高中数学平面向量-综合测试题
- 格式:doc
- 大小:80.44 KB
- 文档页数:3
第二章综合检测题考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中正确的是( D ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →[解析] 起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0.2.如右图,a -b 等于( C )A .2e 1-4e 2B .-4e 1-2e 2C .e 1-3e 2D .3e 1-e 2[解析] a -b =e 1-3e 2.3.设O ,A ,M ,B 为平面上四点,OM →=λOB →+(1-λ)OA →,且λ∈(1,2),则( B ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线[解析] OM →=λOB →+OA →-λOA →,所以OM →-OA →=λ(OB →-OA →),AM →=λAB →,由λ∈(1,2)可知,A ,B ,M 三点共线,且B 在线段AM 上.4.已知a 、b 、c 分别是△ABC 三个内角A 、B 、C 的对边,b =7,c =3,B =π6,那么a 等于( C )A .1B .2C .4D .1或4[解析] 在△ABC 中,b =7,c =3,cos B =32,由余弦定理有b 2=a 2+c 2-2ac cos B ,即7=a 2+3-3a ,解得a =4或a =-1(舍去).故a 的值为4.5.已知向量a =(1,2),b =(-2,3),c =(4,5),若(a +λb )⊥c ,则实数λ=( C ) A .-12B .12C .-2D .2[解析] a +λb =(1,2)+(-2λ,3λ) =(1-2λ,2+3λ),由(a +λb )⊥c ,可得(1-2λ)×4+(2+3λ)×5=0,解得λ=-2.6.在△ABC 中,已知sin 2A +sin 2B -sin A sin B =sin 2C ,且满足ab =4,则该三角形的面积为(D )A .1B .2C . 2D . 3[解析] 由sin 2A +sin 2B -sin A sin B =sin 2C ,得a 2+b 2-ab =c 2,cos C =a 2+b 2-c 22ab =12.∵C ∈(0°,180°),∴C =60°. ∴sin C =32,∴S △ABC =12ab sin C = 3. 7.在△ABC 中,B =60°,C =45°,BC =8,D 为BC 上一点,且BD →=3-12BC →,则AD 的长为⎝ ⎛⎭⎪⎫sin 75°=6+24( C )A .4(3-1)B .4(3+1)C .4(3-3)D .4(3+3)[解析] 由题意知∠BAC =75°,根据正弦定理,得AB =BC sin 45°sin 75°=8(3-1),因为BD →=3-12BC →,所以BD =3-12BC .又BC =8,所以BD =4(3-1).在△ABD 中,AD =AB 2+BD 2-2AB ·BD ·cos 60° =4(3-3).故选C .8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(PA →+PB →)·PC →的最小值是( D )A .2B .0C .-1D .-2[解析] 由平行四边形法则得PA →+PB →=2PO →,故(PA →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2),则(PA →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1].∵0≤t ≤2,∴当t =1时,(PA →+PB →)·PC →取得最小值-2,故选D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)9.设向量a ,b 满足:|a |=3,|b |=4,a ·b =0,以a ,b ,a -b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数可以是( ABC )A .0或1B .2或3C .4D .6[解析] 由题意可知该三角形为直角三角形,其内切圆半径恰好为1,它与半径为1的圆的公共点个数可能为0个,1个,2个,3个,4个,故选ABC .10.已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为( AB ) A .m (a -b )=m a -m b B .(m -n )a =m a -n a C .若m a =m b ,则a =bD .若m a =n a ,则m =n[解析] 对于A 和B 属于数乘对向量与实数的分配律,正确;对于C,若m =0,则不能推出a =b ,错误;对于D,若a =0,则m ,n 没有关系,错误.故选AB .11.对于△ABC ,有如下命题,其中正确的有( ACD ) A .若sin 2A =sin 2B ,则△ABC 为等腰三角形 B .若sin A =cos B ,则△ABC 为直角三角形 C .若sin 2A +sin 2B +cos 2C <1,则△ABC 为钝角三角形D .若AB =3,AC =1,B =30°,则△ABC 的面积为34或 32[解析] 对于A,sin 2A =sin 2B ,∴A =B ⇒△ABC 是等腰三角形;对于B,由sin A =cos B ,∴A -B =π2或A +B =π2.∴△ABC 不一定是直角三角形,B 错误;对于C,sin 2A +sin 2B <1-cos 2C=sin 2C ,∴a 2+b 2<c 2,∴△ABC 为钝角三角形,C 正确;对于D,如图所示,由正弦定理,得sin C =c ·sin B b =32.而c >b ,∴C =60°或C =120°,∴A =90°或A =30°,∴S △ABC =12bc sin A =32或34,D 正确.故选ACD .12.给出下列四个命题,其中正确的选项有( ABC )A .非零向量a ,b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角是30°B .若(AB →+AC →)·(AB →-AC →)=0,则△ABC 为等腰三角形C .若单位向量a ,b 的夹角为120°,则当|2a +x b |(x ∈R )取最小值时x =1D .若OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34[解析]A 中,令OA →=a ,OB →=b .以OA →,OB →为邻边作平行四边形OACB . ∵|a |=|b |=|a -b |,∴四边形OACB 为菱形,∠AOB =60°,∠AOC =30°,即a 与a +b 的夹角是30°,故A 正确;B 中,∵(AB →+AC →)·(AB →-AC →)=0,∴|AB →|2=|AC →|2,故△ABC 为等腰三角形,故B 正确;C 中,∵(2a +x b )2=4a 2+4x a ·b +x 2b 2=4+4x cos 120°+x 2=x 2-2x +4=(x -1)2+3,故|2a +x b |取最小值时x =1.故C 正确;D 中,∵BA →=OA →-OB →=(3,-4)-(6,-3)=(-3,-1),BC →=OC →-OB →=(5-m ,-3-m )-(6,-3)=(-1-m ,-m ),又∠ABC 为锐角,∴BA →·BC →>0,即3+3m +m >0,∴m >-34.又当BA →与BC →同向共线时,m =12,故当∠ABC 为锐角时,m 的取值范围是m >-34且m ≠12,故D 不正确.故选ABC .三、填空题(本大题共4小题,每小题5分,共20分)13.已知a ,b 为单位向量,且a ·b =0,若c =2a -5b ,则cos 〈a ,c 〉= 23.[解析] 由题意,得cos 〈a ,c 〉=a ·2a -5b|a |·|2a -5b |=2a 2-5a ·b|a |·|2a -5b |2=21×4+5=23. 14.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a|=1,则|a|2+|b|2+|c|2的值是 4 .[解析] 由于a ⊥b ,由此画出以a ,b 为邻边的矩形ABCD ,如图所示,其中,AD →=a ,AB →=b ,∵a +b +c =0,∴CA →=c ,BD →=a -b .∵(a -b )⊥c ,∴矩形的两条对角线互相垂直,则四边形ABCD 为正方形. ∴|a |=|b |=1,|c |=2,|a|2+|b|2+|c|2=4.15.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sin B = 217,c = 3 . [解析] 由正弦定理,得a sin A =b sin B ,∴7sin 60°=2sin B ,得sin B =217,由余弦定理,得cos A =b 2+c 2-a 22bc =4+c 2-74c =12,解得c =3.16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知(a +b -c )·(a +b +c )=3ab ,且c =4,则△ABC 面积的最大值为 4 3 .[解析] (a +b -c )(a +b +c )=(a +b )2-c 2=a 2+2ab +b 2-c 2=3ab ,∴a 2+b 2-c 2=ab . 又∵a 2+b 2-c 2=2ab cos C , ∴2ab cos C =ab ,∴cos C =12,∵C ∈(0,π),∴C =π3.由余弦定理,得c 2=a 2+b 2-2ab cos C ,∴16=a 2+b 2-2ab cos π3=a 2+b 2-ab ≥2ab -ab =ab ,∴ab ≤16.∴△ABC 面积的最大值S =12ab sin C ≤12×16×sin π3=4 3.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a ,b 满足b =(1,3),a ·b =4,(a -2b )⊥a . (1)求向量a 与b 的夹角; (2)求|2a -b |的值;(3)若向量c =3a -4b ,d =m a +b ,c ∥d ,求m 的值.[解析] (1)因为(a -2b )⊥a ,所以(a -2b )·a =0,|a |2=8,即|a |=2 2.设向量a 与b 的夹角为θ,则cos θ=b ·a |b ||a |=22,又θ∈[0,π],所以θ=π4.(2)由向量模的计算公式|a |=a ·a ,得|2a -b |=2a -b2=4|a |2-4a ·b +|b |2=32-16+4=2 5.(3)因为c ∥d ,所以c =λd ,设3a -4b =λ(m a +b ),则⎩⎪⎨⎪⎧3=λm ,-4=λ,解得m =-34.18.(本小题满分12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1).(1)求以线段AB ,AC 为邻边的平行四边形的两条对角线的长; (2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值. [解析] (1)AB →=(3,5),AC →=(-1,1),求两条对角线的长即求|AB →+AC →|与|AB →-AC →|的大小.由AB →+AC →=(2,6),得|AB →+AC →|=210,由AB →-AC →=(4,4),得|AB →-AC →|=4 2.∴以线段AB ,AC 为邻边的平行四边形的两条对角线的长分别为210和4 2. (2)OC →=(-2,-1),∵(AB →-tOC →)·OC →=AB →·OC →-tOC →2, 易求AB →·OC →=-11,OC →2=5, ∴由(AB →-tOC →)·OC →=0得t =-115.19.(本小题满分12分)(2021·新高考全国卷Ⅰ)记△ABC 内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .[解析] (1)由BD sin ∠ABC =a sin C 得,BD =a sin C sin ∠ABC ,在△ABC 中由正弦定理知:csin C=bsin ∠ABC ,即sin C sin ∠ABC =cb,∴BD =acb,又b 2=ac ,∴BD =b . (2)由题意知:BD =b ,AD =2b 3,DC =b3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3=13b 29-c 24b 23,同理cos ∠BDC =b 2+b 29-a 22b ·b 3=10b 29-a22b 23, ∵∠ADB =π-∠CDB ,∴cos ∠ADB =-cos ∠BDC ,即13b 29-c 24b 23=a 2-10b 292b 23, 整理得2a 2+c 2=11b 23,又b 2=ac ,∴2a 2+b 4a 2=11b 23,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2=13或a 2b 2=32,在由余弦定理知:cos ∠ABC =a 2+c 2-b 22ac =43-a 22b 2,当a 2b 2=13时,cos ∠ABC =76>1不合题意; 当a 2b 2=32时,cos ∠ABC =712; 综上,cos ∠ABC =712.20.(本小题满分12分)△ABC 是等腰直角三角形,∠B =90°,D 是边BC 的中点,BE ⊥AD ,垂足为E ,延长BE 交AC 于F ,连接DF ,求证:∠ADB =∠FDC .[解析] 如图,以B 为原点,BC 所在直线为x 轴建立直角坐标系,设A (0,2),C (2,0),则D (1,0),AC →=(2,-2).设AF →=λAC →,则BF →=BA →+AF →=(0,2)+(2λ,-2λ)=(2λ,2-2λ). 又DA →=(-1,2),BF →⊥DA →, ∴BF →·DA →=0,∴-2λ+2(2-2λ)=0, ∴λ=23.∴BF →=⎝ ⎛⎭⎪⎫43,23,DF →=BF →-BD →=⎝ ⎛⎭⎪⎫13,23.又DC →=(1,0),∴cos ∠ADB =DA →·DB →|DA →|·|DB →|=55,cos ∠FDC =DF →·DC →|DF →|·|DC →|=55,又∠ADB ,∠FDC ∈(0,π), ∴∠ADB =∠FDC .21.(本小题满分12分)如图所示,甲船以每小时30 2 n mile 的速度向正北方向航行,乙船按固定方向匀速直线航行,当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20 n mile.当甲船航行20 min 到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距10 2 n mile,问乙船每小时航行多少n mile?[解析] 如图,连接A 1B 2,由题意知A 2B 2=10 2 n mile,A 1A 2=302×2060=10 2 n mile. 所以A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°, 所以△A 1A 2B 2是等边三角形. 所以A 1B 2=A 1A 2=10 2 n mile.由题意知,A 1B 1=20 n mile,∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理,得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45°=202+(102)2-2×20×102×22=200. 所以B 1B 2=10 2 n mile.因此,乙船速度的大小为10220×60=302(n mile/h).答:乙船每小时航行30 2 n mile.22.(本小题满分12分)已知向量a =(2+sin x,1),b =(2,-2),c =(sin x -3,1),d =(1,k ),(x ∈R ,k ∈R ).(1)若x ∈⎣⎢⎡⎦⎥⎤-π2,π2,且a ∥(b +c ),求x 的值; (2)若函数f (x )=a ·b ,求f (x )的最小值;(3)是否存在实数k ,使得(a +d )⊥(b +c )?若存在,求出k 的取值范围;若不存在,请说明理由.[解析] (1)∵b +c =(sin x -1,-1),又a ∥(b +c ), ∴-(2+sin x )=sin x -1,即sin x =-12.又x ∈⎣⎢⎡⎦⎥⎤-π2,π2, ∴x =-π6.(2)∵a =(2+sin x,1),b =(2,-2), ∴f (x )=a ·b =2(2+sin x )-2=2sin x +2.又x∈R,∴当sin x=-1时,f(x)有最小值,且最小值为0.(3)∵a+d=(3+sin x,1+k),b+c=(sin x-1,-1),若(a+d)⊥(b+c),则(a+d)·(b+c)=0,即(3+sin x)(sin x-1)-(1+k)=0,∴k=sin2x+2sin x-4=(sin x+1)2-5.由sin x∈[-1,1],∴-5≤(sin x+1)2-5≤-1,得k∈[-5,-1].∴存在k∈[-5,-1],使得(a+d)⊥(b+c).。
2024全国高考真题数学汇编平面向量及其应用章节综合一、单选题1.(2024全国高考真题)已知向量,a b满足1,22a a b ,且2b a b ,则b ()A .12B C .2D .12.(2024全国高考真题)已知向量(0,1),(2,)a b x ,若(4)b b a,则x ()A .2B .1C .1D .23.(2024全国高考真题)设向量 1,,,2a x x b x,则()A .“3x ”是“a b”的必要条件B .“3x ”是“//a b”的必要条件C .“0x ”是“a b”的充分条件D .“1x ”是“//a b”的充分条件4.(2024全国高考真题)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,若π3B ,294b ac ,则sin sin A C ()A .13B .13C .2D .135.(2024北京高考真题)设a ,b 是向量,则“·0a b a b”是“a b 或a b ”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题6.(2024上海高考真题)已知 ,2,5,6,k a b k R ,且//a b ,则k 的值为.7.(2024天津高考真题)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC u u r u u r u u u r ,则;F 为线段BE 上的动点,G 为AF 中点,则AF DG的最小值为.三、解答题8.(2024天津高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ,.(1)求a ;(2)求sin A ;(3)求 cos 2B A 的值.9.(2024全国高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A .(1)求A .(2)若2asin sin 2C c B ,求ABC 的周长.10.(2024北京高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A 为钝角,7a ,sin 2cos B B .(1)求A ;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b ;条件②:13cos 14B;条件③:sin c A 注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.11.(2024全国高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B ,222a b c (1)求B ;(2)若ABC 的面积为3c .参考答案1.B【分析】由2b a b 得22b a b,结合1,22a a b ,得22144164a b b b ,由此即可得解.【详解】因为 2b a b ,所以20b a b ,即22b a b,又因为1,22a a b ,所以22144164a b b b ,从而2b .故选:B.2.D【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为 4b b a ,所以40b b a,所以240b a b即2440x x ,故2x ,故选:D.3.C【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【详解】对A ,当a b 时,则0a b,所以(1)20x x x ,解得0x 或3,即必要性不成立,故A 错误;对C ,当0x 时, 1,0,0,2a b ,故0a b,所以a b,即充分性成立,故C 正确;对B ,当//a b时,则22(1)x x ,解得1x ,即必要性不成立,故B 错误;对D ,当1x 时,不满足22(1)x x ,所以//a b不成立,即充分性不立,故D 错误.故选:C.4.C【分析】利用正弦定理得1sin sin 3A C ,再利用余弦定理有22134a c ac ,由正弦定理得到22sin sin A C 的值,最后代入计算即可.【详解】因为29,34B b ac,则由正弦定理得241sin sin sin 93A C B .由余弦定理可得:22294b ac ac ac ,即:22134a c ac,根据正弦定理得221313sin sin sin sin 412A C A C ,所以2227(sin sin )sin sin 2sin sin 4A C A C A C,因为,A C 为三角形内角,则sin sin 0A C ,则sin sin A C .故选:C.5.B【分析】根据向量数量积分析可知0a b a b 等价于a b,结合充分、必要条件分析判断.【详解】因为220a b a b a b ,可得22a b ,即a b ,可知0a b a b 等价于a b ,若a b 或a b ,可得a b ,即0a b a b,可知必要性成立;若0a b a b ,即a b,无法得出a b 或a b ,例如 1,0,0,1a b,满足a b ,但a b 且a b ,可知充分性不成立;综上所述,“0a b a b”是“a b 且a b ”的必要不充分条件.故选:B.6.15【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】//a b ,256k ,解得15k .故答案为:15.7.43518【分析】解法一:以,BA BC 为基底向量,根据向量的线性运算求BE,即可得 ,设BF BE k u u u r u u r ,求,AF DG u u u r u u u r ,结合数量积的运算律求AF DG 的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得 ,设 1,3,,03F a a a,求,AF DG u u u r u u u r ,结合数量积的坐标运算求AF DG 的最小值.【详解】解法一:因为12CE DE ,即13CE BA ,则13BE BC CE BA BC u u u r u u r u u u u r r u u u r ,可得1,13,所以43;由题意可知:1,0BC BA BA BC,因为F 为线段BE 上的动点,设 1,0,13BF k BE k BA k BC k,则113AF AB BF AB k BE k BA k BC,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC,可得11111113232AF DG k BA k BC k BA k BC22111563112329510k k k k,又因为 0,1k ,可知:当1k 时,AF DG 取到最小值518;解法二:以B为坐标原点建立平面直角坐标系,如图所示,则 11,0,0,0,0,1,1,1,,13A B C D E,可得 11,0,0,1,,13BA BC BE,因为 ,BE BA BC 131,所以43 ;因为点F 在线段1:3,,03BE y x x 上,设 1,3,,03F a a a,且G 为AF 中点,则13,22a G a ,可得 131,3,,122a AF a a DG a,则 22132331522510a AF DG a a a,且1,03a,所以当13a 时,AF DG 取到最小值为518 ;故答案为:43;518 .8.(1)4(3)5764【分析】(1)2,3a t c t ,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【详解】(1)设2,3a t c t ,0t ,则根据余弦定理得2222cos b a c ac B ,即229254922316t t t t ,解得2t (负舍);则4,6a c .(2)法一:因为B 为三角形内角,所以sin 16B ,再根据正弦定理得sin sin a b A B ,即4sin A sin 4A ,法二:由余弦定理得2222225643cos 22564b c a A bc ,因为 0,πA ,则sin 4A(3)法一:因为9cos 016B ,且 0,πB ,所以π0,2B,由(2)法一知sin 16B,因为a b ,则A B ,所以3cos 4A ,则3sin 22sin cos 24A A A2231cos 22cos 12148A A9157cos 2cos cos 2sin sin 216816864B A B A B A.法二:3sin 22sin cos 24A A A,则2231cos 22cos 12148A A,因为B 为三角形内角,所以sin 16B,所以 9157cos 2cos cos 2sin sin 216864B A B A B A9.(1)π6A(2)2【分析】(1)根据辅助角公式对条件sin 2A A 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A 可得1sin 122A A ,即sin()1π3A ,由于ππ4π(0,π)(,)333A A ,故ππ32A ,解得π6A方法二:常规方法(同角三角函数的基本关系)由sin 2A A ,又22sin cos 1A A ,消去sin A 得到:224cos 30(2cos 0A A A ,解得cos 2A,又(0,π)A ,故π6A方法三:利用极值点求解设()sin (0π)f x x x x ,则π()2sin (0π)3f x x x,显然π6x时,max ()2f x ,注意到π()sin 22sin(3f A A A A ,max ()()f x f A ,在开区间(0,π)上取到最大值,于是x A 必定是极值点,即()0cos sin f A A A ,即tan 3A ,又(0,π)A ,故π6A方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ,由题意,sin 2a b A A,根据向量的数量积公式,cos ,2cos ,a b a b a b a b,则2cos ,2cos ,1a b a b ,此时,0a b,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A 又(0,π)A ,故π6A方法五:利用万能公式求解设tan 2A t,根据万能公式,22sin 21t A A t整理可得,2222(2(20((2t t t ,解得tan22A t 223tan 13t A t ,又(0,π)A ,故π6A(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B ,又,(0,π)B C ,则sin sin 0B C,进而cos 2B ,得到π4B ,于是7ππ12C A B,26sin sin(π)sin()sin cos sin cos 4C A B A B A B B A,由正弦定理可得,sin sin sin a b cA B C ,即2ππ7πsin sin sin6412bc,解得b c 故ABC的周长为2 10.(1)2π3A;(2)选择①无解;选择②和③△ABC【分析】(1)利用正弦定理即可求出答案;(2)选择①,利用正弦定理得3B,结合(1)问答案即可排除;选择②,首先求出sin B 式子得3b ,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c,再利用正弦定理得到sin Csin B ,最后利用三角形面积公式即可;【详解】(1)由题意得2sin cos cos B B B,因为A 为钝角,则cos 0B,则2sin B,则7sin sin sin b a BA A,解得sin A ,因为A 为钝角,则2π3A.(2)选择①7b ,则333sin 714142B,因为2π3A ,则B 为锐角,则3B ,此时πA B ,不合题意,舍弃;选择②13cos 14B ,因为B 为三角形内角,则sin B ,则代入2sin 7B得2147,解得3b , 2π2π2πsin sin sin sin cos cos sin 333C A B B B B3131335321421414,则1153153sin 7322144ABC S ab C.选择③sin c Ac 5c ,则由正弦定理得sin sin a c A C 5sin C ,解得sin C ,因为C 为三角形内角,则11cos 14C ,则 2π2π2πsin sin sin sin cos cos sin 333B A C C C C3111533321421414,则11sin 7522144ABC S ac B △11.(1)π3B (2)【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B 得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【详解】(1)由余弦定理有2222cos a b c ab C ,对比已知222a b c ,可得222cos 222a b c C ab ab,因为 0,πC ,所以sin 0C ,从而sin2C ,又因为sin C B,即1cos2B ,注意到0,πB ,所以π3B .(2)由(1)可得π3B,cos2C ,0,πC ,从而π4C ,ππ5ππ3412A ,而5πππ1sin sin sin12462A,由正弦定理有5πππsin sin sin1234a b c,从而,a b,由三角形面积公式可知,ABC的面积可表示为21113sin222228ABCS ab C c c,由已知ABC的面积为323338c所以c。
第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,内角,A B C ,的对边分别为,,a b c ,若a =,2A B =,则cos B 等于( )D.62.已知两个单位向量a 和b 的夹角为60︒,则向量-a b 在向量a 上的投影向量为( )A.12a B.aC.12-aD.-a3.已知点(2,1),(4,2)A B -,点P 在x 轴上,当PA PB 取最小值时,P 点的坐标是( ) A.(2,0) B.(4,0)C.10,03⎛⎫ ⎪⎝⎭D.(3,0)4.已知,,A B C 为圆O 上的三点,若有OA OC OB +=,圆O 的半径为2,则OB CB =( ) A.1- B.2- C.1 D.25.已知点(4,3)A 和点(1,2)B ,点O 为坐标原点,则||()OA tOB t +∈R 的最小值为( )A. B.5 C.36.已知锐角三角形的三边长分别为1,3,a ,那么a 的取值范围为( ) A.(8,10)B.C.D.7.已知圆的半径为4,,,a b c 为该圆的内接三角形的三边,若abc =,则三角形的面积为( )A.B.8.已知向量,a b 满足(2)(54)0+⋅-=a b a b ,且1==a b ,则a 与b 的夹角θ为( )A.34π B.4π C.3π D.23π 9.已知sin 1sin cos 2ααα=+,且向量(tan ,1)AB α=,(tan ,2)BC α=,则AC 等于( )A.(2,3)-B.(1,2)C.(4,3)D.(2,3)10.在ABC △中,E F ,分别为,AB AC 的中点,P 为EF 上的任意一点,实数,x y 满足PA xPB yPC ++=0,设,,,ABC PBC PCA PAB △△△△的面积分别为123,,,S S S S ,记(1,2,3)ii S i Sλ==,则23λλ⋅取到最大值时, 2x y +的值为( )A.1-B.1C.32-D.32二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知ABC △中,角,,A B C 的对边分别为,,a b c ,且满足,3B a c π=+,则ac=( ) A.2 B.3C.12D.1312.点P 是ABC △所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC △的形状不可能是( ) A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知,12e e 是平面内的单位向量,且12⋅=12e e .若向量b 满足1⋅=⋅=12b e b e ,则=b ________.14.已知向量,a b 满足5,1==a b ,且4-a b ⋅a b 的最小值为________.15.如图,在直角梯形ABCD 中,AB DC ∥,AD DC ⊥,2DC A A B D ==,E 为AD 的中点,若CA CE DB λμ=+,则λ=________,μ=________.(本题第一空2分,第二空3分)16.如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60︒的C 处,12时20分测得轮船在海岛北偏西60︒的B 处,12时40分轮船到达位于海岛正西方且距海岛5km 的E 港口,如果轮船始终匀速直线前进,则船速的大小为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,以向量,OA OB ==a b 为邻边作OADB ,11,33BM BC CN CD ==,用,a b 表现,,OM ON MN .18.(本小题满分12分)已知ABC △的内角,,A B C 所对的边分别为,,a b c ,且2a =,3cos 5B =. (1)若4b =,求sin A 的值; (2)若4ABC S ∆=,求,b c 的值.19.(本小题满分12分)在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知sin cos 1sin 2C C C +=-, (1)求sin C 的值;(2)若ABC △的外接圆面积为(4π+,试求AC BC 的取值范围.20.(本小题满分12分)某观测站在城A 南偏西20︒方向的C 处,由城A 出发的一条公路,走向是南偏东40︒,距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时,C D 间的距离为21千米,问这人还要走多少千米可到达城A ?21.(本小题满分12分)已知正方形ABCD ,E F 、分别是CD AD 、的中点,BE CF 、交于点P ,连接AP .用向量法证明: (1)BE CF ⊥; (2)AP AB =.22.(本小题满分12分)已知向量(sin ,cos )x x =a ,sin ,sin 6x x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭b ,函数()2f x =⋅a b ,()4g x f x π⎛⎫= ⎪⎝⎭. (1)求()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最值,并求出相应的x 的值;(2)计算(1)(2)(3)(2014)g g g g ++++的值;(3)已知t ∈R ,讨论()g x 在[,2]t t +上零点的个数.第六章综合测试答案解析一、 1.【答案】B【解析】由正弦定理得sin sin a Ab B=,a ∴=可化为sin sin A B =.又sin 22sin cos 2,sin sin 2B B B A B B B =∴==,cos B ∴. 2.【答案】A【解析】由已知可得111122⋅=⨯⨯=a b ,211()122-⋅=-⋅=-=a b a a a b ,则向量-a b 在向量a 上的投影向量为()12-⋅⋅=a b a a a a . 3.【答案】D【解析】点P 在x 轴上,∴设P 上的坐标是(,0),(2,1),(4,2)x PA x PB x ∴=--=-,22(2)(4)266(3)3PA PB x x x x x ∴⋅=---=-+=--,∴当3x =时,PA PB ⋅取最小值.P ∴点的坐标是(3,0).4.【答案】D 【解析】OA OC OB +=,OA OC =,∴四边形OABC 是菱形,且120AOC ∠=︒,又圆O 的半径为2,22cos602OB CB ∴⋅=⨯⨯︒=. 5.【答案】D【解析】点(4,3),(1,2)A B ,O 为坐标原点,则(4,32)OA tOB t t +=++,22222()(4)(32)520255(2)55OA tOB t t t t t ∴+=+++=++=++≥,∴当2t =-时,等号成立,此时OA tOB +取得最小值6.【答案】B【解析】设1,3,a 所对的角分别为,,C B A ∠∠∠,由余弦定理的推论知2222222213cos 0,21313cos 0,2131cos 0,23a A a B a a C a ⎧+-=⎪⨯⨯⎪⎪+-=⎨⨯⨯⎪⎪+-=⎪⨯⨯⎩>>>即()()222100,280,680,a a a a a ⎧-⎪⎪-⎨⎪+⎪⎩>>>解得a ,故选B . 7.【答案】C【解析】设圆的半径为R ,内接三角形的三边,,a b c 所对的角分别为,,A B C .28sin sin sin a b cR A B C====,sin 8cC∴=,1sin 216ABC abc S ab C ∆∴===8.【答案】C 【解析】22(2)(54)5680+⋅-=+⋅=-a b a b a a b b ,又11,63,cos 2θ==∴⋅=∴=a b a b ,又[0,],3πθπθ∈∴=,故选C .9.【答案】D【解析】sin 1sin cos 2ααα=+,cos sin αα∴=,tan 1α∴=,(2tan ,3)(2,3)AC AB BC α∴=+==.故选D .10.【答案】D【解析】由题意可得,EF 是ABC △的中位线,P ∴到BC 的距离等于ABC △的边BC 上的高的一半,可得12323121,2S S S S λλ++===.由此可得223231216λλλλ+⎛⎫⋅= ⎪⎝⎭≤,当且仅当23S S =,即P 为EF 的中点时,等号成立.0PE PF ∴+=.由向量加法的四边形法则可得,2PA PB PE +=,2PA PC PF +=,两式相加,得20PA PB PC ++=.0PA xPB yPC ++=,∴根据平面向量基本定理,得12x y ==,从而得到322x y +=. 二、11.【答案】AC【解析】3B π=,a c +=,2222()23a c a c ac b ∴+=++=,①由余弦定理可得,2222cos3a c acb π+-=,②联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得2ac=或12a c =.故选AC .12.【答案】ACD 【解析】P 是ABC △所在平面内一点,且|||2|0PB PC PB PC PA --+-=,|||()()|0CB PB PA PC PA ∴--+-=,即||||CB AC AB =+,||||AB AC AC AB ∴-=+,两边平方并化简得0MC AB ⋅=,AC AB ∴⊥,90A ︒∴∠=,则ABC △一定是直角三角形.故选ACD .三、13.【解析】解析令1e 与2e 的夹角为θ.1cos cos 2θθ∴⋅=⋅==1212e e e e ,又0θ︒︒≤≤180,60θ∴=︒.()0⋅-=12b e e ,∴b 与,12e e 的夹角均为30︒,从而1||cos30︒=b . 14.【答案】52【解析】|4|-a b ,52⋅≥a b ,即⋅a b 的最小值为52. 15.【答案】65 25【解析】以D 为原点,DC 边所在直线为x 轴,DA 边所在直线为y 轴建立平面直角坐标系.不妨设1AB =,则(0,0),(2,0),(0,2),(1,2),(0,1)D C A B E .(2,2),(2,1),(1,2)CA CE DB =-=-=,,(2,2)(2,1)(1,2)CA CE DB λμλμ=+∴-=-+,22,22,λμλμ-+=-⎧∴⎨+=⎩解得6,52.5λμ⎧=⎪⎪⎨⎪=⎪⎩16./h【解析】轮船从C 到B 用时80分钟,从B 到E 用时20分钟,而船始终匀速前进,由此可见,4BC EB =.设EB x =,则4BC x =,由已知得30BAE ∠=︒,150EAC ∠=︒.在AEC △中,由正弦定理的sin sin EC AE EAC C=∠, sin 5sin1501sin 52AE EAC C EC x x︒∠∴===. 在ABC △中,由正弦定理得sin120sin BC ABC =︒,14sin sin120x BC C AB ⋅∴===︒. 在ABE △中,由余弦定理得22216312cos30252533BE AB AE AB AE︒=+-=+-=,故BE ∴船速的大小为/h)3BE t==. 四、 17.【答案】解:BA OA OB =-=-a b ,11153666OM OB BM OB BC OB BA ∴=+=+=+=+a b . 又OD =+a b ,222333ON OC CN OD ∴=+==+a b , 221511336626MN ON OM ∴=-=+--=-a b a b a b . 18.【答案】解:3cos 05B =>,且0B π<<, 4sin 5B ∴=. 由正弦定理得sin sin a b A B=,42sin 25sin 45a B Ab ⨯∴===. (2)1sin 42ABC S ac B ∆==, 142425c ∴⨯⨯⨯=,5c ∴=. 由余弦定理得2222232cos 25225175b ac ac B =+-=+-⨯⨯⨯=,b ∴=19.【答案】(1)解:ABC △中,由sin cos 1sin 2C C C +=-,得22sin cos 2sin sin 2222C C C C =-, sin 02C >,1cos sin 222C C ∴-=-,两边平方得11sin 4C -=,解得3sin 4C =. (2)设ABC △的外接圆的半径为R ,由(1)知sin cos 22C C >,24C π∴>, 2C π∴>,cos C ∴=. 易得2sin c R C =,22294sin (44c R C ∴==,由余弦定理得,222977(4221444c a b ab ab⎛⎫⎛⎫=+=+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,902ab ∴<≤,cos 8AC BC ab C ⎡⎫∴=∈-⎪⎢⎪⎣⎭,即AC BC 的取值范围是8⎡⎫-⎪⎢⎪⎣⎭. 20.【答案】解:如图所示,设ACD α∠=,CDB β∠=.在CBD △中,由余弦定理的推论得2222222021311cos 2220217BD CD CB BD CD β+-+-===-⨯⨯,sin 7β∴=()411sin sin 60sin cos60sin 60cos 27αβββ︒︒︒⎛⎫∴=-=-=--= ⎪⎝⎭在CBD △中,由正弦定理得21sin 60sin AD α=︒, 21sin 15sin60AD α∴==︒(千米). ∴这人还要再走15千米可到达城A .21.【答案】证明:如图,建立平面直角坐标系xOy ,其中A 为原点,不妨设2AB =,则(0,0),(2,0),(2,2),(1,2),(0,1)A B C E F .(1)(1,2)(2,0)(1,2)BE OE OB =-=-=-,(0,1)(2,2)(2,1)CF OF OC =-=-=--,(1)(2)2(1)0BE CF ∴⋅=-⨯-+⨯-=,BE CF ∴⊥,即BE CF ⊥.(2)设(,)P x y ,则(,1)FP x y =-,(2,)BP x y =-,由(1)知(2,1)CF =--,(1,2)BE =-,FP CF ∥,2(1)x y ∴-=--,即24y x =-+.同理,由BP BE ∥,即24y x =-+.22,24,x y y x =-⎧∴⎨=-+⎩解得6,58,5x y ⎧=⎪⎪⎨⎪=⎪⎩即68,55P ⎛⎫ ⎪⎝⎭. 222268455AP AB ⎛⎫⎛⎫∴=+== ⎪ ⎪⎝⎭⎝⎭, ||||AP AB ∴=,即AP AB =.22.【答案】(1)解:21()22sin sin(2sin cos sin 262f x x x x x x x π⎫=⋅=-+=+=⎪⎭a b1sin 22sin 223x x x π⎛⎫=- ⎪⎝⎭,2x ππ⎡⎤∈⎢⎥⎣⎦, 252333x πππ∴-≤≤,1sin 23x π⎛⎫∴-- ⎪⎝⎭≤,∴当3232x ππ-=,即1112x π=时,()f x 1-,当2233x ππ-=,即2x π=时,()f x(2)由(1)得()sin 23f x x π⎛⎫=-+⎪⎝⎭. ()sin 423g x f x x πππ⎛⎫⎛⎫∴==-+ ⎪ ⎪⎝⎭⎝⎭, 4T ∴=(1)(2)(3)(4)(5)(6)(7)(8)(2009)(2010)(2011)(2012)g g g g g g g g g g g g ∴+++=+++==+++.又(1)(2)(3)(4)gg g g +++=,(1)(2)(3)(2014)503(1)(2)g g g g g g ∴++++=⨯+=.(3)()g x 在[,2]t t +上零点的个数等价于sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =.在同一平面直角坐标系内作出这两个函数的图象(图略).当4443k t k +<<,k ∈Z 时,由图象可知,sin 23x y ππ⎛⎫- ⎝=⎪⎭与2y =-两图象无交点,即()g x 无零点;当44243k t k ++≤<或10444,3k t k k ++∈Z <≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =1个交点,即()g x 有1个零点;当10244,3k t k k ++∈Z ≤≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =2个交点,即()g x 有2个零点.。
第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB=OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =++C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于,BC 共线,=OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。
一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。
平面向量测试题一、选择题:1。
已知ABCD 为矩形,E 是DC 的中点,且−→−AB =→a ,−→−AD =→b ,则−→−BE =( ) (A ) →b +→a 21 (B ) →b -→a 21 (C ) →a +→b 21 (D ) →a -→b 212.已知B 是线段AC 的中点,则下列各式正确的是( )(A ) −→−AB =-−→−BC (B) −→−AC =−→−BC 21(C) −→−BA =−→−BC (D) −→−BC =−→−AC 213.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( ) (A))(21→→-b a (B) )(21→→-a b (C) →a +→b 21 (D ) )(21→→+b a4.设→a ,→b 为不共线向量,−→−AB =→a +2→b ,−→−BC =-4→a -→b ,−→−CD = -5→a -3→b ,则下列关系式中正确的是 ( ) (A )−→−AD =−→−BC (B )−→−AD =2−→−BC (C )−→−AD =-−→−BC(D )−→−AD =-2−→−BC5.将图形F 按→a =(h ,k )(其中h>0,k 〉0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。
(B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。
(C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。
(D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。
6.已知→a =()1,21,→b =(),2223-,下列各式正确的是( )(A ) 22⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛→→b a (B) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C) 1± (D) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( ) (A) 矩形 (B) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M(-2,7)、N(10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( ) (A ) 21±-(B) 12±(C ) 32±(D) 23±11.把函数2)sin(3--=πx y 的图象经过按→a 平移得到x y sin =的图象,则→a =( )(A) ()2,3π-(B ) ()2,3π(C) ()2,3--π(D ) ()2,3-π12.△ABC 的两边长分别为2、3,其夹角的余弦为31 ,则其外接圆的半径为( ) (A )229(B )429(C)829(D)922二、填空题:13.已知M 、N 是△ABC 的边BC 、CA 上的点,且−→−BM =31−→−BC ,−→−CN =31−→−CA ,设−→−AB =→a ,−→−AC =→b ,则−→−MN =14.△ABC 中,C A B cos sin sin =,其中A 、B 、C 是△ABC 的三内角,则△ABC 是三角形.三、解答题:15.ABCD 是梯形,AB ∥CD ,且AB=2CD ,M 、N 分别是DC 和AB 的中点,已知−→−AB=→a ,−→−AD =→b ,试用→a 、→b 表示−→−MN .16.设两非零向量→a 和→b 不共线,如果−→−AB =→a +→b ,−→−CD =3(→a -→b ),→→−→−+=b a BC 82,求证:A 、B 、D 三点共线。
高中数学平面向量专项测试(含答案)一、单选题(本大题共14小题,共70.0分)1. 设x R ∈,向量()(),1,1,2a x b ==-,且a b ⊥,则()a = A. 5 B. 25 C. 10 D. 102. ABC 中,点P 满足(),AP t AB AC BP AP CP AP =+⋅=⋅,则ABC 一定是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 钝角三角形 3. 若则,那么下面关于的判断正确的是() A.B. C. D.4. 若O 是ABC 所在平面内一点,且满足|||2|OB OC OB OC OA -=+-,则ABC 的形状是()A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形 5. 已知向量(2,1)a =,(,2)b x =-,若//a b ,则a b +等于() A. (2,1)-- B. (2,1) C. (3,1)- D. (3,1)- 6. 已知||1a =,||2b =,且()a a b ⊥-,则向量a 与向量b 的夹角为()A. 6πB. 4πC. 3πD. 23π 7. 已知向量a ,b 满足||1a =,2b =,5a b -=,则2()a b -=A. 2B. 5C. 6D. 258. 已知向量(1,2)a =,(,4)b x =-,若//a b ,则a b ⋅等于() A. 10- B. 6- C. 0 D. 69. 已知O 为正ABC 内的一点,且满足(1)0OA OB OC λλ+++=,若OAB 的面积与OBC 的面积的比值为3,则λ的值为()A. 12B. 52C. 2D. 3 10. 已知下面四个命题:①0AB BA +=;②AB BC AC +=;③AB AC BC -=;④00.AB ⋅=其中正确的个数为()A. 1个B. 2个C. 3个D. 4个11. 已知向量(1,)a k =,(2,2)b =,且a b +与a 共线,那么k 的值为()A. 1B. 2C. 3D. 412. 已知菱形ABCD 的边长为a ,60ABC ∠=︒,则()BD CD ⋅=A. 232a -B. 234a -C. 234a D. 232a13. 如图,平行四边形ABCD 中,E 是BC 的中点,F 是AE 的中点,若AB a =,AD b =,则()AF =A. 1124a b -B. 1142a b + C. 1124a b +D. 14二、多选题(本大题共2小题,共10.0分)14. 已知(3,1)a =-,(1,2)b =-,则正确的有()A. 5a b ⋅=B. 与a 共线的单位向量是31010(,)1010-C. a 与b 的夹角为4πD. a 与b 平行15. 下列命题中正确的是()A. 若a b =,则32a b >B. BC BA DC AD --=C. 若向量,a b 是非零向量,则||||||a b a b a +=+⇔与b 方向相同D. 若//a b ,则存在唯一实数λ使得a b λ=三、单空题(本大题共8小题,共40.0分)16. 已知1e →,2e 是平面单位向量,且1212e e →⋅=,若平面向量b 满足121b e b e →⋅=⋅=,则||b =______. 17. 已知向量(2,1),(3,2),a b ==-若()(2),a b a b λ+⊥-则λ= ______.18. 在Rt OAB ∆中,90O ∠=︒,13OE OA =,23OF OB =,连接AF ,BE 相交于点M ,若OM OA OB λμ=+,则_____.λμ+=19. 已知向量a ,b ,||3a =,2a b ⋅=,则()a a b ⋅-=______ .20. 在边长为2正三角形ABC 中,D 为BC 边中点,则AD =______________21. 已知点(4,1)A ,(1,5)B ,则与向量AB 共线的单位向量为__________.22. 如图,11AB C ∆,122C B C ∆,233C B C ∆是三个边长为1的等边三角形,且有一条边在同一直线上,边33B C 上有2个不同的点1P ,2P ,则()212AB AP AP ⋅+=______.23. 已知1e ,2e 是平面单位向量,且,若平面向量b 满足121b e b e ⋅=⋅=,则||b =________.四、解答题(本大题共5小题,共60.0分) 24. 已知点(0,0)O ,(1,2)A ,(4,5)B 及OP OA t AB =+⋅,试问:(1)当t 为何值时,P 在x 轴上.(2)若OB OP ⊥,求t 的值25. 已知向量,,向量与夹角为,(1)求;(2)求在的方向上的投影.26. 已知||4a =,||3b =,()()23261.a b a b -⋅+= (1)求a 与b 的夹角θ;(2)求||a b +和||a b -27. 已知||4a =,||3b =,(23)(2)61.a b a b -⋅+=(1)求a 与b 的夹角θ;(2)求||a b +;答案和解析1.【答案】A解:因为a b ⊥ ,所以()1120x ⨯+⨯-=,解得2x =, 因此22215a →=+=2.【答案】B【解析】试题分析:设D 是BC 中点,由()AP t AB AC =+可得点P 在三角形ABC 的中线AD 所在直线上.再由BP AP CP AP ⋅=⋅,可得AP BC ⊥,从而得到三角形ABC 的边BC 上的中线与高线重合,可得三角形ABC 是等腰三角形.()AP t AB AC =+,设D 是BC 中点,则2AB AC AD +=,2AP t AD ∴=⋅,故点P 在三角形ABC 的中线AD 所在直线上.BP AP CP AP ⋅=⋅,()0AP BP CP ∴⋅-=,即0AP BC ⋅=,即.AP BC ⊥即AP BC ⊥,故三角形ABC 的边BC 上的中线与高线重合,所以,三角形ABC 是等腰三角形,其中AB AC =,3.【答案】B4.【答案】B5.【答案】A解:根据题意,向量(2,1)a =,(,2)b x =-,若//a b ,则有12(2)x ⋅=⋅-,即4x =-,即(4,2)b =--,则(2,1)a b +=--,6.【答案】B解:()a a b ⊥-;()0a a b ⋅-=;11cos ,0a b ∴-<>=; 2cos ,2a b ∴<>=; ∴向量a 与b 的夹角为.4π 7.【答案】A解:向量a ,b 满足||1a =,||2b =,a b →→-=可得22221425a b a b a b a b →→→→→→→→-=+-⋅=+-⋅=,解得0a b ⋅=, 所以2222448a b a b a b →→→→→→-=+-⋅=,所以2a b →→-=8.【答案】A 解:向量(1,2)a =,(,4)b x =-,//a b ,420x ∴--=, 2.x ∴=-则82810a b x ⋅=-=--=-,9.【答案】C解:(1)0OA OB OC λλ+++=, 变为()0.OA OC OB OC λ+++=如图,D ,E 分别是对应边的中点,由平行四边形法则知()2,2OA OC OE OB OC OD λλ+=+=,故OE OD λ=-①,//DE AB ,在正三角形ABC 中, 1111133263OBC AOB ABC ABC BEC S S S S S ==⨯==,且OBC 与BEC 同底边BC ,故O 点到底边BC 的距离等于E 到底边BC 的距离的三分之一,2OE OD ∴=-,由①②得 2.λ=10.【答案】C解:对于①,AB 与BA 是互为相反向量,0AB BA ∴+=,正确;对于②,根据向量的三角形合成法则知AB BC AC +=,正确;对于③,根据向量的减法法则知AB AC CB -=,AB AC BC ∴-=错误;对于④,根据平面向量数量积的定义知00AB ⋅=正确.综上,正确的命题是①②④.11.【答案】A解:(1,)a k =,(2,2)b =,(3,2)a b k ∴+=+,又a b +与a 共线,1(2)30k k ∴⨯+-=,解得: 1.k =12.【答案】D 解:菱形ABCD 的边长为a ,60ABC ∠=︒, 22BA a ∴=,21cos602BA BC a a a ⋅=⋅⋅︒=, ()BD CD BA BC CD ∴⋅=+⋅, 2BA BA BC =+⋅, 23.2a = 13.【答案】C解:由已知E 是BC 的中点,F 是AE 的中点, 则111222BE BC AD b ===,12AF AE =, 因为12AE AB BE AB BC =+=+,BC AD b ==, 则1122AE AB AD a b =+=+, 所以11111.22224AF AE a b a b ⎛⎫==+=+ ⎪⎝⎭14.【答案】AC解:A :31(1)(2)5a b ⋅=⨯+-⨯-=,A ∴正确,B :22||3(1)10a =+-=,∴与a 共线的单位向量为31010(,)1010-或31010(,)1010-,B ∴错误, C :22||3(1)10a =+-=,22||1(2)5b =+-=,cos a ∴<,522||||105a b b a b ⋅>===⋅⋅, a <,[0,]b π>∈,a ∴<,4b π>=,C ∴正确,D :3(2)(1)1⨯-≠-⨯,a ∴ 与b 不平行,D ∴错误,15.【答案】BC解:向量不能比较大小,所以A 不正确;BC BA DC BC CD AB BD AB AD --=++=+=,所以B 正确;若向量,a b 是非零向量,则||||||a b a b a +=+⇔与b 方向相同,所以C 正确;若//a b ,当0b ≠时,则存在唯一实数λ使得a b λ=,所以D 不正确.16.【答案】233解:1e →,2e 是平面单位向量,且1212e e →⋅=,1e →∴,2e 夹角为60︒,向量b 满足121b e b e →⋅=⋅=b ∴与1e →,2e 夹角相等,且为锐角,b ∴应该在1e ,2e 夹角的平分线上,即b <,1e b →>=<,230e >=︒,||1cos301b ⨯⨯︒=,23||3b ∴= 17.【答案】29解:向量(2,1)a =,(3,2)b =-,且2a b a b λ→→→→⎛⎫⎛⎫+⊥- ⎪ ⎪⎝⎭⎝⎭,()()1,3,243,22a b a b λλλ→→→→+=--=+-, 4366290λλλ--+-=-=,解得29λ=, 18.【答案】57解: 如下图,因为13OE OA =,23OF OB =, 所以32OM OA OB OA OF λμλμ→→→→→=+=+,3OM OA OB OE OB λμλμ→→→→→=+=+, 又 A ,M ,F 和B ,M ,E 三点共线,所以31231λμλμ⎧+=⎪⎨⎪+=⎩, 解得1747λμ⎧=⎪⎪⎨⎪=⎪⎩,所以5.7λμ+= 19.【答案】7解:向量a ,b ,||3a =,2a b ⋅=,则2()927.a a b a a b ⋅-=-⋅=-=20.解:边长为2的等边ABC , ||2AB →∴=,2AC →=,,60AB AC →→=︒, ()12AD AB AC =+ 2222AB AC AB AB AC AC →→→→→→∴+=+⋅+ 4222cos604=+⨯⨯⨯︒+ 444=++12.= ()1 3.2AD AB AC =+= 21.【答案】34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭解:(4,1)A ,(1,5)B ,()3,4.AB ∴=-(5AB ∴=-=,∴与向量AB 共线的单位向量是()1343,4,.555ABAB ⎛⎫±=±-=±- ⎪⎝⎭ 22.【答案】9解:由图可知,2330B AC ∠=︒,又2260AC B ∠=︒,222AB B C ∴⊥,又2233//B C B C ,233AB B C ∴⊥,2330AB C B ∴⋅=;2122331332()[()()]AB AP AP AB AC C P AC C P ∴⋅+=⋅+++,2323323233AB AC AB mC B AB AC AB nC B =⋅+⋅+⋅+⋅,232AB AC =⋅,23cos30=⨯︒,9.=23.【答案】2解: 12,e e →→ 是平面单位向量,且121,2e e →→=-, 则12,e e →→的夹角为120︒,因为平面向量 b → 满足121b e b e →→→→⋅=⋅= , 所以 b →与12,e e →→夹角相等,且为锐角,则b →应该在12,e e →→夹角的平分线上,即12,,60b e b e →→→→==︒,1cos 601b →⨯⨯︒= 则2b →=,24.【答案】解:由已知可得(1,2)OA =,(3,3)AB =,所以(13,23)OP OA t AB t t =+⋅=++,(1)当P 在x 轴上时,230t +=,解得23t =-; (2)若OB OP ⊥,则若0OB OP ⋅=,所以4(13)5(23)0t t +++=,即14270t +=,解得14.27t =- 25.【答案】解:(1)2(2)348a b →→⋅=⨯-+⨯=,a →==b →==cos 65a ba b θ→→→→⋅∴==⋅(2)b →在a →的方向上的投影为cos 6513b θ→==26.【答案】解:(1)(23)(2)61a b a b →→→→-⋅+=, 2244361a a b b →→→→∴-⋅-=,||4a →=,||3b →=,2244443cos 3361θ∴⨯-⨯⨯-⨯=, ∴解得1cos 2θ=-,120θ∴=︒ ;222(2)||216243cos120913a b a a b b →→→→→→+=+⋅+=+⨯⨯︒+=,||a b →→∴+=∴同理可得||a b →→-=27.【答案】解:(1)由(23)(2)61a b a b -⋅+=, 得2244361a a b b -⋅-=,将||4a =,||3b =,代入,整理得6a b ⋅=-; 61(2)cos 432||||a b a b θ⋅-===-⨯, 又0θπ,所以23πθ=,2222||243a b a a b b +=+⋅+=+。
高中数学平面向量习题五篇篇一:高中数学平面向量练习题一.填空题。
1. +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________. 3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a|=1,|b|=2,(a+b)⊥(2a-b),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为120,且|a|=2,|b|=5,则(2a-b )·a=______ 10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是 .14.将圆222=+y x 按向量v=(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2+的模; (2)试求向量与的夹角; (3)试求与垂直的单位向量的坐标.2.已知向量a=(θθcos ,sin )(R ∈θ),b=(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底 (2)求|a -b|的取值范围3.已知向量a、b是两个非零向量,当a+tb(t∈R)的模取最小值时,(1)求t的值(2)已知a、b共线同向时,求证b与a+tb垂直4. 设向量)2,11,3(-=,向量垂直于向量,向量平行于,=(),试求OD=时+的坐标.OAOCOD,5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=若存在不同时为零的实数k 和t,使.,,)3(2t k t ⊥+-=-+=且 (1)试求函数关系式k=f (t ) (2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)3.74.90°(21,321).6.73.7.(-3,2). 8.-2 9.1210.3111.0 12. 90° 13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),=(2-1,5-0)=(1,5). ∴ 2+=2(-1,1)+(1,5)=(-1,7). ∴ |2AB +|=227)1(+-=50.(2)∵ ||=221)1(+-=2.||=2251+=26,·AC =(-1)×1+1×5=4.∴ cos=||||AC AB ⋅=2624⋅=13132.(3)设所求向量为m =(x ,y ),则x 2+y 2=1. ①又 =(2-0,5-1)=(2,4),由⊥,得2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线∴33tan 0cos 3sin 3=⇒=-θθθ故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -=∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a+tb)18.解:设020),,(=-=⋅∴⊥=x y OB OC OB OC y x OC ①又0)1()2(3)2,1(,//=+---+=x y y x 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y hx x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立,得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2), 由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x .由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y . 解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即 ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即(2)由f(t)>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即篇二:高中数学平面向量习题及答案第二章 平面向量 一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .与共线 B .与共线 C .与相等 D .与相等2.下列命题正确的是( ). A .向量与是两平行向量 B .若a ,b 都是单位向量,则a =bC .若=,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足,其中R 1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是( ).A .6πB .3πC .23πD .56π5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C),则=( ).(第1题)A .λ(+),λ∈(0,1)B .λ(+),λ∈(0,22) C .λ(-),λ∈(0,1)D .λ(-BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则=( ). A .+ B .- C .+D .+7.若平面向量a 与b 的夹角为60°,|b|=4,(a +2b)·(a -3b)=-72,则向量a 的模为( ). A .2B .4C .6D .128.点O 是三角形ABC 所在平面内的一点,满足OA ·OB =OB ·OC =OC ·OA ,则点O 是△ABC 的( ). A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点9.在四边形ABCD 中,=a +2b ,=-4a -b ,C =-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( ). A .平行四边形B .矩形C .梯形D .菱形10.如图,梯形ABCD 中,|AD |=|BC |,EF ∥AB ∥CD 则相等向量是( ). A .AD 与BC B .OA 与OB C .AC 与BD D .EO 与OF二、填空题11.已知向量OA =(k ,12),OB =(4,5),OC =(-k ,10),且A ,B ,C 三点(第10题)共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,||=4,||=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a +c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λ(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,求证:AF ⊥DE(利用向量证明).20.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b|的最大值.(第19题)参考答案 一、选择题 1.B解析:如图,与,与不平行,与共线反向. 2.A解析:两个单位向量可能方向不同,故B 不对.若=,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对. 3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3)OA =(3)OB =(3)OAOB =(33),∴ (x ,y)=(33),∴⎩⎨⎧βαβα33+=-=y x1,由此得到答案为D . 4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a2-2a ·b =0,(b -2a)·b =b2-2a ·b =0,∴ a2=b2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴ a 与b 的夹角是3π.(第1题)5.A解析:由平行四边形法则,+=,又+=,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵=,∴=+=+.(第6题)7.C解析:由(a+2b)·(a-3b)=-72,得a2-a·b-6b2=-72.而|b|=4,a·b=|a||b|cos 60°=2|a|,∴ |a|2-2|a|-96=-72,解得|a|=6.8.D解析:由OA·OB=OB·OC=OC·OA,得OA·OB=OC·OA,即OA·(OC-OB)=0,故BC·OA=0,BC⊥OA,同理可证AC⊥OB,∴ O是△ABC的三条高的交点.9.C解析:∵AD=++C=-8a-2b=2BC,∴∥BC且||≠|BC|.∴四边形ABCD为梯形.10.D解析:AD与BC,AC与BD,OA与OB方向都不相同,不是相等向量.二、填空题11.-32.解析:A ,B ,C 三点共线等价于,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k)=-7(-k -4),∴ k =-32.12.-1.解析:∵ M(-1,3),N(1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或 ∴ x =-1. 13.-25.解析:思路1:∵ 3=4,5,∴ △ABC 为直角三角形且∠ABC =90°,即⊥,∴·=0, ∴ ·BC +BC ·CA +CA · =·+· =CA ·(BC +) =-(CA )2=-25.思路2:∵3=4=5,∴∠ABC =90°,∴ cos ∠CAB53,cos ∠BCA=54.根据数积定义,结合图(右图)知·=0,BC ·CAcos ∠ACE =4×5×(-54)=-16, CA ·cos ∠BAD =3×5×(-53)=-9.∴ ·+·+·=0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5). ∵ (a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0 m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于点E ,则OF =OA +OC ,又 OA +OC =-OB , ∴ =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.(第15题)D(第13题)解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y),则=(x ,y)-(2,3)=(x -2,y -3).+λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)=(3,1)+λ(5,7) =(3+5λ,1+7λ). ∵ AP =+λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.=(47,2).解析:∵ A(7,8),B(3,5),C(4,3),=(-4,-3),=(-3,-5).又 D 是BC 的中点,∴ =21(+AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4).又 M ,N 分别是AB ,AC 的中点,(第18题)∴ F 是AD 的中点,∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). 19.证明:设=a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b)·(b -21a)=21b2-21a2+43a ·b .又AB ⊥,且,∴ a2=b2,a ·b =0.∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos 3π-cos θsin 3π)=8sin(θ-3π),最大值为8,∴ |2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b 终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第19题)篇三:平面向量练习题精心汇编选择题:1.已知平行四边形ABCD ,O 是平行四边形ABCD 所在平面内任意一点,=,=,=,则向量等于 ( )A .++B .+-C .-+D .--2.已知向量a 与b 的夹角为120o,3,13,a ab =+=则b等于( )(A )5 (B )4 (C )3 (D )13.设a ,b 是两个非零向量.下列正确的是( ) A .若|a +b|=|a|-|b|,则a ⊥b B .若a ⊥b ,则|a +b|=|a|-|b|C .若|a +b|=|a|-|b|,则存在实数λ,使得b =λ aD .若存在实数λ,使得b =λa ,则|a +b|=|a|-|b|高☆考♂资♀源€网 4.已知→a =(sin θ,1+cos θ),→b =(1,1-cos θ),其中θ∈(π,3π2),则一定有 ( )A .→a ∥→bB .→a ⊥→bC .→a 与→b 夹角为45°D .|→a |=|→b | 5.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sin π12x 的图象上,实数λ=( ) A .52 B .32C .-52D .-326. 已知∈Z k ,(,1),(2,4)==AB k AC ,若≤10AB ABC 是直角三角形的概率为( )A .17B .27C .37D .477.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭ C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭8.在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足−→−=−→−PM AP 2,则()PA PB PC ⋅+等于( )(A )49 (B )43 (C )43- (D) 49-9.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =10.△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB = a , CA = b ,a= 1 ,b= 2, 则CD =( )(A )13a + 23b (B )23a +13b (C )35a +45b (D )45a +35b11.已知||2||0a b =≠,且关于x 的方程2||0x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是 ( )A.[0,6π]B.[,]3ππC.2[,]33ππD.[,]6ππ12. 设非零向量a =)2,(x x ,)2,3(x b -=,且b a ,的夹角为钝角,则x 的取值范围是( )(A ))(0,∞- (B )) ⎝⎛0,34 (C ))(0,∞- ) ⎝⎛0,34(D )⎝⎛⎪⎭⎫-∞-31, ) ⎝⎛-0,31 )⎝⎛∞+,3413.已知点O 、N 、P 在三角形ABC 所在平面内,且==,0=++NC NB NA ,则PB PA ∙=∙=∙则点O 、N 、P 依次是三角形ABC 的( )(A )重心、外心、垂心 (B )重心、外心、内心 (C )外心、重心、垂心 (D )外心、重心、内心14.设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b += 15.(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有( ) A 、1个 B 、2个 C 、3个 D 、4个填空题:16.四边形ABCD 中,()()()1,2,4,1,5,3AB BC CD ==--=--则四边形ABCD 的形状是17.已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____ 18.已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________19.若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA-=+-,则ABC的形状为_ ___20若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0P A B P C P ++=,设||||AP PD λ=,则λ的值为__21下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③2()a b →→-2||a →=22||||||a b b →→→-⋅+;④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a bc b ⋅=⋅则a c =;⑥22a a=;⑦2a bba a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+。
第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知平面向量(1,2)=-a ;(1,0)=b ,则向量3+a b 等于()A .(2,6)-B .(2,6)--C .(2,6)D .(2,6)-2.化简:AB DC CB --=uu u r uuu r uur()A .ADuuu rB .ACuuu r C .DA uu u r D .DBuu u r 3.下列说法中正确的是()A .若AB DC =uu u r uuu r,则,,,A B C D 四点构成一个平行四边形B .零向量与单位向量的模相等C .若a 和b 都是单位向量,则=a b 或=-a bD .零向量与任何向量都共线4.在四边形ABCD 中,设,,AB AD BC ===a b c uu u r uuu r uu u r ,则DC uuu r等于()A .-+a b cB .()-+b a cC .++a b cD .-+b a c5.已知平面内两点(2,1),(5,3)A B -,则与向量AB uu u r同向的单位向量是()A .34,55⎛⎫- ⎪⎝⎭B .34,55⎛⎫ ⎪⎝⎭C .43,55⎛⎫ ⎪⎝⎭D .43,55⎛⎫- ⎪⎝⎭6.在ABC △中,AD 为BC 边上的中线,点E 为AD 的中点,则EB =uu r()A .1344AB AC -uu ur uuu r B .3144AB AC -uu ur uuu r C .1344AB AC +uu ur uuu r D .3144AB AC +uu ur uuu r 7.如图所示,P Q 、是ABC △的边BC 上的两点,且BP QC =uu r uuu r ,则化简AB AC AP AQ +--uu u r uuu r uu u r uuu r的结果为()A .0B .BP uurC .PQ uu u rD .PCuu u r 8.过ABC △内一点M 任作一条直线l ,再分别过顶点,A B C ,作l 的垂线,垂足分别为,D E F ,,若AD BE CF ++=0uuu r uur uu u r恒成立,则点M 是ABC △的()A .垂心B .重心C .外心D .内心9.已知,,O A B 是平面内的三个点,直线AB 上有一点C ,满足0AB AC +=uu u r uuu r ,则OC =uuu r()A .2OA OB -uur uu u r B .2OA OB -+uur uu u rC .2133OA OB -uu r uu ur D .1133OA OB-+uu r uu ur 10.在直角梯形ABCD 中,AB AD ⊥,DC AB ∥,2AD DC ==,4AB =,E F 、分别为AB 、BC 的中点,P 为以A 为圆心,AD 为半径的圆弧DE 的中点(如图所示).若AP AF ED λμ=+uu u r uu u r uu u r,其中,λμ∈R ,则λμ-的值是()A .24B .324C D .34二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.下列命题中不正确的是()A .两个有共同始点且相等的向量,其终点可能不同B .若非零向量AB uu u r 与CD uuur 共线,则A B C D 、、、四点共线C .若非零向量a 与b 共线,则=a bD .四边形ABCD 是平行四边形,则必有AB CD=uu u r uu u r12.下列说法中正确的是()A .模相等的两个向量是相等向量B .若230OA OB OC ++=uur uu u r uuu r,,AOC ABC S S V V 分别表示AOC △,ABC △的面积,则:1:6AOC ABC S S =V V C .两个非零向量,a b ,若-=+a b a b ,则a 与b 共线且反向D .若∥a b ,则存在唯一实数入使得λ=a b三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.已知点O 固定,且2OA =uur,则A 点构成的图形是________.14.已知点O 为四边形ABCD 所在平面内一点,且向量,,,OA OB OC OD uu r uu u r uuu r uuu r 满足等式OA OC OB OD +=+uur uuu r uu u r uuu r,则四边形ABCD 的形状一定为________.15.设向量a ,b 不平行,向量14λ+a b 与-+a b 平行,则实数λ=________.16.如图,在长方形ABCD 中,,M N 分别为线段,BC CD 的中点,若()1212,MN AM BN λλλλ=+∈R uuu r uuu r uuu r,则12λλ+的值为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知向量(1,2),(3,1)==-a b .(1)求与2+a b 同向的单位向量e ;(2)若向量113,3⎛⎫=-- ⎪⎝⎭c ,请以向量,a b 为基底表示向量c .18.(12分)已知平面内的三个向量(3,2),(1,2),(4,1)==-=a b c .(1)若(,)c λμλμ=+∈R a b ,求λμ+的值;(2)若向量k +a b 与向量2-b c 共线,求实数k 的值.19.(12分)如图,在OCB △中,点A 是BC 的中点,点D 是靠近点B 将OB 分成2:1的一个内分点,DC和OA 交于点E ,设OA =a uu r ,OB =b uu u r.(1)用,a b 表示向量,OC DC uuu r uuu r;(2)若OE OA λ=uu u r uu r,求λ的值.20.(12分)已知向量(,)x y =u 与向量(,2)y y x =-v 的对应关系用()f =v u 表示.(1)设(1,1),(1,0)==a b ,求向量()f a 与()f b 的坐标;(2)求使()(,)f p q =c (,p q 为常数)的向量c 的坐标;(3)证明:对任意的向量,a b 及常数,m n 恒有()()()f m n mf nf +=+a b a b 成立.21.(12分)已知(2,4),(3,1),(3,4)A B C ----,设AB =a uu u r ,BC =b uu u r ,CA =c uu r.(1)求33+-a b c 的值;(2)求满足m n =+a b c 的实数,m n 的值;(3)若线段AB 的中点为M ,线段BC 的三等分点为N (点N 靠近点B ),求MN uuu r.22.(12分)如图,已知河水自西向东流,流速为01m /s v =,设某人在静水中游泳的速度为1v ,在水中的实际速度为2v.v=,求他实际前进方向与水流方向的夹角α和2v的大小;(1)若此人朝正南方向游去,且1m/sv,求他游泳的方向与水流方向的夹角β和1v的大小.(2)若此人实际前进方向与水流垂直,且2m/s第六章综合测试答案解析一、1.【答案】A【解析】因为(1,2)=-a ,所以3(3,6)=-a ,又因为()1,0=b ,所以3(31,60)(2,6)+=-++=-a b ,故选A .2.【答案】A【解析】AB DC CB AB BC CD AD --=++=uu u r uuu r uu r uu u r uu u r uu u r uuu r,故选A .3.【答案】D【解析】对于选项A ,,,,A B C D 四点可能共线,故A 不正确;对于选项B ,零向量的模为0,单位向量的模为1,不相等,故B 不正确;对于选项C ,因为a 和b 都是单位向量,所以a b =,但它们的方向是任意的,故C 不正确;对于选项D ,零向量与任何向量都共线,故D 正确.故选D .4.【答案】A【解析】因为四边形ABCD 中,AB =a uu u r ,AD =b uuu r ,=BC c uu u r ,所以DC AC AD AB BC AD =-=+-=-+a b c uuu r uuu r uuu r uu u r uu u r uuu r,故选A .5.【答案】B【解析】因为两点(2,1)A -,(5,3)B ,所以()3,4AB =uu u r,所以34(3,4),55||AB AB ⎛⎫== ⎪⎝⎭uu u ruu u r ,所以与向量AB uu u r 同向的单位向量为34,55⎛⎫⎪⎝⎭,故选B .6.【答案】B【解析】因为在ABC △中,AD 为BC 边上的中线,点E 为AD 的中点,所以11131()22244EB AB AE AB AD AB AB AC AB =-=-=-⨯+=-uu r uu u r uu u r uu u r uuu r uu u r uu u r uuu r uu u r uuu r,故选B .7.【答案】A【解析】因为BP QC =uu r uuu r ,所以0PB QC +=uu r uuu r,所以()()=0AB AC AP AQ AB AP AC AQ PB QC +--=-+-=+uu u r uuu r uu u r uuu r uu u r uu u r uuu r uuu r uu r uuu r,故选A .8.【答案】B【解析】因为过ABC △内一点M 任作一条直线l ,可将此直线特殊为过点A ,则0AD =uuu r ,则0BE CF +=uur uu u r恒成立如图:则有直线AM 经过BC 的中点,同理可得直线BM 经过AC 的中点,直线CM 经过AB 的中点,所以点M 是ABC △的重心,故选B .9.【答案】A【解析】由向量的运算法则可得AB OB OA =-uu u r uu u r uu r ,AC OC OA =-uuu r uuu r uu r,又0AB AC +=uu u r uuu r ,则()()0OB OA OC OA -+-=uu u r uu r uuu r uu r,即2OB OC OA +=uu u r uuu r uu r ,即2OC OA OB =-uuu r uu r uu u r ,故选A .10.【答案】A【解析】因为P 为以A 为圆心,AD 为半径的圆弧DE 的中点,所以2AP AD AE ===uu u r uuu r uu u r,45DAP EAP ∠=∠=︒,所以2222AP AE AD =+uu u r u r uuur ,因为在直角梯形ABCD 中,AB AD ⊥,DC AB ∥,2AD DC ==,4AB =,E F 、分别为AB BC 、的中点,所以易证得四边形BCDE 为平行四边形,故ED AD AE =-uu u r uuu r uu u r,11312222AF AB BF AB BC AB AE =+=+=+=+uuu r uu u r uu u r uu u r uu u r uu u r uu ur uu u r uuu r ,若AP AF ED λμ=+uu u r uuu r uu u r ,则3131()222222AE AD AE AD AD AE AE AD λμλμλμ⎛⎫⎛⎫⎛⎫+=++-=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭uu u r uuu r uu u r uuu r uuu r uu u r uu u r uuu r ,即3,221,22λμλμ=-⎪⎪⎪=+⎪⎩解得,24λμ⎧=⎪⎪⎨⎪=⎪⎩故24λμ-=,故选A .二、11.【答案】ABC【解析】A 中,相等向量的始点相同,则终点一定也相同,所以A 中命题不正确;B 中,向量AB uu u r 与CD uu ur 共线,只能说明AB uu u r 、CD uu ur 方所在直线平行或在同一条直线上,所以B 中命题不正确;C 中,向量a 与b 共线,说明a 与b 方向相同或相反,a 与b 不一定相等,所以C 中命题不正确;D 中,因为四边形ABCD 是平行四边形,所以AB uu u r 与CD uu u r 是相反向量、所以AB CD =uu u r uu u r,所以D 中命题正确、故选ABC .12.【答案】BC【解析】相等向量是大小相等、方向相同的向量,向量的模相等,但方向不一定相同,故A 选项错误;设AC的中点为M ,BC 的中点为D ,因为230OA OB OC ++=uu r uu u r uuu r ,所以2220OM OD ⨯+=uuu r uuu r ,即2OM OD =-uuu r uuu r ,所以O 是线MD 上靠近点M 的三等分点,可知O 到AC 的距离等于D 到AC 距离的13,而B 到AC 的距离等于D 到AC 距离的2倍,故可知O 到AC 的距离等于B 到AC 距离的16,根据三角形面积公式可知B 选项正确;C 选项中,当a 与b 共线且反向时,可知-=+a b a b 成立,当a 与b 不共线或共线方向相同时,结论不成立,故C 选项正确;D 选项错误,例如0=b .故选BC .三、13.【答案】圆【解析】因为2OA =uu r,所以点A 到点O 的距离为2,故A 点构成的图形是以点O 为圆心、2为半径的圆。
高一数学必修4《平面向量》测试卷(含答案)(word版可编辑修改) 高一数学必修4《平面向量》测试卷内容。
(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修4《平面向量》测试卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修4《平面向量》测试卷(含答案)(word版可编辑修改)的全部《平面向量》测试卷考试时间:120分钟 满分:150分一。
选择题。
(本大题共12小题,每小题5分,共60分) 1.对于任意向量a b 和,下列命题中正确的是( ) A.若,a b 满足a b >,且a b 与同向,则a b > B 。
a b a b +≤+C 。
a b a b ⋅≥D 。
a b a b -≤-2。
已知平面向量(1,1),(1,1)a b ==-,则向量1322a b -等于( ) A 。
(2,1)--B 。
(2,1)- C.(1,0)- D 。
(1,2)-3.下列各组向量中,可以作为基底的是( )A.12(0,0),(1,2)e e ==- B 。
12(1,2),(5,7)e e =-= C.12(3,5),(6,10)e e == D 。
1213(2,3),(,)24e e =-=-4.已知5,28,3()AB a b BC a b CD a b =+=-+=-,则( ) A 。
A B D 、、三点共线 B.A B C 、、三点共线 C.B C D 、、三点共线 D.A C D 、、三点共线 5。
已知正方形ABCD 的边长为1,,,,AB a BC b AC c ===则a b c ++等于( )A 。
综合素养评价(一)平面向量与正、余弦定理1.已知向量a =(1,-2),b =(m,4),且a ∥b ,那么2a -b 等于( )A .(4,0)B .(0,4)C .(4,-8)D .(-4,8)解析:选C 由a ∥b 知4+2m =0,所以m =-2,2a -b =(2,-4)-(m,4)=(2-m ,-8)=(4,-8).2.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a·b =3,则b 等于 ( )A.32,12B . 12,32C.14,334 D .(1,0)解析:选B 设b =(x ,y ),其中y ≠0, 则a·b =3x +y = 3.由x 2+y 2=1,3x +y =3,y ≠0,解得x =12,y =32,即b =12,32.故选B.3.在△ABC 中,若a =52b ,A =2B ,则cos B 等于( )A.53 B .54C.55D.56解析:选B 由正弦定理,得a b =sin Asin B ,∴a =52b 可化为sin A sin B =52.又A =2B ,∴sin 2B sin B =52,∴cos B =54. 4.已知向量a =(m -1,1),b =(m ,-2),则“m =2”是“a ⊥b ”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 当m =2时,a =(1,1),b =(2,-2), 所以a·b =(1,1)·(2,-2)=2-2=0,所以a ⊥b ,充分性成立;当a ⊥b 时,a·b =(m -1,1)·(m ,-2)=m (m -1)-2=0,解得m =2或m =-1,必要性不成立.所以“m =2”是“a ⊥b ”的充分不必要条件. 5.在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,c =2a ,b sin B -a sin A =12a sin C ,则sin B 的值为 ( )A.223 B .34C.74D.13解析:选C 由正弦定理,得b 2-a 2=12ac ,又c =2a ,所以b 2=2a 2,所以cos B =a 2+c 2-b 22ac =34,所以sin B =74. 6.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC ―→|=22,且∠AOC =π4,设OC ―→= λOA ―→+OB ―→(λ∈R ),则λ的值为( ) A .1 B .13C.12D. 23解析:选D过C 作CE ⊥x 轴于点E .由|OC ―→|=22,且∠AOC =π4,得|OE |=|CE |=2,所以OC ―→=OE―→+ OB ―→=λOA ―→+OB ―→,即OE ―→=λOA ―→, 所以(-2,0)=λ(-3,0),故λ=23.7.在△ABC 中,三个顶点的坐标分别为A (3,t ),B (t ,-1),C (-3,-1),若△ABC 是以B 为直角顶点的直角三角形,则t =________.解析:由已知,得BA ―→·BC ―→=0,则(3-t ,t +1)·(-3-t,0)=0,∴(3-t )(-3-t )=0,解得t =3或t =-3,当t =-3时,点B 与点C 重合,舍去.故t =3. 答案:38.已知e 为一个单位向量,a 与e 的夹角是120°.若a 在e 上的投影为-2e ,则|a |=________. 解析:∵|a |·cos 120°=-2, ∴|a |× -12=-2,∴|a |=4. 答案:49.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c2b,sin B =74,S △ABC =574,则b 的值为________.解析:由sin A sin B =5c 2b ⇒a b =5c 2b ⇒a =52c .① 由S △ABC =12ac sin B =574且sin B =74得12ac =5.②联立①②得a =5,且c =2. 由sin B =74且B 为锐角知cos B =34,由余弦定理知b 2=25+4-2×5×2×34=14,b =14.答案:1410.已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN―→=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN ―→的坐标.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)因为m b +n c =(-6m +n ,-3m +8n ),所以 -6m +n =5,-3m +8n =-5,解得m =-1,n =-1.(3)设O 为坐标原点,因为CM ―→=OM ―→-OC ―→=3c , 所以OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20), 所以M (0,20).又因为CN ―→=ON ―→-OC ―→=-2b , 所以ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), 所以N (9,2).所以MN ―→=(9,-18).11.(2020·新高考全国卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________?解:方案一,选条件①.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c.由①ac=3,解得a=3,b=c=1.因此,选条件①时问题中的三角形存在,此时c=1. 方案二,选条件②.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c,B=C=π6,A=2π3.由②c sin A=3,解得c=b=23,a=6.因此,选条件②时问题中的三角形存在,此时c=2 3. 方案三:选条件③.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c.由③c=3b,与b=c矛盾.因此,选条件③时问题中的三角形不存在.12.已知△ABC的内角A,B,C的对边分别为a,b,c,a2-ab-2b2=0.(1)若B=π6,求A,C;(2)若C=2π3,c=14,求S△ABC.解:(1)由已知B=π6,a2-ab-2b2=0结合正弦定理化简整理得2sin2A-sin A-1=0,于是sin A=1或sin A=-12(舍去).因为0<A<π,所以A=π2.又A+B+C=π,所以C=π-π2-π6=π3.(2)由题意及余弦定理可知a2+b2+ab=196.①由a2-ab-2b2=0,得(a+b)(a-2b)=0.因为a+b>0,所以a-2b=0,即a=2b.②联立①②解得b=27,a=47.所以S△ABC=12ab sin C=14 3.。
平面向量高考经典试题一、选择题1.(全国1文理)已知向量(5,6)a =-,(6,5)b =,则a 与bA .垂直B .不垂直也不平行C .平行且同向D .平行且反向解.已知向量(5,6)a =-,(6,5)b =,30300a b ⋅=-+=,则a 与b 垂直,选A 。
2、(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( )A .1B .2C .2D .4【答案】:C 【分析】:2(3,)n -a b =,由2-a b 与b 垂直可得:2(3,)(1,)303n n n n ⋅-=-+=⇒=±, 2=a 。
3、(广东文4理10)若向量,a b 满足||||1a b ==,,a b 的夹角为60°,则a aab ⋅+⋅=______;答案:32;解析:1311122a a ab ⋅+⋅=+⨯⨯=,4、(天津理10) 设两个向量22(2,cos )a λλα=+-和(,sin ),2mb m α=+其中,,m λα为实数.若2,a b =则mλ的取值范围是(A.[6,1]-B.[4,8]C.(,1]-∞D.[1,6]-【答案】A【分析】由22(2,cos )a λλα=+-,(,sin ),2mb m α=+2,a b =可得2222cos 2sin m m λλαα+=⎧⎨-=+⎩,设k m λ=代入方程组可得22222cos 2sin km m k m m αα+=⎧⎨-=+⎩消去m 化简得2222cos 2sin 22k k k αα⎛⎫-=+ ⎪--⎝⎭,再化简得22422cos 2sin 022k k αα⎛⎫+-+-= ⎪--⎝⎭再令12t k =-代入上式得222(sin 1)(16182)0t t α-+++=可得2(16182)[0,4]t t -++∈解不等式得1[1,]8t ∈--因而11128k -≤≤--解得61k -≤≤.故选A5、(山东理11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是(A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=【答案】:C.【分析】: 2()00AC AC AB AC AC AB AC BC =⋅⇔⋅-=⇔⋅=,A 是正确的,同理B 也正确,对于D 答案可变形为2222CD AB AC BC ⋅=⋅,通过等积变换判断为正确.6、(全国2 理5)在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则λ=(A)32(B)31(C) -31(D) -32 解.在∆ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD =CB CA λ+31,则22()33CD CA AD CA AB CA CB CA =+=+=+-=1233CA CB +,4 λ=32,选A 。
平面向量 综合测试题
(时间:120分钟 满分:150分)
学号:______ 班级:______ 姓名:______ 得分:______
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 向量a ,b ,c ,实数λ,下列命题中真命题是( )
A .若a ·b =0,则a =0或b =0
B .若λ a =0,则λ=0或a =0
C .若a 2=b 2,则a =b 或a =-b
D .若a ·b =a ·c ,则b =c
2.已知向量a =(1,0)与向量b =(-1,3),则向量a 与b 的夹角是( )
A.π6
B.π3
C.2π3
D.5π6
3. 设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( )
A.PA →+PB →=0
B.PC →+PA →=0
C.PB →+PC →=0
D.PA →+PB →+PC →=0
4.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n
=( )
A .-2
B .2
C .-12 D.12 5.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( )
A .4
B .3
C .2
D .0
6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152
C .-322
D .-3152
7. 已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x +a ·b =0有实根,则a 与b 的夹角的取值范围是( )
A .[0,π6
] B .[π3,π] C .[π3,2π3] D .[π6
,π] 8. 已知向量a ,b 满足|a |=1,(a +b )·(a -2b )=0,则|b |的取值范围为( )
A .[1,2]
B .[2,4]
C.⎣⎢⎡⎦⎥⎤14,12
D.⎣⎢⎡⎦
⎥⎤12,1 9. 下列命题中正确的个数是( )
①若a 与b 为非零向量,且a ∥b ,则a +b 必与a 或b 的方向相同;
②若e 为单位向量,且a ∥e ,则a =|a |e ;
③a ·a ·a =|a |3;
④若a 与b 共线,又b 与c 共线,则a 与c 必共线;
⑤若平面内有四点A ,B ,C ,D ,则必有AC →
+BD →=BC →+AD →. A .1
B .2
C .3
D .4
10.已知向量a =(x +1,1),b =(1,y -2),且a ⊥b ,则x 2+y 2的最小值为( )
A.13
B.23
C.12 D .1
11.若向量a ,b 满足:|a |=1,(a +b )⊥a ,(2a +b )⊥b ,则|b |=( )
A .2 B. 2 C .1 D.22
12.设a ,b 是两个非零向量,下列结论一定成立的是( )
A .若|a +b |=|a |-|b |,则a ⊥b
B .若a ⊥b ,则|a +b |=|a |-|b |
C .若|a +b =|a |-|b |,则存在实数λ,使得a =λb
D .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |
二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上 )
13.已知向量a =(2,1),a ·b =10,|a +b |=5 2,则|b |等于________.
14.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.
15.已知向量a ,b 满足|a |=1,b =(2,1),且λ a +b =0(λ∈R),则|λ|=________.
16.在△ABC 中,若∠A =120°,AB →·AC →=-1,则|BC →|的最小值是________.
三、解答题(本大题共6小题,共60分.解答题应写出文字说明,证明过程或演算步骤)
17.(10分)已知O 、A 、B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC →+CB →
=0r ,
(1)用OA →、OB →表示OC →
;
(2)若点D 是OB 的中点,证明四边形OCAD 是梯形.
18.(10分)设a ,b 是不共线的两个非零向量.
(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b ,求证:A ,B ,C 三点共线.
(2)若AB →=a +b ,BC →=2a -3b ,CD →=2a -k b ,且A ,C ,D 三点共线,求k 的值.
19.(10分)已知向量a =(3,2),b =(-1,2),c =(4,1).
(1)求3a +b -2c ;
(2)求满足a =m b +n c 的实数m ,n ;
(3)若(a +k c )∥(2b -a ),求实数k .
20.(10分)已知在△ABC 中,A (2,-1),B (3,2),C (-3,-1),AD 为BC 边上的高,
求点D 的坐标与|AD →
|.
21.(10分)已知|a |=2|b |=2,且向量a 在向量b 的方向上的投影为-1,求
(1)a 与b 的夹角θ;
(2)(a -2b )·b .
22.(10分)已知a =( 3,-1),b =12⎛ ⎝⎭,且存在实数k 和t ,使得x =a +(t 2-
3)b ,y =-k a +t b ,且x ⊥y ,试求k +t 2t
的最小值.。