三维空间中的分形
- 格式:ppt
- 大小:1.40 MB
- 文档页数:36
[转载]分形---⾃相似性原⽂地址:分形---⾃相似性作者:凯分形, 简单的讲就是指系统具有“⾃相似性”和“分数维度”。
所谓⾃相似性即是指物体的(内禀)形似,不论采⽤什么样⼤⼩的测量“尺度”,物体的形状不变。
如树⽊不管⼤⼩形状长得都差不多, 即使有些树⽊从来也没见过, 也会认得它是树⽊;不管树枝的⼤⼩如何,其形状都具有⼀定的相似性。
所谓分形的分数维, 是相对于欧⽒⼏何中的直线、平⾯、⽴⽅⽽⾔的, 它们分别对应整数⼀、⼆、三维,当然分数维度“空间”不同于⼈们已经习惯的整数维度空间,其固有的逻辑关系不同于整数维空间中的逻辑关系。
说起来⼀般⼈可能不相信,科学家发现海岸线的长度是不可能(准确)测量的,对⼀个⾜够⼤的海岸线⽆论采⽤多么⼩的标尺去测量其长度发现该海岸长度不趋于⼀个确定值!⽤数学语⾔来描述即是海岸线长度与测量标尺不是⼀维空间的正⽐关系,⽽是指数关系,其分形维是1.52;有理由相信海岸线的形状与这个分数维有内在关系。
⾃相似性⼜揭⽰了⼀种新的对称性,即画⾯的局部与更⼤范围的局部的对称,或说局部与整体的对称。
这种对称不同于欧⼏⾥德⼏何的对称,⽽是⼤⼩⽐例的对称,即系统中的每⼀元素都反映和含有整个系统的性质和信息。
⽆论放⼤多少倍,图象的复杂性依然丝毫不会减少。
但是,注意观察上图,我们会发现:每次放⼤的图形却并不和原来的图形完全相似。
这告诉我们:其实,分形并不要求具有完全的⾃相似特性。
分形能够保持⾃然物体⽆限细致的特性,所以,⽆论你怎么放⼤,最终,还是可以看见清晰的细节。
周期性是⾃然界发展变化的基本规律之⼀,经济发展周期性表现为描述经济发展的数量指标“时好时坏”波浪式变化, 并不是简单的重复;总体上讲⼈类社会的经济发展是波浪式前进的, 历史是不会逆转的。
随机波动曲线具有“⾃相似性”。
价格波动曲线的分形,与海岸线同类, 都具有1.618(左右)的分形维特性,其分形形态不可能象科赫曲线⼀样表现为精确的⼏何图形,随机性是这种曲线⾛势的基本特征;曲线⾃相似性的意义是突出随机过程中的关联效应。
几何里的艺术家——分形几何几何不仅仅是数学中的一个概念,它也是艺术中的一种灵感源泉。
而分形几何则将几何之美发挥到了极致,成为了一种兼具科学和艺术特质的美学形式。
在分形几何的世界里,数学的精密和艺术的想象交织在一起,勾勒出了独特的美丽景观。
本文将带领读者一起探索几何里的艺术家——分形几何。
1. 分形几何的起源分形几何一词最早由法国数学家贝诺瓦·曼德博特在1975年提出。
分形一词源于拉丁文“fractus”,意为碎片、断裂。
在数学上,分形是指一种具有自相似性的几何形态,即整体的部分在不同尺度上都与整体类似。
这种自相似性使得分形几何成为了一种富有美感和艺术感的数学形式。
分形几何得到了诸多科学和艺术领域的关注,成为了一种跨学科的研究领域。
2. 分形几何和艺术在艺术领域,分形几何为艺术家们带来了无限的灵感。
通过计算机技术和数学算法,艺术家们可以创造出种种奇妙的分形图像,这些图像既具有科学的精密性,又富有艺术的想象力。
分形艺术作品常常展现出几何的美感和图案的丰富多样性,在细节的赏析上更是令人叹为观止。
分形艺术作品已经成为了一种独特的艺术风格,吸引了众多艺术家和观众的关注。
3. 分形几何的应用除了在艺术领域中发挥重要作用之外,分形几何在科学领域中也有着广泛的应用。
在物理、生物、地质等领域,分形几何被用来研究复杂系统的形态和特性。
分形几何的自相似性和分形维度等特性,为科学家们提供了一种独特的研究方法,帮助他们理解和解释自然界中的复杂现象。
分形几何的应用范围正在不断拓展,有望成为解决复杂问题的重要工具。
4. 分形几何与人类文化分形几何不仅仅是一种数学形式,它还深刻地影响着人类文化的发展。
在建筑、绘画、音乐等领域,分形几何都留下了深远的痕迹。
建筑设计师们常常运用分形几何的原理来设计出富有美感和结构稳定性的建筑物;绘画艺术家们则通过分形几何的图案来展现出作品的纷繁多样;音乐创作家们也借助分形几何的节奏和和谐结构来创作富有艺术感的音乐作品。
分形几何的特征及其维数
分形几何,这一诞生于二十世纪的数学领域瑰宝,以其独特的美学与科学魅力在2024年的今天依然引人入胜。
它的核心特征可以概括为以下几点:
1. 自相似性:这是分形最直观也最具代表性的特点,即不论是在整体还是局部,乃至无限次放大的微小部分,都能发现与整体形态相似或等比例缩小的结构。
比如著名的科赫雪花和谢尔宾斯基三角形。
2. 不规则性和复杂性:传统几何形状如圆形、方形等具有明显的边界和规则性,而分形则呈现出无规律、不规则的复杂结构,难以用传统的欧几里得几何来描述。
3. 维数的非整数性:分形维数是衡量分形结构复杂程度的一个重要概念,它突破了经典欧氏空间中一维、二维、三维等整数维的界限。
例如,科赫曲线虽然看似占据了一维空间,但实际上其分形维数大于1但小于2,这体现了它在有限空间内展现出了超越常理解的空间复杂度。
分形维数的计算通常采用盒计数法,通过将分形划分为多个大小相等的小区域(盒子),统计不同尺度下被分形所覆盖的盒子数量随尺度改变的关系,从而得到描述分形复杂度的维数值。
总之,在我们所处的2024年,分形几何已经广泛应用于艺术、自然科学、社会科学等多个领域,并以其深邃的内涵和无穷的变化,持续启发着人们对自然界及宇宙奥秘的认识探索。
三维空间Delaunay三角剖分算法的研究及应用一、本文概述随着计算几何和计算机图形学的发展,三维空间Delaunay三角剖分算法已成为一种重要的空间数据处理和分析技术。
本文旨在全面深入地研究三维空间Delaunay三角剖分算法的原理、实现方法以及应用领域。
本文将对三维空间Delaunay三角剖分算法的基本概念和性质进行详细的阐述,包括其定义、性质、特点以及与其他三角剖分算法的比较。
接着,本文将重点探讨三维空间Delaunay三角剖分算法的实现方法,包括增量法、分治法和扫描转换法等,并分析它们的优缺点和适用范围。
本文还将对三维空间Delaunay三角剖分算法在各个领域的应用进行详细的介绍和分析。
这些领域包括计算机科学、地理信息系统、地质学、气象学、生物医学等。
通过具体的应用案例,本文将展示三维空间Delaunay三角剖分算法在实际问题中的应用价值和效果。
本文还将对三维空间Delaunay三角剖分算法的未来发展方向进行展望,探讨其在新技术和新领域中的应用前景和挑战。
本文旨在全面系统地研究三维空间Delaunay三角剖分算法的理论和实践,为其在实际问题中的应用提供有力的支持和指导。
二、三维空间Delaunay三角剖分算法的基本原理Delaunay三角剖分算法是一种广泛应用于二维空间的数据处理算法,它的核心目标是将一组离散的二维点集剖分为一系列互不重叠的三角形,且这些三角形满足Delaunay性质。
简单来说,Delaunay 性质要求任何一个三角形的外接圆内部不包含该三角形之外的任何数据点。
初始化:为每个点分配一个初始的三角形。
这通常是通过连接每个点与它的两个最近邻点来完成的,形成一个初始的三角形网格。
合并三角形:接下来,算法会尝试合并相邻的三角形,以形成更大的三角形。
在合并过程中,算法会检查新形成的三角形是否满足Delaunay性质。
如果满足,则合并成功;如果不满足,则放弃合并,并标记这两个三角形为“已处理”。
分形几何的粒子结构理论毛志彤11(扬州市安装防腐工程有限公司, 江苏江都225200)摘要: 为认识自然界物质的结构和作用各方面的统一性,通过三维空间拓展的分形几何模型,以新结构描述亚原子粒子和原子核,描述暗物质暗能量、微观粒子直到原子结构关系,分析在分形几何结构逻辑基础上的四种基本力和瞬态粒子结构形式,显示分形几何与微分几何在物质结构及规范理论中的有相关联系,揭示一些潜在研究价值,分形几何与微分几何的结合可能成为超弦/M理论第三次革命的分析手段,分形几何模型在亚原子粒子模型、物质结构方面开拓一个全新的结构形式。
关键词: 分形几何;粒子结构;微分几何;无限螺旋分形闭合环;超弦/M理论中图分类号: O4 ;文献标识码: A1研究的动机几何对自然科学特别是物理学发展的意义已经为现代科学界公认,可以看到近代物理学的逻辑在几何原理中得到深刻的阐述,我们并不奢望任意一种几何学都会对物理学的发展产生深刻的意义,但是我们可以尝试任何一种几何可能的应用,特别是一种新颖的几何学分支-分形几何学。
从1986年至今,约24年的研究过程中,我们试图以直接直观的方式更加深刻地理解弦、超弦、超弦/M理论的多维度空间,并给空间与作用力以直观形象的反映,直到2004年,我们通过理论和实验各种矛盾的分析,认为有这么一种可能,分形才是物质的基本单位-亚原子粒子的结构形式,并且其结构蕴含了亚原子粒子四种物理作用力的统一基础:振动与约束对偶耦合规范及其规范场的振荡-电磁波粒子生产和吸收效应,这种亚原子粒子分形结构就是无限螺旋分形闭合环形式。
2分形几何2.1 分形几何学被誉为大自然的几何学的分形(Fractal)理论,是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。
客观自然界中许多事物,具有自相似的“层次”结构,在理想情况下,甚至具有无穷层次。
适当的放大或缩小几何尺寸,整个结构并不改变。
不少复杂的物理现象,背后就是反映着这类层次结构的分形几何学。
几何里的艺术家——分形几何分形几何是一门结合数学和艺术的学科,它研究自相似性和无限重复的图形。
分形是一种可以通过递归运算生成的图形,其每个部分都与整体具有相似的形状和属性。
分形几何广泛应用于自然界、科学、艺术和计算机图形学等领域。
分形几何的概念最早由波兰数学家曼德博勒特·曼德博勒特于20世纪70年代提出。
他通过迭代运算生成了一种被称为“曼德博集合”的分形图形,该图形具有无限复杂的细节和自相似性。
曼德博勒特的研究成果开创了分形几何的研究领域,吸引了许多科学家和艺术家的关注。
分形几何的魅力在于它展现了自然界中许多复杂的形态和规律。
分形几何可以用来描述云朵、山脉、树木、海岸线等自然景观的形状和纹理。
这些自然景观往往具有层次分明、规则重复的结构,正是分形几何的特点所能很好地解释和模拟这种现象。
在艺术领域,分形几何为艺术家们提供了一种新的创作方式和表现手法。
艺术家可以使用分形生成软件来创作出具有分形特征的艺术作品。
这些作品通常具有随机性、复杂性和自相似性,给观者带来一种与众不同的观感和感官体验。
分形艺术常常被赋予一种神秘、浪漫和超现实的风格,使人沉浸其中。
分形几何的应用还扩展到计算机图形学和图像处理领域。
分形图形可以被用来生成真实感模拟、虚拟现实和特效动画。
通过分形算法,计算机可以生成具有高度精细化和无限细节的图像,使得图像更加逼真、生动,并且可以实现无尽的变化。
除了在科学、艺术和计算机图形学中的应用,分形几何还对理解自然界的一些现象和规律具有重要意义。
分形几何揭示了许多自然界中的分形结构,如闪电、河流、植物的分枝、肺部的支气管等。
了解并研究这些自然现象的分形特征,对于深入理解它们的内在规律和运行机制具有重要意义。
分形几何是一门有着深厚学术背景和广泛应用前景的学科。
它不仅仅是一门数学理论,更是一门艺术表现和探索自然界的工具。
通过分形几何的研究和应用,人们可以更好地理解自然现象、创造艺术作品、设计复杂图形和模拟现实世界。
一、分形与艺术的关系“分形”是波兰数学家曼德布罗特于1973年在法兰西学院讲课时提出来的概念。
词义是指不规则、支离破碎的形状,且具有自相似的性质,即一个粗糙或零碎的几何形状,可以分成数个部分,每一部分都是整体缩小后的形状,或至少是近似整体缩小后的形状。
分形是一门研究不规则形态的几何学。
由于自然界中的物象普遍以不规则形状存在,而分形几何学可以描述自然界中那些在传统欧几里得几何学中难以描述的复杂对象。
因此,分形几何学被称为描绘大自然的几何学,如弯曲的海岸、延绵的山脉、变幻的浮云、蜿蜒的河流等,这些都是分形,它们的形态特点比较零碎和复杂。
现今著名的分形实例有康托尔集、谢尔宾斯基三角形、门格奶酪和科赫雪花等。
分形作为一个新兴的学科,正在渗透到多个领域,其中有数学、物理、化学、生物、大气、海洋以至社会学科,对音乐、美术领域也产生了较大的影响,由分形几何衍生出了分形设计和分形艺术等应用。
分形搭起了科学与艺术的桥梁,使人们认识到数学与艺术审美上的统一,使抽象的数学理念转化为具象的艺术感受,并从揭示物象存在到形成艺术创作的方法。
二、分形与立体构成的结合立体构成是现代艺术设计的基础构成之一,是一门研究造型设计和形态创造的基础学科,衍生范围包括建筑设计、景观设计、室内设计、工业造型、雕塑等行业。
主体构成是以实体占据空间、创造空间并与空间一同构成新的环境和视觉产物。
立体构成必须以力学为依据,将造型要素按照视觉的构成原则,组合成所要传达的形体和空间。
它是以点、线、面、体的排列和组合研究立体与空间形态的学科,它研究立体造型各元素的构成法则,分析立体造型的基本规律,明确造型设计的基本原理。
如何将立体造型要素遵循构成法则组合成富有个性美的立体形态,是立体构成所要解决的首要问题。
整个创造过程是一个从分解到重组或从组合再到重新分割的过程,是探讨和研究形体和空间之间关系的过程。
任何造型和形态均还原至点、线、面、体的秩序和组织。
立体构成中形态与形状的区别在于,形状仅是形态的无数面中的外廓,而形态是由无数形状构成的一个综合体。
§3 分形和分维3.1 分形的定义分形(fractal )这个名词是Mandelbrot [1,2]在20世纪70年代为了表征复杂图形和复杂过程首先引入自然科学领域的,它的原意是不规则的、支离破碎的物体。
分形可以分为规则分形和不规则分形。
在分形名词使用之前,一些数学家就提出过不少复杂和不光滑的集合,如Cantor 集、Koch 曲线、Sierpinski 垫片、地毯和海绵等。
这些都属于规则的分形图形,它们具有严格的自相似性。
而自然界的许多事物所具有的不光滑性和复杂性往往是随机的,如蜿蜒曲折的海岸线;变换无穷的布朗运动轨迹等。
这类曲线的自相似性是近似的或统计意义上的,这种自相似性只存在于标度不变区域,超出标度不变区域,自相似性不复存在。
这类曲线为不规则分形。
迄今为止,分形还没有一个严格的定义。
1982年Mandelbrot 将分形定义为Hausdorff (豪斯道夫)维数大于拓扑维数的集合。
此定义强调维数,而其中的豪斯道夫维数一般不是整数,下面将介绍如何计算它。
这里需要简单介绍拓扑维数。
拓扑学是研究可以连续变化的图形的学科,而几何学是研究刚性图形的学科。
在几何学中圆和正方形是不同的,但在拓扑学中两者是等价的,因为它们可以连续地相互变换,并且它们都将平面上的点分成三个集合:图形内、图形外和图形上的三个集合,所以它们具有共性。
类似地,一条十分曲折但连续的折线和一条直线是等价的,因为它们可以连续地相互变换,而且两者的拓扑维数都是 1。
下面我们将结合具体的规则分形的实例说明分形的这个定义。
1986年Mandelbrot 给出了一个更广泛、更通俗的定义:分形是局部和整体有某种方式相似的形(A fractal is a shape made of parts similar to the whole in some way )[3]。
该定义强调图形中局部和整体之间(包括小的局部和大的局部之间,如下面的DLA 模型产生的图形中小枝杈和大枝杈)的自相似性。
空间维数的变化原理的应用介绍空间维数是指描述一个空间所需的独立坐标轴的数量。
在数学和物理学中,空间维数是一个重要的概念,具有广泛的应用。
本文将介绍空间维数的变化原理以及其在各个领域的应用。
空间维数的变化原理空间维数的变化原理是指在不同尺度下,空间的维数可能会发生变化。
在经典几何学中,我们通常认为三维空间是由长、宽、高这三个独立的坐标轴构成。
然而,在某些情况下,空间的维数可能不止三维。
引力场中的空间维数根据广义相对论的理论,引力场可以弯曲时空。
在弯曲的时空中,空间的维数也会发生变化。
例如,在黑洞的奇点附近,空间维数会崩溃,成为一个无穷维的奇点。
分形几何中的空间维数分形几何是一种非常独特的几何学分支,它研究的是具有自相似性的结构。
在分形几何中,空间的维数可以是分数维的。
例如,考虑一条分形曲线,它在某个尺度上可能具有1.5维的特征。
弦论中的超过三维的空间弦论是描述宇宙最基本结构的理论之一,它认为我们所处的宇宙可能存在超过三维的空间。
根据弦论的假设,宇宙中可能存在其他维度,这些额外的维度对于我们的感知是隐藏的。
应用领域空间维数的变化原理在各个领域有着重要的应用。
以下是一些应用领域的简要介绍:引力物理学在研究引力场和黑洞等天体现象时,空间维数的变化原理是非常关键的。
通过理解空间维数的变化,我们可以更好地理解引力场的性质,进而推动我们对宇宙的认知。
分形几何学分形几何学是一门研究非规则图形的学科,它在计算机图形学、自然科学和医学图像处理等领域具有广泛的应用。
分形几何学通过对空间维数的变化原理的研究,可以刻画复杂结构的形态和特征。
弦理论弦理论是研究基本粒子和宇宙起源的理论,它认为我们所处的宇宙有超过三维的空间。
通过空间维数的变化原理,弦理论可以更好地解释基本粒子的性质以及宇宙的结构。
量子信息学量子信息学是研究利用量子力学原理进行信息处理的学科。
在量子计算和量子通信中,空间维数的变化原理的应用可以帮助我们设计更高效的量子算法和保密的通信协议。