1)再延长AD 至E ,使DE AD =,构造ADC EDB D @D ,再根据三角形的三边关系可得2AB AC AD +>;(2)直接利用三角形的三边关系:三角形两边之和大于第三边,三角形的两边差小于第三边可得53253AD -<<+,再计算即可.【解答】(1)证明:由BD CD =,再延长AD 至E ,使DE AD =,D Q 为BC 的中点,DB CD \=,在ADC D 和EDB D 中AD DE ADC BDE DB CD =ìïÐ=Ðíï=î,BE AC \=,在ABE D 中,AB BE AE +>Q ,2AB AC AD \+>;(2)5AB =Q ,3AC =,53253AD \-<<+,14AD \<<.13.如图,平面直角坐标系中,A 为y 轴正半轴上一点,B 、C 分别为x 轴负半轴,x 轴正半轴上的点,AB AD =,AC AE =,90BAD CAE Ð=Ð=°,连DE .如图,F 为BC 的中点,求证:2DE AF =.【分析】延长AF 至点N ,使FN AF =,连接BN ,证明BFN CFA D @D ,根据全等三角形的性质得到BN AC =,FBN FCA Ð=Ð,证明ABN DAE D @D ,根据全等三角形的性质证明;【解答】证明:延长AF 至点N ,使FN AF =,连接BN ,在BFN D 和CFA D 中,FB FC BFN CFA FN AF =ìïÐ=Ðíï=î,BN AC \=,FBN FCA Ð=Ð,BN AE \=,ABN DAE Ð=Ð,在ABN D 和DAE D 中,AB AD ABN DAE BN AE =ìïÐ=Ðíï=î,()ABN DAE SAS \D @D ,AN DE \=,2DE AF \=.14.如图,AD 是ABC D 的边BC 上的中线,CD AB =,AE 是ABD D 的边BD 上的中线.求证:2AC AE =.【分析】延长AE 至点F ,使EF AE =,连接DF ,由SAS 证得ABE FDE D @D ,得出DF AB CD ==,EDF B Ð=Ð,易证AB BD =,得出ADB BAD Ð=Ð,证明ADC ADF Ð=Ð,由SAS 证得ADF ADC D @D ,即可得出结论.【解答】证明:延长AE 至点F ,使EF AE =,连接DF ,如图所示:AE Q 是ABD D 的边BD 上的中线,BE DE \=,在ABE D 与FDE D 中,AE EF AEB FED BE DE =ìïÐ=Ðíï=î,()ABE FDE SAS \D @D ,DF AB CD \==,EDF B Ð=Ð,AD Q 是ABC D 的边BC 上的中线,CD AB =,AB BD \=,ADB BAD \Ð=Ð,ADC B BAD BDA EDF ADF \Ð=Ð+Ð=Ð+Ð=Ð,在ADF D 与ADC D 中,AD AD ADF ADC DF DC =ìïÐ=Ðíï=î,()ADF ADC SAS \D @D ,2AC AF AE \==.15.如图,在ABC D 中,D ,E 是AB 边上的两点,AD EB =,CF 是AB 边上的中线,则求证AC BC CD CE +>+.【分析】如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G ,通过证明AFH BFC D @D ,BCE AHD D @D ,可得BC AH =,CE DH =,利用三角形的三边关系可求解.【解答】证明:如图,延长CF 至H ,使FH CF =,连接AH ,DH ,延长CD 交AH 于点G,Q是AB边上的中线,CF\=,且CFB AFHAF BF=,Ð=Ð,CF FH()\D@DAFH BFC SAS=,Ð=Ð,且AD BE\=,CBE HADBC AH\D@D()BCE AHD SAS\=,CE DH在AGC+>+,D中,AC AG DC DG在GDH+>,D中,DG GH DHAC AG DG GH DC DG DH\+++>++,\+>+,AC AH DC DH\+>+.AC BC CD CE16.如图1,ABCÐ=Ð.D中,CD为ABCD的中线,点E在CD上,且AED BCD(1)求证:AE BC=.(2)如图2,连接BE,若2CBEÐ的度数为 (直接写出结果),Ð=°,则ACDAB AC DE==,14【分析】(1)如图1,延长CD到F,使DF CDD@D,可得=,连接AF,由“SAS”可证ADF BDCAF BC=,F BCDÐ=Ð,由等腰三角形的性质可得结论;(2)由等腰三角形的性质可得DEB DBEÐ=Ð,可得14DCB DEBÐ=Ð-°,14ACB ABC DEBÐ=Ð=Ð+°,即可求解.【解答】证明:(1)如图1,延长CD到F,使DF CD=,连接AF,CDQ为ABCD的中线,AD BD\=,且ADF BDCÐ=Ð,且CD DF=,()ADF BDC SAS\D@D,AF BC\=,F BCDÐ=Ð,AED BCDÐ=ÐQ,AED F\Ð=Ð,AE AF\=,AE BC\=;(2)12DE AB=Q,CD为ABCD的中线,DE AD DB\==,DEB DBE\Ð=Ð,14 ABC DBE CBE DEB\Ð=Ð+Ð=Ð+°,DEB DCB CBEÐ=Ð+ÐQ,14DCB DEB\Ð=Ð-°,AC AB=Q,14ACB ABC DEB\Ð=Ð=Ð+°28ACD ACB DCB\=Ð-Ð=°,故答案为:28°.17.如图,ABC D 中,点D 是BC 中点,连接AD 并延长到点E ,连接BE .(1)若要使ACD EBD D @D ,应添上条件: ;(2)证明上题:(3)在ABC D 中,若5AB =.3AC =,可以求得BC 边上的中线AD 的取值范围4AD <.请看解题过程:由ACD EBD D @D 得:AD ED =,3BE AC ==,因此AE AB BE <+,即8AE <,而12AD AE =,则4AD <请参考上述解题方法,可求得AD m >,则m 的值为 .(4)证明:直角三角形斜边上的中线等于斜边的一半.(提示:画出图形,写出已知,求证,并加以证明)【分析】(1)根据“边角边”求证三角形全等的方法可以添加条件AD DE =;(2)易证BD CD =,根据“边角边”求证三角形全等的方法即可解题;(3)根据三角形三边关系即可解题;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =;证明:延长AD 到点E 使得DE AD =,连接BE ,易证ACD EBD D @D ,可得C DBE Ð=Ð,AC BE =,即可证明BAC ABE D @D ,可得BC AE =,即可解题.【解答】解:(1)应添上条件:AD DE =,故答案为AD DE =;(2)Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;(3)Q 三角形两边之差小于第三边,AE AB BE \>-,即2AE >,12AD AE =Q ,1AD \>,故答案为 1;(4)已知RT ABC D 中90BAC Ð=°,AD 是斜边中线,求证12AD BC =,证明:延长AD 到点E 使得DE AD =,连接BE ,Q 点D 是BC 中点,BD CD \=,Q 在ACD D 和EBD D 中,BD CD ADC BDE AD DE =ìïÐ=Ðíï=î,()ACD EBD SAS \D @D ;C DBE \Ð=Ð,AC BE =,90ABC C Ð+Ð=°Q ,90ABC DBE \Ð+Ð=°,即90ABE Ð=°,Q 在BAC D 和ABE D 中,90AB BA ABE BAC AC BE =ìïÐ=Ð=°íï=î,()BAC ABE SAS \D @D ;BC AE \=,12AD BC \=.。
截长补短针对题型:证明三条线段长度的“和”或“差"及其比例关系。
要求:从动态图形中寻找线段间的和差关系,熟练掌握转化思想。
常见类型及常规解题思路:① a b c ±= 可采取直接截长或补短,绕后进行证明。
或者化为类型②证明。
② a b kc ±= 可以将a b ±与c 构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30的直角三角形等. 截长法常规辅助线:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等.…… 补短法常规辅助线: (1)延长短边。
(2)通过旋转等方式使两短边拼合到一起.……例题演练:1.如图,AD BC ∥,点E 在线段AB 上,ADE CDE ∠=∠,DCE BCE ∠=∠。
求证:CD AD BC =+。
ADBCE2.如图示,在ABC ∆中,AD 平分BAC ∠,且2C B ∠=∠.求证:AB AC CD =+.3.如图所示.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且2BAE DAM ∠=∠.求证:AE BC CE =+。
M ED CBA4.如图示,点M ,N 在等边三角形ABC 的AB 边上运动,BD DC =,120BAD ∠=,60MDN ∠=,求证:MN MB NC =+.DCB A 125。
如图,在正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AF 平分DAE ∠,求证:AE EC CD =+FEDC BA。
截长补短模型专题解读【专题说明】“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“a+b =c”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
【方法技巧】常见类型及常规解题思路:① a b c ±= 可采取直接截长或补短,绕后进行证明。
或者化为类型②证明。
② a b kc ±= 可以将a b ±与c 构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30o 的直角三角形等。
截长法常规辅助线:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
补短法常规辅助线:(1)延长短边。
(2)通过旋转等方式使两短边拼合到一起【典例分析】【典例1】模型分析当题目中出现线段的和差关系时,考虑用截长补短法,该类题日中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,且∠B =2∠C ,求证:AB +BD =AC . 截长法:在AC 上截取AE =AB ,连接DE ,证明CE =BD 即可.补短法:延长AB 至点F ,使AF =AC ,连接DF ,证明BF =BD 即可.请结合右边的证明结论.求证:AB +BD =AC .请结合右边的【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】【解答】证明:【截长法】在AC上截取AE=AB,连接DE,∵AD平分∠BAC,∴∠BAD=∠DAC,在△ABD和△AED中,,∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE,又∠B=2∠C,∴∠AED=2∠C,而∠AED=∠C+∠EDC=2∠C,∴∠C=∠EDC,∴DE=CE,∴AB+BD=AE+CE=AC.证明:【补短法】延长AB到F,使BF=BD,连接DF,∵BF=BD,∴∠F=∠BDF,∴∠ABC=∠F+∠BDF=2∠F,且∠ABC=2∠C,∴∠C=∠F,且∠CAD=∠BAD,AD=AD,∴△ADF≌△ADC(AAS)∴AC=AF,∴AC=AF=AB+BF=AB+BD.【变式1】如图,Rt△ABC中,AC=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于F点,交AB于点E.求证:AD=2DF+CE.【解答】证明:在AF上截取FG=DF,连接CG,则DG=2DF,∵∠ACB=90°,∴∠DCF+∠ACF=90°,又∵CF⊥AD,∴∠ACF+∠CAF=90°,∴∠DCF=∠CAF,∵AD平分∠CAE,∴∠CAF=∠EAF,∵DF=FG,CF⊥DG,∴CD=CG,∴∠CDG=∠CGD,∵∠DGC=∠GAC+∠ACG,∠ADC=∠B+∠BAD,∴∠B=∠ACG,又∵AC=BC,∴△ACG≌△CBE(ASA),∴AG=CE,∴AD=AG+DG=CE+2DF.【变式2】如图,△ABC为等边三角形,D为△ABC外一点,连接AD,BD,CD,∠ADB =∠ADC=60°,求证:AD=BD+CD.【解答】证明:在DA上截取DE=DB,连接BE,如下图所示,∵∠ADB=60°,DE=DB,∴△ABD为等边三角形,∴∠EBD=60°,BE=BD,∵△ABC为等边三角形,∴∠ABC=60°,BA=BC,∴∠EBD﹣∠EBC=∠ABC﹣∠EBC,∴∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD(SAS),∴AE=CD,∴AD=AE+ED=CD+BD.【变式3】如图,△ABC内接于⊙O,AC=BC,CD是⊙O的一条弦,且=,过点A 作AP⊥CD,分别交CD,⊙O于点E,P,连接BP,若CD=6,△ABP的周长为13,求AE的长.【解答】解:在AE上截取AF=BP,连接CF,PC,∵AC=BC,∠CAF=∠CBP,∴△CAF≌△CBP,CF=CP,∵CD⊥P A,∴EF=PE,∴AE=AF+FE=PB+PE,∵AC=BC,∴=,∵=,∴=,∴AB=CD=6,∵△ABP的周长是13,∴AP+PB=7,∵AE=PE+PB,∴2AE=AP+PB,∴AE=.【变式4】如图,在△ABC中,AB=AC,在AB左侧作∠BDC=∠BAC=α,过点A作AE ⊥DC于点E.(1)当α=90°时,①求证:AE=DE;②若BD=AE=2,请求出△ABC的面积;(2)当α≠90°时,求证:BD+DE=EC.【解答】(1)①证明:过点B作BF⊥AE,交AE的延长线于点F,∵AE⊥CD,∴∠DEF=90°,又∵∠BDE=90°,∴四边形BDEF为矩形,∴DE=BF,∵∠BAC=90°,∴∠BAF+∠EAC=90°,又∵∠EAC+∠ACE=90°,∴∠BAF=∠ACE,又∵∠AEC=∠BF A=90°,AB=AC,∴△ABF≌△CAE(AAS),∴BF=AE,∴DE=AE;②解:∵四边形BDEF为矩形,BD=AE=2,∴BD=EF=2,DE=BF=AE=,∴AF=AE+EF=+2,∴BA2=BF2+AF2==8+4,∴S△ABC==;(2)证明:过点A作AF⊥BD,交BD的延长线于F,连接AD,设CD与AB交于点O,∵∠BDC=∠BAC,∠BOD=∠AOC,∴∠ACO=∠DOB,即∠ABF=∠ACE,又∵∠AEC=∠AFB=90°,AC=AB,∴△ACE≌△ABF(AAS),∴AE=AF,BF=CE,又∵AD=AD,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∴CE=BF=BD+DF=BD+DE.【变式5】【问题背景】如图①,在边长为1的正方形ABCD中,点E为射线BC上的一个动点(与点B,C不重合),连接AE,过点E作EF⊥AE,与正方形ABCD的外角∠DCG的平分线交于点F.李老师指出,当点E为线段BC的中点时,AE=EF.【初步探索】(1)如图②,当点E在线段BC的延长线上时,其他条件不变,那么结论“AE=EF”是否仍然成立;【问题解决】(2)当点E在线段BC上时,设BE=x,△ECF的面积为y,求y与x之间的函数关系式;【拓展延伸】(3)如图③,将正方形ABCD放在平面直角坐标系xOy中,点O与点B重合,点C在x轴正半轴上,当点E运动到某一点时,点F恰好落在直线y=﹣2x+3上,求此时点E 的坐标.【解答】解:【问题背景】如图1,取AB的中点H,连接EH,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°=∠BCD,∵CF平分∠DCG,∴∠DCF=45°,∴∠ECF=135°,∵E是BC的中点,∴BH=BE=AH=CE,∴∠BHE=∠BEH=45°,∴∠AHE=∠ECF=135°,∵AE⊥EF,∴∠AEB+∠FEC=90°,∵∠AEB+∠BAE=90°,∴∠FEC=∠BAE,∴△AHE≌△ECF(ASA),∴AE=EF;【初步探索】(1)仍然成立,理由如下:如图2,在BA的延长线上取一点N,使AN=CE,连接NE.∵AB=BC,AN=CE,∴BN=BE,∴∠N=∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,∴∠NAE=∠CEF,在△ANE和△ECF中,,∴△ANE≌△ECF(ASA),∴AE=EF;【问题解决】(2)如图3,在BA上截取BH=BE,连接HE,同理得:△AHE≌△ECF,∴y=S△AHE=AH•BE=x(1﹣x)=﹣x2+x(0≤x≤1);【拓展延伸】(3)如图4,在BA上截取BH=BE,连接HE,过点F作FM⊥x轴于M,设点E(a,0),∴BE=a=BH,∴HE=a,由(1)可得△AHE≌△ECF,∴CF=HE=a,∵CF平分∠DCM,∴∠DCF=∠FCM=45°,∵FM⊥CM,∴∠CFM=∠FCM=45°,∴CM=FM=a,∴BM=1+a,∴点F(1+a,a),∵点F恰好落在直线y=﹣2x+3上,∴a=﹣2(1+a)+3,∴a=,∴点E(,0).【典例2】如图1,在Rt△ABC中,AB=BC,点D,E,F分别在AB,BC,AC边上,且DE=EF,∠DEF=∠B,∠A=45°.(1)试猜想CF与BE之间的数量关系,并证明;(2)自主探究:如图2,若将已知条件中含45°的直角三角形换成含30°的直角三角形,其余条件不变,试探究BE和CF的关系.【解答】解:(1)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,AB=BC,∠A=45°,∴∠C=45°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=45°,∴△FHC为等腰直角三角形,∴FC=FH,∴FC=BE;(2)CF与BE之间的数量关系为:CF=BE.理由:过点F作FH⊥BC于点H,如图,∵Rt△ABC中,∠A=30°,∴∠C=60°,∠B=90°.∵∠DEF=∠B,∴∠DEF=90°,∴∠DEB+∠FEH=90°.∵∠BDE+∠DEB=90°,∴∠BDE=∠FEH.在△BDE和△HEF中,,∴△BDE≌△HEF(AAS),∴BE=FH.∵FH⊥BC,∠C=60°,∴sin60°=,∴FC=FH,∴FC=BE.【变式1】如图,在△ABC中,∠ABC=45°,AD⊥BC于点D,点F是AC上一点,连接BF交AD于点E,且DE=CD,连接DF,若AF=4,DF=2,则BF的长为.【解答】解:如图,在BF上截取HF=AF,连接AH,∵∠ABC=45°,AD⊥BC,∴AD=BD,∠ADB=∠ADC=90°,在△BDE和△ADC中,,∴△BDE≌△ADC(SAS),∴∠EBD=∠CAD,∵∠BED=∠AEF,∴∠AFE=∠BDE=90°,∴∠AHF=∠HAF=45°,∴AH=AF,∴∠BAH=∠DAF,∠AHB=135°,∠AEF=∠BED,∠AFE=∠BDE=90°,∴△AFE∽△BDE,∴=,∵∠AEB=∠FED,∴△AEB∽△FED,∴∠EAB=∠EFD=45°,∴∠AFD=∠AFH+∠EFD=90°+45°=135°,∴∠AHB=∠AFD,∴△AHB∽△AFD,∴==,∴BH=DF,∴BF=BH+HF=DF+AF=2+4.故答案为:2+4.【变式2】如图,在△ABC中,∠ACB=120°,BC>AC,点E在BC上,点D在AB上,CE=CA,连接DE,∠ACB+∠ADE=180°,CH⊥AB,垂足为点H.求证:DE+AD=2CH.【解答】证明:如图,作∠FCD=∠ACB,交BA延长线于F,∵∠FCA+∠ACD=∠ACD+∠DCB,∴∠FCA=∠DCB,∵∠ACB=120°,∠ACB+∠ADE=180°,∴∠EDB=120°,∠EDA=60°,∵∠F AC=120°+∠B,∠CED=120°+∠B,∴∠F AC=∠CED,在△AFC和△EDC中,,∴△AFC≌△EDC(ASA),∴AF=DE,FC=CD,∵CH⊥FD,∴FH=HD,∠FCH=∠HCD=60°,∴DH=CH,∵AD+DE=AD+AF=FD=2DH=2CH,∴AD+DE=2CH.【变式3】如图,四边形ABCD内接于⊙O,BC是⊙O的直径,连接AC,BD,若AB=AC,请探究AD,BD,DC之间的数量关系.【解答】解:作AE⊥AD交BD于E,∵BC是直径,∴∠BAC=90°,∵∠BAE+∠EAC=∠DAC+∠EAC=90°,∴∠BAE=∠CAD,∵∠ABD=∠ACD,AB=AC,∴△ABE≌△ACD(SAS),∴BE=CD,∵△AED是等腰直角三角形,∴DE=AD,∵BD=DE+BE,∴BD=AD+CD.【变式4】如图,在矩形ABCD中,AB=AD,点E为CD延长线上一点,连接AE,过点C作CF⊥AE于点F,CF交AD于点H,过点D作DN⊥AE于点N,连接DF.(1)在不添加辅助线的情况下,找出一个与△CDH相似的三角形,并证明;(2)求证:FD=2DN;(3)求证:CF=AF+2FD.【解答】(1)解:选择△AFH,证明:∵四边形ABCD是矩形,∴∠ADC=90°,∵CF⊥AE,∴∠AFC=90°,∴∠AFH=∠CDH,∵∠AHF=∠CHD,∴△AFH∽△CDH;(2)证明:连接AC,∵△AFH∽△CDH,∴,∴,∵∠FHD=∠AHC,∴△FHD∽△AHC,∴∠DFC=∠DAC,∵AB=CD=AD,∴∠DAC=60°,∴∠DFC=∠DAC=60°,∴∠DFN=30°,∵DN⊥AE,∴∠DNF=90°,∴FD=2DN;(3)证明:在线段FC上截取FO,使FO=AF,连接AO,∵∠AFO=90°,∴F AO=60°,∵∠DAC=60°,∴∠F AD=∠OAC,∵,∴△F AD∽△OAC,∴,∴OC=2FD,∴CF=FO+OC=AF+2FD,∴CF=AF+2FD.【变式5】如图,在△ABC中,AB=AC,∠BAC=90°,点D是平面内一点,且AD⊥CD.点O是BC的中点,连接OA,OD.(1)如图①,若点D是BC下方一点,过点O作OE⊥OD分别交AC,AD于点E,F.①求证:∠OAF=∠OCD;②若CD=1,DF=2,求BC的长;(2)如图②,若点D是AC右侧一点,试判断AD,CD,OD之间的数量关系,并说明理由.【解答】(1)①证明:∵AB=AC,O为BC的中点,∴OA=OB=OC,OA⊥OC,∵OE⊥OD,∴∠AOC=∠EOD=90°,∴∠AOF=∠COD,∵∠AOM=∠MDC=90°,∠AMO=∠CMD,∴∠OAM=∠MCD,∴△OAF≌△OCD(ASA),∴∠OAF=∠OCD;②解:∵△OAF≌△OCD,∴AF=CD=1,∵DF=2,∴AD=AF+DF=1+2=3,∵AD⊥DC,∴∠ADC=90°,∴AC===,∵AC=AB,∴BC=AC==2;(2)解:AD+CD=OD.理由:过点O作OE⊥OD,交DA的延长线于点E,∵∠DOE=∠AOC=90°,∴∠AOE=∠COD,∵∠ODC+∠+ODA=90°,∠ODA+∠OEA=90°,∴∠ODC=∠OEA,又∵OA=OC,∴△OCD≌△OAE(AAS),∴CD=AE,OD=OE,∴DE=OD,∴AD+AE=AD+CD=OD.【变式6】【问题探究】如图,△ABC是等腰三角形,AB=AC,点D是平面内一点,连接AD,BD,CD,且∠CAB=∠CDB.(1)如图①,当∠CAB=60°时,试探究BD,CD,AD之间的数量关系;(2)如图②,当∠CAB=120°时,探究是否为定值,并说明理由;【问题解决】(3)如图③,在四边形ADBC中,AB=AC,∠CAB=∠CDB=120°,若AD=2,BD =3,求CD的长.【解答】解:(1)BD,CD,AD之间的数量关系为:BD=CD+AD,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,如图①所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=60°,∴△ADE是等边三角形,∴DE=AD,∴BD=BE+DE=CD+AD;(2)是定值,理由如下:在BD上取一点E,使BE=CD,连接AE,设AC交BD于H,过点A作AF⊥BD于F,如图②所示:∵∠CAB=∠CDB,∠AHB=∠CHD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴AD=AE,∠DAC=∠EAB,∴∠DAC+∠CAE=∠EAB+∠CAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∵DE=BD﹣BE=BD﹣CD,∴BD﹣CD=AD,∴=,∴是定值;(3)在CD上取一点E,使CE=BD,连接AE,设AB交CD于H,过点A作AF⊥CD 于F,如图③所示:∵∠CAB=∠CDB,∠AHC=∠BHD,∴∠ACE=∠ABD,在△ACE和△ABD中,,∴△ACE≌△ABD(SAS),∴AE=AD,∠EAC=∠DAB,∴∠EAC+∠BAE=∠DAB+∠BAE=∠CAB=120°,∴∠ADE=∠AED=(180°﹣120°)=30°,∵AF⊥DE,∴DF=EF,AF=AD,在Rt△AFD中,由勾股定理得:DF===AD,∴DE=2DF=AD,∴CD=CE+DE=BD+AD=3+×2=3+2.。
ADBCE图2-1截长补短法人教八年级上册课本中,在全等三角形部分介绍了角的平分线的性质,这一性质在许多问题里都有着广泛的应用.而“截长补短法”又是解决这一类问题的一种特殊方法,在无法进行直接证明的情形下,利用此种方法常可使思路豁然开朗.请看几例.例1. 已知,如图1-1,在四边形ABCD 中,BC >AB ,AD =DC ,BD 平分∠ABC .求证:∠BAD +∠BCD =180°.分析:因为平角等于180°,因而应考虑把两个不在一起的通过全等转化成为平角,图中缺少全等的三角形,因而解题的关键在于构造直角三角形,可通过“截长补短法”来实现.证明:过点D 作DE 垂直BA 的延长线于点E ,作DF ⊥BC 于点F ,如图1-2 ∵BD 平分∠ABC ,∴DE =DF ,在Rt △ADE 与Rt △CDF 中,⎩⎨⎧==CDAD DFDE ∴Rt △ADE ≌Rt △CDF (HL ),∴∠DAE =∠DCF . 又∠BAD +∠DAE =180°,∴∠BAD +∠DCF =180°, 即∠BAD +∠BCD =180°例2. 如图2-1,AD ∥BC ,点E 在线段AB 上,∠ADE =∠CDE ,∠DCE =∠ECB .求证:CD =AD +BC .分析:结论是CD =AD +BC ,可考虑用“截长补短法”中的“截长”,即在CD 上截取CF =CB ,只要再证DF =DA 即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的.证明:在CD 上截取CF =BC ,如图2-2在△FCE 与△BCE 中,⎪⎩⎪⎨⎧=∠=∠=CE CE BCE FCE CB CF ∴△FCE ≌△BCE (SAS ),∴∠2=∠1.ABCD图1-1FEDCBA图1-2ADB CEF1234图2-2又∵AD ∥BC ,∴∠ADC +∠BCD =180°,∴∠DCE +∠CDE =90°, ∴∠2+∠3=90°,∠1+∠4=90°,∴∠3=∠4. 在△FDE 与△ADE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠43DEDE ADE FDE ∴△FDE ≌△ADE (ASA ),∴DF =DA , ∵CD =DF +CF ,∴CD =AD +BC .例3. 已知,如图3-1,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB +BC =2BD .求证:∠BAP +∠BCP =180°.分析:与例1相类似,证两个角的和是180°,可把它们移到一起,让它们是邻补角,即证明∠BCP =∠EAP ,因而此题适用“补短”进行全等三角形的构造.证明:过点P 作PE 垂直BA 的延长线于点E ,如图3-2∵∠1=∠2,且PD ⊥BC ,∴PE =PD , 在Rt △BPE 与Rt △BPD 中,⎩⎨⎧==BPBP PDPE ∴Rt △BPE ≌Rt △BPD (HL ),∴BE =BD .∵AB +BC =2BD ,∴AB +BD +DC =BD +BE ,∴AB +DC =BE 即DC =BE -AB =AE . 在Rt △APE 与Rt △CPD 中,⎪⎩⎪⎨⎧=∠=∠=DC AE PDC PEA PD PE ∴Rt △APE ≌Rt △CPD (SAS),∴∠PAE =∠PCD 又∵∠BAP +∠PAE =180°,∴∠BAP +∠BCP =180°例4. 已知:如图4-1,在△ABC 中,∠C =2∠B ,∠1=∠2.求证:AB =AC +CD .ABCDP12N图3-1P12NABCDE 图3-2DCB A 12图4-1分析:从结论分析,“截长”或“补短”都可实现问题的转化,即延长AC 至E 使CE =CD ,或在AB 上截取AF =AC . 证明:方法一(补短法)延长AC 到E ,使DC =CE ,则∠CDE =∠CED ,如图4-2∴∠ACB =2∠E ,∵∠ACB =2∠B ,∴∠B =∠E , 在△ABD 与△AED 中,⎪⎩⎪⎨⎧=∠=∠∠=∠AD AD E B 21 ∴△ABD ≌△AED (AAS ),∴AB =AE . 又AE =AC+CE =AC +DC ,∴AB =AC +DC . 方法二(截长法)在AB 上截取AF =AC ,如图4-3 在△AFD 与△ACD 中,⎪⎩⎪⎨⎧=∠=∠=AD AD AC AF 21 ∴△AFD ≌△ACD (SAS ),∴DF =DC ,∠AFD =∠ACD . 又∵∠ACB =2∠B ,∴∠FDB =∠B ,∴FD =FB . ∵AB =AF +FB =AC +FD ,∴AB =AC +CD .上述两种方法在实际应用中,时常是互为补充,但应结合具体题目恰当选择合适思路进行分析。
专题01 全等模型-倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.例1.(2023·成都市·八年级课时练习)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,若AB =8,AC =6,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图,延长AD 到点E ,使DE =AD ,连结BE .请根据小明的方法思考:(1)由已知和作图能得到ADC EDB ≌△△的理由是( ).A .SSSB .SASC .AASD .ASA(2)AD 的取值范围是( ).A .68AD <<B .1216AD <<C .17AD << D .214AD <<(3)【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】如图,AD 是△ABC 的中线,BE 交AC 于点E ,交AD 于F ,且AE =EF .求证:AC =BF .【答案】(1)B (2)C (3)见解析【分析】(1)根据AD =DE ,∠ADC =∠BDE ,BD =DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE =AC=6,AE =2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长AD 到M ,使AD =DM ,连接BM ,根据SAS 证△ADC ≌△MDB ,推出BM =AC ,∠CAD =∠M ,根据AE =EF ,推出∠CAD =∠AFE =∠BFD ,求出∠BFD =∠M ,根据等腰三角形的性质求出即可.(1)∵在△ADC 和△EDB 中AD DE ADC BDE BD CD ìïÐÐíïî===,∴△ADC ≌△EDB (SAS ),故选B ;(2)∵由(1)知:△ADC ≌△EDB ,∴BE =AC =6,AE =2AD ,∵在△ABE 中,AB =8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故选:C .(3)延长AD 到点M ,使AD =DM ,连接BM .∵AD 是△ABC 中线∴CD =BD∵在△ADC 和△MDB 中DC DB ADC MDB DA DM =ìïÐ=Ðíï=î∴()SAS ADC MDB ≌△△∴BM =AC (全等三角形的对应边相等)∠CAD =∠M (全等三角形的对应角相等)∵AE =EF ,∴∠CAD =∠AFE (等边对等角)∵∠AFE =∠BFD ,∴∠BFD =∠M ,∴BF =BM (等角对等边)又∵BM =AC ,∴AC =BF .【点睛】本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.例2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC V 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD Ð=Ð,BAD CED Ð=Ð(两直线平行,内错角相等).在ABD △与ECD V 中,∵ABD ECD Ð=Ð,BAD CED Ð=Ð(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC V 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD Ð的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE Ð=Ð,若5AB =,2CF =,求出线段DF 的长.【答案】(1)1<AD <5;(2)AD =AB +DC .理由见解析;(3)DF =3.【分析】(1)延长AD 到E ,使AD =DE ,连接BE ,证△ADC ≌△EDB ,推出AC =BE =4,在△ABE 中,根据三角形三边关系定理得出AB -BE <AE <AB +BE ,代入求出即可;(2)结论:AD =AB +DC .延长AE ,DC 交于点F ,证明△ABE ≌△FEC (AAS ),推出AB =CF ,再证明DA =DF 即可解决问题;(3)如图③,延长AE 交CF 的延长线于点G ,证明AB =DF +CF ,可得结论.【详解】解:(1)延长AD 到E ,使AD =DE ,连接BE ,∵AD是BC边上的中线,∴BD=CD,在△ADC和△EDB中,AD DEADC EDBDC DB=ìïÐ=Ðíï=î,∴△ADC≌△EDB(SAS),∴AC=BE=4,在△ABE中,AB-BE<AE<AB+BE,∴6-4<2AD<6+4,∴1<AD<5,故答案为:1<AD<5;(2)结论:AD=AB+DC.理由:如图②中,延长AE,DC交于点F,∵AB∥CD,∴∠BAF=∠F,在△ABE和△FCE中,AEB FECBAE FBE CEÐ=ÐìïÐ=Ðíï=î,∴△ABE≌△FCE(AAS),∴CF=AB,∵AE是∠BAD的平分线,∴∠BAF=∠FAD,∴∠FAD=∠F,∴AD=DF,∵DC+CF=DF,∴DC+AB=AD;(3)如图③,延长AE交CF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥CF,∴∠BAE=∠G,在△AEB和△GEC中,BAE GAEB GECBE CEÐ=ÐìïÐ=Ðíï=î,∴△AEB≌△GEC(AAS),∴AB=GC,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=DF+CF,∵AB=5,CF=2,∴DF=AB-CF=3.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、角平分线的性质、三角形三边关系等知识点,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.例3.(2022·贵州毕节·二模)课外兴趣小组活动时,老师提出了如下问题:(1)如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考帮小明完成解答过程.(2)如图2,AD 是△ABC 的中线,BE 交AC 干E ,交AD 于F ,且AE =EF .请判昕AC 与BF 的数量关系,并说明理由.【答案】(1)见解析(2)AC =BF ,理由见解析【解析】(1)解:如图,延长AD 到点E ,使DE =AD ,连接BE ,在△ADC 和△EDB 中∵AD DE ADC EDB CD DB =ìïÐ=Ðíï=î,∴△ADC ≌△EDB (SAS ).∴BE =AC =3.∵AB -BE <AE <AB +BE ∵2<AE <8.∵AE =2AD ∴1<AD <4.(2)AC =BF ,理由如下:延长AD 至点G ,使GD =AD ,连接BG ,在△ADC 和△GDB 中,AD DG ADC GDB BD CD =ìïÐ=Ðíï=î,∴△ADC ≌△GDB (SAS ).∴BG =AC ,∠G =∠DAC ..∵AE =EF ∴∠AFE =∠FAE . ∴∠DAC =∠AFE =∠BFG ∴∠G =∠BFG ∴BG =BF ∴AC =BF .【点睛】本题考查全等三角形判定与性质,三角形三边的关系,作辅助线:延长AD 到点E ,使DE =AD ,构造全等三角形是解题的关键.例4.(2022·山东·安丘市一模)阅读材料:如图1,在ABC V 中,D ,E 分别是边AB ,AC 的中点,小亮在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE 到点F ,使EF DE =,连接CF ,证明ADE CFE V V ≌,再证四边形DBCF 是平行四边形即得证.类比迁移:(1)如图2,AD 是ABC V 的中线,E 是AC 上的一点,BE 交AD 于点F ,且AE EF =,求证:AC BF =.小亮发现可以类比材料中的思路进行证明.证明:如图2,延长AD 至点M ,使MD FD =,连接MC ,……请根据小亮的思路完成证明过程.方法运用:(2)如图3,在等边ABC V 中,D 是射线BC 上一动点(点D 在点C 的右侧),连接AD .把线段CD 绕点D 逆时针旋转120°得到线段DE ,F 是线段BE 的中点,连接DF 、CF .请你判断线段DF 与AD 的数量关系,并给出证明.【答案】(1)证明见解析;(2)2AD DF =,证明见解析【分析】(1) 延长AD 至M ,使MD FD =,连接MC ,证明BDF CDM △≌△,结合等角对等边证明即可.(2) 延长DF 至点M ,使DF FM=,连接BM 、AM ,证明(SAS)ABM ACD △≌△,△ABM 是等边三角形,代换后得证.【详解】(1)证明:延长AD 至M ,使MD FD =,连接MC .在BDF V 和CDM V 中,BD CD BDF CDM DF DM =ìïÐ=Ðíï=î,∴BDF CDM △≌△,∴MC BF =,M BFM Ð=Ð,∵AE EF =,∴EAF EFA Ð=Ð,∵EFA BFM Ð=Ð,∴M MAC Ð=Ð,∴AC MC =,∴AC BF =.(2)线段DF 与AD 的数量关系为:2AD DF =.证明如下:延长DF 至点M ,使DF FM =,连接BM 、AM ,如图2所示:∵点F 为BE 的中点,∴BF EF=在BFM V 和EFD △中,∵BF EF BFM EFD FM DF =ìïÐ=Ðíï=î,∴(SAS)BFM EFD △≌△∴BM DE =,MBF DEF Ð=Ð,∴BM DE∥∵线段CD 绕点D 逆时针旋转120°得到线段DE∴CD DE BM ==,120Ð=°BDE ,∴18012060MBD Ð=-=°°°∵ABC V 是等边三角形∵AB AC =,60ABC ACB Ð=Ð=°,∴6060120ABM ABC MBD ÐÐа°=+=+=°∵180********ACD ACB Ð=°-Ð=°-°=°,∴ABM ACDÐ=Ð在ABM V 和ACD △中,∵AB AC ABM ACD BM CD =ìïÐ=Ðíï=î,∴(SAS)ABM ACD △≌△∴AM AD =,BAM CAD Ð=Ð,∴60MAD MAC CAD MAC BAM BAC ÐÐÐÐÐÐ=+=+==°∴AMD V 是等边三角形,∴2==AD DM DF .【点睛】本题考查了等边三角形的判定和性质,三角形全等的判定和性质,熟练掌握等边三角形的判定和性质,三角形全等的判定和性质是解题的关键.模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。
玩转“截长补短”——突破中考数学压轴题截长补短【方法说明】遇到求证线段和差及倍半关系时,可以尝试截长补短的方法.截长指在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短指将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.题目中常见的条件有等腰三角形(即两条边相等),或角平分线(即两个角相等),通过截长补短后,并连接一些点,构造全等得出最终结论.【方法归纳】1.如图,若要求证AB+BD=AC,可以在线段AC上截取线段AB′=AB,并连接DB,证明B′C=BD即可;或延长AB至点C′使得AC′=AC,并连接BC′,证明BC′=BD即可.2.如图,若要求证AB+CD=BC,可以在BC上截取线段BF=AB,再证明CD=CF即可;或延长BA至点F,使得BF=BC,再证明AF=CD即可.图(1)图(2)3.在一个对角互补的四边形中,有一组邻边(AB=AD)相等,可以使用补短的方法延长另外两边的一条,构建全等三角形.【典型例题】(2009广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.(1)若AG=AE,证明:AF=AH;(2)若∠FAH=45°,证明:AG+AE=FH;(3)若Rt△GBF的周长为1,求矩形EPHD的面积.【思路点拨】(1)证明AF=AH,因此先连接AH、AF.证明线段相等可考虑三角形全等的方法,观察发现只要证明Rt△ADH≌Rt△ABF(或Rt△AGH≌Rt△AEF)即可;(2)证明AG+AE=FH这种线段和的问题,可以考虑截长补短,发现在FH上截取的方法不好证明,可以考虑补短的方法.本题可以考虑把AG+AE转化为DH+BF,延长延长CB至点M,使得BM=DH,然后证明MF=FH即可;(3)由于矩形EPHD的边长并不知道,可以采用设未知数的方式,本题可以设ED=x,DH=y,则S矩形EPHD=xy,根据Rt△GBF的周长为1,即可找到x与y的关系并求出面积.【解题过程】解:(1)连接AH、AF.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∵ADHG与ABFE都是矩形,∴DH=AG,AE=BF,又∵AG=AE,∴DH=BF.在Rt△ADH与Rt△ABF中,∵AD=AB,∠D=∠B=90°,DH=BF,∴Rt△ADH≌Rt△ABF,∴AF=AH.(2)【方法一】延长CB至点M,使得BM=DH,并连接AM,FH.∵四边形ABCD是正方形,∴AD=AB,∠D=∠B=90°.∴∠D=∠ABM=90°,∴△ABM≌△ADH,∴AM=AH,∠MAB=∠DAH.∵∠FAH=45°,∴∠MAF =∠BAF+∠MAB=∠BAF+∠DAH=90°-45°=45°=∠FAH又∵AF=AF,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.【方法二】将△ADH绕点A顺时针旋转90°到△ABM的位置.在△AMF与△AHF中,∵AM=AH,AF=AF,∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,∴△AMF≌△AHF.∴MF=HF.∵MF=MB+BF=HD+BF=AG+AE,∴AG+AE=FH.(3)设ED=x,DH=y,则GB=AB-AG=1-y,BF=BC-BF =1-x,∴在Rt△GBF中,GF2=GB2+BF2=(1-y)2+(1-x)2,∵Rt△GBF的周长为1,∴GF=1-GB-BF=1-(1-x)-(1-y)=x+y-1,∴(x+y-1)2=(1-y)2+(1-x)2得xy=1/2,∴矩形EPHD的面积S=ED·DH= xy=1/2.。
中考数冲刺几何题型专项突破专题一截长补短证明线段和差倍分问题【知识总结】1、补短法:通过添加辅助线构造”一条线段使其为求证中的两条线段之和,在证所构造的线段和求证中那一条线段相等;2、截长法:通过添加辅助线先在求证中长线段上截取与线段中的某一段相等的线段,在证明截剩部分与线段中的另一段相等。
3、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明,这种做法一般遇到证明三条线段之间关系是常用.如图1,若证明线段AB,CD,EF之间存在EF=AB+CD,可以考虑截长补短法截长法:如图2,在EF上截取EG=AB,在证明GF = CD即可;补短法:如图3,延长AB至H点,使BH=CD,再证明AH = EF即可.【类型】一、截长截长”是指在较长的线段上截取另外两条较短的线段,截取的作法不同,涉及四种方法。
方法一:如图2所示,在BF上截取BM=DF,易证△BM OA DFC ( SAS),则MC=FC=FG , △ BCM^ DCF ,可得△ MCF为等腰直角三角形,又可证△ CFE=45 , △ CFG=90 ,△ CFGS MCF, Fg CM,可得四边形CGFM为平行四边形,则CG=MF , 于是BF=BM+MF=DF+CG.图2方法二:如图2所示,在BF上截取FM=GC,可证四边形GCFM为平行四边形,可得CM=FG=CF ;可得△ BFC=\ BDC=45 ,得△ MCF=90 ;于是△ BM OA DFC (AAS ), BM=DF ,又得△ BMC^DFC=135于是BF=FM+BM=CG+DF.上述两种方法中都利用了两个共顶点的等腰Rt△ BCD和厶MCF。
方法三:如图3所示,在BF上截取FK=FD,得等腰Rt△ DFK,可证得△ DFC=\ KFG=135 ,所以△ DFCX A KFG(SAS),所以KG=DC=BC ,△FKG=A FDC=A CBF,KGA BC,得四边形BCGK 为平行四边形,BK=CG ,于是BF=BK+KF=CG+DF.方法四:如图3所示,在BF上截取BK=CG ,可得四边形BCGK为平行四边形,BC=GK=DC , BC A KG ,△GKF=A CBF=A CDF,根据四边形BCFD为圆的内接四边形,可证得△ BFC=45,△ DFC=\ KFG,于是△ DCFX A KGF (AAS),DF=KF,于是BF=BK+KF=CG+DF.上述两种方法中都利用了两个共顶点的等腰Rt△ BDC 和^ KDF。
截长补短
针对题型:证明三条线段长度的“和”或“差”及其比例关系。
要求:从动态图形中寻找线段间的和差关系,熟练掌握转化思想。
常见类型及常规解题思路:
① a b c ±= 可采取直接截长或补短,绕后进行证明。
或者化为类型②证明。
② a b kc ±= 可以将a b ±与c 构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30的直角三角形等。
截长法常规辅助线:
(1)过某一点作长边的垂线
(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。
…… 补短法常规辅助线: (1)延长短边。
(2)通过旋转等方式使两短边拼合到一起。
……
例题演练:
1.如图,AD BC ∥,点E 在线段AB 上,ADE CDE ∠=∠,DCE BCE ∠=∠。
求证:CD AD BC =+。
2.如图示,在ABC ∆中,AD 平分BAC ∠,且2C B ∠=∠。
求证:AB AC CD =+。
A
D
B
C
E
D
C
B A 12
3.如图所示。
已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且2BAE DAM ∠=∠。
求证:AE BC CE =+。
4.如图示,点M ,N 在等边三角形ABC 的AB 边上运动,BD DC =,120BAD ∠=,
60MDN ∠=,求证:MN MB NC =+。
5.如图,在正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AF 平分DAE ∠,求证:AE EC CD =+
M E
D C
B
A
F
E D
C B A。