因式分解方法的拓展
- 格式:docx
- 大小:100.00 KB
- 文档页数:4
因式分解数学教案优秀5篇更多因式分解数学教案资料,在搜索框搜索因式分解数学教案(篇1)教学目标1.学问与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,把握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探究因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养乐观的进取意识,体会数学学问的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探究:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,老师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
因式分解数学教案(篇2)【教学目标】1、了解因式分解的概念和意义;2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
因式分解的思维拓展题与解题方法因式分解作为数学中的一个重要知识点,不仅在初中阶段频繁出现,也在高中、大学甚至更高级的数学学习中扮演着重要的角色。
因式分解的思维拓展题和解题方法是我们在学习这一知识点时需要重点关注和掌握的内容。
本文将从扩展思维题的角度入手,结合具体的解题方法进行讲解,帮助读者更好地理解和掌握因式分解的相关知识。
思维拓展题一1. 已知多项式$f(x)=x^4-5x^3+8x^2-4x+4$,求$f(x)$的一个因式。
解析:首先我们观察到$f(x)$的常数项为4,根据因式分解的性质可知,如果$f(x)$可以被$x-a$整除,则$a$为$f(x)$的一个因式。
因此,我们可以尝试将$f(x)$化简为$(x-a)g(x)$的形式,其中$g(x)$为另一个多项式。
通过分部展开或者试商法,我们可以求得$f(x)$除以$(x-a)$的商式$g(x)$为$x^3+(a-5)x^2+(5a-8)x+(8a-4)$。
由于$f(x)$除以$(x-a)$的余式为0,所以我们得到方程组:\[\begin{cases}a-5=0,\\5a-8=0,\\8a-4=0。
\end{cases}\]解得$a=5$,因此$x-5$是$f(x)$的一个因式。
思维拓展题二2. 若$f(x)=x^3-3x^2+3x-1$,求$f(x)$的所有因式并分解。
解析:首先我们将$f(x)$每一项的系数逐次相加,得到$1+3+3-1=6$,根据因式分解的性质可知,如果$f(x)$可以被$x-a$整除,则$a$为$f(x)$的一个因式。
所以我们可以得到$f(x)=(x-1)(x^2-2x+1)=(x-1)(x-1)^2=(x-1)^3$,因此$f(x)$的所有因式为$x-1$。
通过因式分解将$f(x)$展开就可以得到对应的结果。
综上所述,因式分解的思维拓展题可以锻炼我们的逻辑思维和代数运算能力,通过化简、分解等方法找到多项式的因式。
同时,在解题过程中需要注意细节和方法的灵活运用,结合已有知识进行求解。
因式分解拓展题解板块一:换元法例1分解因式:2222(48)3(48)2x x x x x x ++++++【解析】 将248x x u ++=看成一个字母,可利用十字相乘得原式2232()(2)u xu x u x u x =++=++22(48)(482)x x x x x x =++++++22(58)(68)x x x x =++++2(2)(4)(58)x x x x =++++例2分解因式:22(52)(53)12x x x x ++++-【解析】 方法1:将25x x +看作一个整体,设25x x t +=,则原式=22(2)(3)1256(1)(6)(2)(3)(51)t t t t t t x x x x ++-=+-=-+=+++- 方法2:将252x x ++看作一个整体,设252x x t ++=,则原式=22(1)1212(3)(4)(2)(3)(51)t t t t t t x x x x +-=+-=-+=+++- 方法3:将253x x ++看作一个整体,过程略.如果学生的能力到一定的程度,甚至连换元都不用,直接把25x x +看作一个整体,将原式展开,分组分解即可,则原式22222(5)5(5)6(51)(56)(2)(3)x x x x x x x x x x =+++-=+-++=++2(51)x x +-.【巩固】 分解因式:(1)(3)(5)(7)15x x x x +++++【解析】2(2)(6)(810)x x x x ++++【巩固】 分解因式:22(1)(2)12x x x x ++++-【解析】2(1)(2)(5)x x x x -+++例3证明:四个连续整数的乘积加1是整数的平方.【解析】 设这四个连续整数为:1x +、2x +、3x +、4x +(1)(2)(3)(4)1x x x x +++++[(1)(4)][(2)(3)]1x x x x =+++++22(54)(56)1x x x x =+++++24652u x x +=++ 原式22[(55)1][(55)1]1x x x x =++-++++22(55)11x x =++-+22(55)x x =++【巩固】 若x ,y 是整数,求证:()()()()4234x y x y x y x y y +++++是一个完全平方数.【解析】 ()()()()4234x y x y x y x y y +++++()()()()4423x y x y x y x y y =+++++⎡⎤⎡⎤⎣⎦⎣⎦22224(54)(56)x xy y x xy y y =+++++令2254x xy y u ++=∴上式2422222(2)()(55)u u y y u y x xy y ++=+=++即()()()()4222234(55)x y x y x y x y y x xy y +++++=++例4分解因式2(25)(9)(27)91a a a +---【解析】 原式22[(25)(3)][(3)(27)]91(215)(221)91a a a a a a a a =+-+--=-----设2215a a x --=,原式2(6)91691(13)(7)x x x x x x =--=--=-+22(228)(28)a a a a =----2(4)(27)(28)a a a a =-+--【巩固】 分解因式22(32)(384)90x x x x ++++-【解析】 原式22(1)(2)(21)(23)90(253)(252)90x x x x x x x x =++++-=++++-225y x x =+原式22(3)(2)90584(12)(7)(2512)(27)(1)y y y y y y x x x x =++-=+-=+-=+++-例5分解因式:22224(31)(23)(44)x x x x x x --+--+-【解析】 咋一看,很不好下手,仔细观察发现:222(31)(23)44x x x x x x --++-=+-, 故可设2231,23x x A x x B --=+-=,则244x x A B +-=+.故原式=24()AB A B -+2A =-222()B AB A B -+=--22222(31)(23)(232)x x x x x x ⎡⎤=----+-=--+⎣⎦.【巩固】 分解因式:2(2)(2)(1)a b ab a b ab +-+-+- 【解析】 由于题中以整体形式出现的式子有两个,共4个地方,故采取换元法后会大大简化计算过程,不妨设,a b x ab y +==,【解析】 则原式=222(2)(2)(1)222x y x y x xy y y x --+-=-++-222221()2()1(1)(1)(1)(1)x y x y x y a b ab a b +=---+=--=+--=--例6分解因式:272)3()1(44-+++x x【解析】 设1322x x y x +++==+,则原式=4442(1)(1)2722(61)272y y y y -++-=++- 422222(6135)2(9)(15)2(3)(3)(15)y y y y y y y =+-=-+=+-+22(5)(1)(419)x x x x =+-++ 【巩固】 分解因式:4444(4)a a ++-【解析】 为方便运算,更加对称起见,我们令2x a =-4444(4)a a ++-444(2)(2)4x x =++-+22224(44)(44)4x x x x =+++-++422(2416)256x x =+++422(24144)x x =++222(12)x =+222[(2)12]a =-+222(416)a a =-+ 板块二:因式定理因式定理:如果x a =时,多项式1110...n n n n a x a x a x a --++++的值为0,那么x a -是该多项式的一个因式.有理根:有理根p c q=的分子p 是常数项0a 的因数,分母q 是首项系数n a 的因数. 例7分解因式:32252x x x --- 【巩固】 02a =-的因数是1±,2±,2n a =的因数是1±,2±. 因此,原式的有理根只可能是1±,2±(分母为1),12±. 因为(1)21526f =---=-,(1)21520f -=--+-=, 2323222232125222 35 33 22x x x x x x x x x xx xx --+---+------于是1-是()f x 的一个根,从而1x +是()f x 的因式,这里我们可以利用竖式除法,此时一般将被除式按未知数的降幂排列,没有的补0:可得原式2(232)(1)x x x =--+(2)(21)(1)x x x =-++点评:观察,如果多项式()f x 的奇数次项与偶数次项的系数和互为相反数,则说明(1)0f =;如果多项式的奇数次项与偶数次项的系数和相等,则说明(1)0f -=.【巩固】 分解因式:65432234321x x x x x x ++++++解析:本题有理根只可能为1±.1+当然不可能为根(因为多项式的系数全是正的),经检验1-是根,所以原式有因式1x +,原式5432(1)(221)x x x x x x =++++++容易验证1-也是5432221x x x x x +++++的根,5432221x x x x x +++++42(1)(21)x x x =+++22(1)(1)x x =++,所以65432234321x x x x x x ++++++222(1)(1)x x =++【巩固】 分解因式:322392624x x y xy y -+-解析:322392624x x y xy y -+-(2)(3)(4)x y x y x y =---例8分解因式:32()()x a b c x ab bc ca x abc -+++++-【解析】 常数项abc -的因数为a ±,b ±,c ±,ab ±,bc ±,ca ±,abc ±把x a =代入原式,得32()()a a b c a ab bc ca a abc -+++++-332222a a ba ca a b abc a c abc =---+++-0=所以a 是原式的根,x a -是原式的因式,并且32()()x a b c x ab bc ca x abc -+++++-322()[()()]()x ax b c x a b c x bcx abc =--+-++-2()[()]x a x b c x bc =--++()()().x a x b x c =---【巩固】 分解因式:32()(32)(23)2()l m x l m n x l m n x m n +++-+---+【解析】 如果多项式的系数的和等于0,那么1一定是它的根;如果多项式的偶次项系数的和减去奇次项系数的和等于0,那么1-一定是它的根.现在正是这样:()(32)(23)2()0l n l m n l m n m n -+++-----+=所以1x +是原式的因式,并且32()(32)(23)2()l m x l m n x l m n x m n +++-+---+322[()()][(2)(2)][2()2()]l m x l m x l m n x l m n x m n x m n =+++++-++--+++2(1)[()(2)2()]x l m x l m n x m n =++++--+(1)(2)()x x lx mx m n =+++--板块三:待定系数法如果两个多项式恒等,则左右两边同类项的系数相等.即,如果 12112112101210n n n n n n n n n n n n a x a x a x a x a b x b x b x b x b --------+++++=+++++ 那么n n a b =,11n n a b --=,…,11a b =,00a b =.例9用待定系数法分解因式:51x x ++【解析】 原式的有理根只可能为1±,但是这2个数都不能使原式的值为0,所以原式没有有理根,因而也没有(有理系数的)一次因式.故52321(1)(1)x x x ax x bx cx ++=+++++或52321(1)(1)x x x ax x bx cx ++=+-++-523254321(1)(1)()(1)(1)()1x x x ax x bx cx x a b x ab c x ac b x a c x ++=+++++=+++++++++++故010101a b c ab ac b a c +=⎧⎪++=⎪⎨++=⎪⎪+=⎩,解得110a b c =⎧⎪=-⎨⎪=⎩,所以52321(1)(1)x x x x x x ++=++-+事实上,分解式是惟一的,所以不用再考虑其它情况.【巩固】 421x x -+是否能分解成两个整系数的二次因式的乘积?解析:我们知道42221(1)(1)x x x x x x ++=++-+.421x x -+不能分解成两个整系数的二次因式的乘积.如果421x x -+能够分解,那么一定分解为22(1)(1)x ax x bx ++++或22(1)(1)x ax x bx +-+-比较3x 与2x 的系数可得:021a b ab += ⎧⎨±=-⎩(1)(2) 由(1)得b a =-,代入(2)得221a =±+,即23a =或21a =-,没有整数a 能满足这两个方程.所以,421x x -+不能分解成两个整系数的二次因式的积(从而也不能分解成两个有理系数的二次因式的积).【巩固】 631x x +-能否分解为两个整系数的三次因式的积?解析:设6332321(1)(1)x x x ax bx x cx dx +-=+++++-,比较5x ,3x 及x 的系数,得010a c ad bc b d +=⎧⎪+=+⎨⎪-=⎩由第一个方程与第三个方程可得c a =-,d b =,再把它们代入第二个方程中,得1ab ab -=矛盾!所以,631x x +-不可能分解为两个整系数的三次因式的积.例10分解因式:43223x x x x ++-+【解析】 原式的有理根只可能为1±,3±,但是这四个数都不能使原式的值为0,所以原式没有有理根,因而也没有(有理系数的)一次因式.我们设想43223x x x x ++-+可以分为两个整系数的二次因式的乘积.由于原式是首1的(首项系数为1),两个二次因式也应当是首1的.于是,设43223x x x x ++-+22()()x ax b x cx d =++++ ⑴其中整系数a b c d 、、、有待我们去确定.比较⑴式两边3x ,2x ,x 的系数及常数项,得1213a c b d ac bc ad bd += ⎧⎪++= ⎪⎨+=- ⎪⎪= ⎩ (2)(3)(4)(5)这样的方程组,一般说来是不容易解的.不过,别忘了b d 、是整数!根据这一点,从(5)可以得出13b d =⎧⎨=⎩或13b d =-⎧⎨=-⎩,当然也可能是31b d =⎧⎨=⎩或31b d =-⎧⎨=-⎩ 在这个例子中由于因式的次序无关紧要,我们可以认为只有13b d =⎧⎨=⎩或13b d =-⎧⎨=-⎩这两种情况.将1b =,3d =,代入(4),得31c a +=- ⑹将⑹与⑵相减得22a =-,于是1a =-,再由⑵得2c =这一组数(1a =-,1b =,2c =,3d =)不仅适合⑵、⑷、⑸,而且适合⑶.因此43223x x x x ++-+22(1)(23)x x x x =-+++ ⑺将1b =-,3d =-,代人⑷,得31c a --=- ⑻将⑻与 ⑵相加得20a -=.于是0a =,再由 ⑵得1c =.这一组数(0a =,1b =-,1c =,3d =-),虽然适合⑵、⑷、⑸,却不适合⑶,因而4322223(1)(3)x x x x x x x ++-+=-+-/.事实上,分解式是惟一的,找出一组满足方程组的数,就可以写出分解式⑺,考虑有没有其他的解纯属多余,毫无必要.板块四:轮换式与对称式对称式:x y 、的多项式x y +,xy ,22x y +,33x y +,22x y xy +,…在字母x 与y 互换时,保持不变.这样的多项式称为x y 、的对称式.类似地,关于x y z 、、的多项式x y z ++,222x y z ++,xy yz zx ++,333x y z ++,222222x y x z y z y x z x z y +++++,xyz ,…在字母x y z 、、中任意两字互换时,保持不变.这样的多项式称为x y z 、的对称式.轮换式:关于x y z 、、的多项式x y z ++,222x y z ++,xy yz zx ++,333x y z ++,222x y y z z x ++,222xy yz zx ++,xyz …在将字母x y z 、、轮换(即将x 换成y ,y 换成z ,z 换成x )时,保持不变.这样的多项式称为x y z 、、的轮换式.显然,关于x y z 、、的对称式一定是x y z 、、的轮换式. 但是,关于x y 、,z 的轮换式不一定是对称式.例如,222x y y z z x ++就不是对称式.次数低于3的轮换式同时也是对称式.两个轮换式(对称式)的和、差、积、商(假定被除式能被除式整除)仍然是轮换式(对称式). 例11:分解因式:222()()()x y z y z x z x y -+-+-解析:222()()()x y z y z x z x y -+-+-是关于x y z 、、的轮换式.如果把222()()()x y z y z x z x y -+-+-看作关于x 的多项式,那么在x y =时,它的值为222()()()0y y z y z y z y y -+-+-=.因此,x y -是222()()()x y z y z x z x y -+-+-的因式.由于222()()()x y z y z x z x y -+-+-是x y z 、、的轮换式,可知y z -与z x -也是它的因式.从而它们的积()()()x y y z z x --- ⑴是222()()()x y z y z x z x y -+-+- ⑵的因式.由于⑴ 、⑵都是x y z 、、的三次多项式,所以两者至多相差一个常数因数k ,即有222()(.)()()()()x y z y z x z x y k x y y z z x -+-+-=--- ⑶现在我们来确定常数k 的值.为此,比较⑶的两边2x y 的系数:左边系数为1,右边系数为k -.因此,1k =-.于是222()()()x y z y z x z x y -+-+-()()()x y y z z x =----思路2:利用y -z =(y -x)-(z -x).例12分解因式:222222()()()xy x y yz y z zx z x -+-+-【解析】 此式是关于x ,y ,z 的四次齐次轮换式,注意到x y =时,原式0=,故x y -是原式的一个因式.同理,y z -,z x -均是原式的因式,而()()()x y y z z x ---是三次轮换式,故还应有一个一次轮换式,设其为()k x y z ++,故原式()()()()k x y z x y y z z x =++---,展开并比较系数可知,1k =-,故原式()()()()x y z x y y z z x =-++---.思路2:利用x 2-y 2=(x 2-z 2)+(z 2-y 2).家庭作业练习 1. 分解因式:24(5)(6)(10)(12)3x x x x x ++++-原式2224(1760)(1660)3x x x x x =++++-2224(1660)(1660)3x x x x x x ⎡⎤=+++++-⎣⎦22224(1660)4(1660)3x x x x x x =+++++-22[2(1660)][2(1660)3]x x x x x x =++-+++22(231120)(235120)x x x x =++++2(215)(8)(235120)x x x x =++++练习 2. 要使()()()()1348x x x x m -+--+为完全平方式,则常数m 的值为________【解析】 ()()()()1348x x x x m-+--+22222(54)(524)(5)20(5)96x x x x m x x x x m =-+--+=----+,则196m =练习 3. 分解因式:22(68)(1448)12x x x x +++++【解析】 原式22(2)(4)(6)(8)12(1016)(1024)12x x x x x x x x =+++++=+++++设21016t x x =++,则原式(8)12(2)(6)t t t t =++=++22(1018)(1022)x x x x =++++练习 4. 分解因式:22222()4()x xy y xy x y ++-+【解析】 设22x y a +=,xy b =,则原式22222()4()()a b ab a b x y xy =+-=-=+-.练习 5. 分解因式:32252x x x ---【解析】32252(2)(21)(1)x x x x x x ---=-++ 练习 6. 分解因式:326116x x x +++【解析】3226116(1)(56)(1)(2)(3)x x x x x x x x x +++=+++=+++ 练习 7. 用待定系数法分解:541x x ++【解析】 原式的有理根只可能为1±,但是这2个数都不能使原式的值为0,所以原式没有有理根,因而也没有(有理系数的)一次因式.故542321(1)(1)x x x ax x bx cx ++=+++++或542321(1)(1)x x x ax x bx cx ++=+-++-5423254321(1)(1)()(1)(1)()1x x x ax x bx cx x a b x ab c x ac b x a c x ++=+++++=+++++++++++故110100a b c ab ac b a c +=⎧⎪++=⎪⎨++=⎪⎪+=⎩,解得101a b c =⎧⎪=⎨⎪=-⎩,所以54231(1)(1)x x x x x x ++=++-+事实上,分解式是惟一的,所以不用再考虑其它情况.练习 8. 分解因式:333()()()a b c b c a c a b -+-+-【巩固】 333()()()a b c b c a c a b -+-+-是关于a b c 、、的轮换式.它有三次因式()()()a b b c c a ---.由于原式是a b c 、、的四次式,所以还应当有一个一次因式.原式是a b c 、、的四次齐次式,所以这个一次因式也是a b c 、、的一次齐次式,即它的常数项是0(否则,它的常数项与三次式()()()a b b c c a ---相乘得到一个三次式).这个一次齐次式是a b c 、、的轮换式,形状应当是()k a b c ++k 是常数. 即有333()()()a b c b c a c a b -+-+-()()()()k a b c a b b c c a =++--- ⑴ 比较两边3a b 的系数,得1k =-于是333()()()a b c b c a c a b -+-+-()()()()a b c a b b c c a =-++--- 上面求k 的方法是比较系数,也可以改用另一种方法,即适当选一组使()()()()0a b c a b b c c a ++---=/的数代替a b c 、、从而定出k , 例如,令2a =,1b =,0c =,把它代入⑴,得8203(2)k -+=⋅⋅-,即1k =-, 以上两种确定系数的方法可以结合起来使用.补充题【备选1】分解因式:(1)(2)(3)(4)24a a a a -----【解析】2(5)(510)a a a a --+ 【备选2】分解因式:21(1)(3)2()(1)2xy xy xy x y x y +++-++-+- 【解析】 设xy u =,x y v +=,原式=(u+v+1)(u -v+1)=(x+1)(y+1)(x -1)(y -1).【备选3】分解因式:43265332x x x x ++--【解析】 原式的有理数根只可能为:1±,2±,12±,13±,23±,16± 经检验12-是一个根,所以21x +是原式的因式,进而可得: 43232265332(21)(32)(21)(32)(1)x x x x x x x x x x x x ++--=+++-=+-++。
因式分解拓展题解板块一:换元法例1分解因式:(X?亠4x亠8)2亠3x(x2亠4x亠8)亠2x2【解析】将x2 4x ^u看成一个字母,可利用十字相乘得原式=u2 3xu 2x2 =(u x)(u 2x) = (x2 4x 8 x)(x2 4x 8 2x)=(x2 5x 8)(x2 6x 8) = (x 2)(x 4)(x2 5x 8)例 2 分解因式:(x2 5x - 2)( x2 5x -3)-12【解析】方法1:将x2 5x看作一个整体,设x2,5x=t,则2 2原式=(t 2)(t 3) -12 =t 5t _6 =(t -1)(t 6) =(x 2)(x 3)(x 5x -1) 方法2 :将x2亠5x亠2看作一个整体,设x2亠5x亠2 = t,贝U原式= t(t 1) —12 =t2 t —12 =(t —3)(t 4) =(x 2)(x 3)(x2 5x—1)方法3 :将x2 5x 3看作一个整体,过程略•如果学生的能力到一定的程度,甚至连换元都不用,直接把x2 5x看作一个整体,将原式展开,分组分解即可,2 2 2 2 2 2则原式=(x 5x) 5(x 5x)-6=(x 5x-1)(x 5x 6) =(x 2)(x 3) (x 5x-1).【巩固】分解因式:(x 1)(x 3)(x 5)(x 7) 15【解析】(x 2)(x 6)( x2 8x 10)【巩固】分解因式:(x2 x 1)(x2 x 2) -12【解析】(x -1)(x 2)(x2 x 5)例3证明:四个连续整数的乘积加1是整数的平方.【解析】设这四个连续整数为:x 1、x 2、x 3、x 42 2(x 1)(x 2)(x 3)(x 4) 1 =[(x 1)(x 4)][( x 2)(x 3)] 1 =(x 5x 4)(x 5x 6) 14 6u =x 5x ------------22 2 2 2 2 2原式4( x 5x 5) -1][(x 5x 5) 1] 1 =(x 5x 5) -1 1 =(x 5x 5)【巩固】若x, y是整数,求证:x y x 2y x 3y x 4y y4是一个完全平方数.【解析】x y x 2y x 3y x 4y i亠y4二x y x 4y ]_ [x 2y x 3y :y4= (x2 5xy 4y2)(x2 5xy 6y2) y4令x2 5xy 4y2 =u•••上式u(u ' 2y2) y4 =(u y2)2 =(x25xy ■ 5y2)2即x y x 2y x 3y x 4y 厂y4 = (x2 5xy 5y2)21例 4 分解因式(2a 5)(a 2 _9)(2a _7) _91【解析】 原式 二[(2 a 5)(a —3)][(a 3)(2a —7)] —91 =(2a 2 —a —15)(2a 2 —a —21) — 91 设 2a 2「a _15 = x ,原式=x(x —6) —91 =x 2 —6x —91 =(x —13)(x 7) =(2a 2 —a —28)(2a 2 —a —8)2=(a _4)(2a 7)(2a -a -8)【巩固】分解因式(x 2 3x 2)(3 8x 4x 2) -90【解析】 原式=(x 1)(x 2)(2 x 1)(2x 3)-90 =(2x 2 5x 3)(2 x 2 5x 2^902y =2x 25x原式=(y 3)(y 2) —90 =y 2 5y _84=(y 12)(y _7)=(2x 2 5x 12)(2 x 7)(x -1)例 5 分解因式:4(3x 2 —x -1)(x 2 - 2x -3) -(4x 2 x -4)22 2 2【解析】 咋一看,很不好下手,仔细观察发现:(3x -x -1) - (x ・2x_3)=4x ,x-4 ,222故可设 3x -x -1 =A, x 2x - 3 = B ,则 4x x -4 二 A B .2 2 2 2故原式=4AB -(A B) - -A -B2AB = -(A - B)-2 222 2二—(3x -x —1) —(x 2x —3)二-(2x -3x 2).【巩固】 分解因式:(a b -2ab)(a b -2) ( -ab)2 【解析】由于题中以整体形式出现的式子有两个,共4个地方,故采取换元法后会大大简化计算过程,不妨设 a ■ b = x,ab = y ,【解析】 则原式=(x-2y)(x-2) • (1-y)2 =x 2 -2xy • y 2 • 2y -2x1 =(x -y)2 -2(x -y) 1 =(x —y -1)2 =(a 亠b —ab —1)2 = (1 —a)2(1 -b)2例 6 分解因式:(x 1)4 (x 3)4 -272 【解析】 设 yJ 1x 3*2,则原式=(y -1)4(y 1)4-272 =2(y 46y 21) -272 24 2 2 2 2= 2(y 6y -135) =2(y -9)( y 15) =2( y 3)( y -3)(y 15)= 2(x 5)(x -1)(x 2 4x 19)【巩固】分解因式:a 444 (a-4)4【解析】为方便运算,更加对称起见,我们令 x 二a-2a 4 44 (a -4)4 =(x 2)4 (x -2)4 44 =(x 2 4x 4)2 (x 2 -4x 4)2 444 2 4 2 2 2 2 2 2 2=2(x24x 16) 256 =2(x24x144) =2(x12) =2[(a -2) 12] =2(a -4a 16)板块二:因式定理因式定理:如果x =a 时,多项式a n x n - a n 」x n 」•... ■ a 1x a °的值为0 ,那么x —a 是该多项 式的一个因式. 有理根:有理根c 二P 的分子p 是常数项a °的因数,分母q 是首项系数a n 的因数.q 例 7 分解因式:2x 3 —x 2 —5x —2 2x 2_3x -2【巩固】a ° = -2的因数是_1, _2, a . =2的因数是二1,二2 .1因此,原式的有理根只可能是 _1, -2(分母为1),一丄.2因为 f (1)=2 —1 —5 —2 = —6 , f (―1) =「2 —1 5 — 2 =0 ,—2x —2 —2x — 2 x 1 2x 3 -x 2 -5x-2八 3丄八2 2x 2x2—3x — 5x-3x 2 - 3x。
因式分解教案(优秀4篇)初二数学因式分解教案篇一1、lie动词,意为“躺”,过去式和过去分词分别为lay和lain,现在分词为lying。
I found he was lying on the ground.我发现他躺在地上。
【拓展】(1)lie有“位于”的意思。
A temple lies on the top of the mountain.一座寺庙位于山顶之上。
(2)lie作动词时,也可意为“撒谎”,过去式和过去分词是规则的,均为lied。
lie也可用作名词,意为“谎言”。
Don’t lie to me.不要向我撒谎。
The boy told a lie to me.这个男孩向我撒了谎。
(3)英语中,部分以-ie结尾的动词的-ing形式必须改ie为y再加-ing。
die → dying tie → tying lie → lying2、hopehope意为“希望”,用于表示有可能实现的愿望,其后可接不定式或宾语从句,但表达“希望别人做某事”时,则需用hope that从句。
I hope you can pass the exam.我希望你能通过考试。
【拓展】hope与wish的辨析:so hope+ to do sth.注意:没有hope sb. to do sth.的用法that从句表示很有可能实现的主观愿望for sth.sb. to do sth.能接sb.的复合结构wish+ sb. sth.能接双宾语to do sth.可与hope互换that从句用虚拟语气表示不太可能实现的愿望My mother wishes/hopes to find her lost watch swh..我妈妈希望在什么地方找到她丢失的手表。
I wish you to finish the work in time.我希望你及时完成这项工作。
3、adviceadvice是不可数名词,意为“意见、建议、劝告、忠告”,不能与不定冠词a连用。
因式分解的“八个注意”事项及"课本未拓展的五个的方法”一、“八个注意”事项(一)首项有负常提负例1把一a'—b'+2ab+4分解因式。
解:一a'—b'+2ab + 4= — (a:—2ab+b‘一4) =— (a—b+2) (a-b —2)这里的“负”,指“负号” °如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
防止出现诸如一a' —b'= ( —a+b) ( —a—b)的错误。
(二)各项有公先提公例2因式分解8a:-2a=解:8a'—2a:=2a: (4a:—l)=2a:(2a+l) (2a—1)这里的“公”指“公因式” °如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。
防止出现诸如4a'a- (2a:+a) (2a=a)而乂不进一步分解的错误.(三)某项提出莫漏1例3因式分解a'~2a:+a解:a:_2a:+a=a (a:-2a+l) =a (a~l):这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
防止学生出现诸如a'-2a:+a二a(a=2a)的错误。
(四)括号里面分到“底”。
例4因式分解x;-3x:-4解:x*+3x s-4= (x3+4) (X3-1) = (x=+4) (x+l) (x-1)这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。
即分解到底,不能半途而废的意思。
其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
如上例中许多同学易犯分解到x,+3X2-4= (x=+4) (x c-l)而不进一步分解的错误。
因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤是一脉相承的。
(五)各式之间必须是连乘积的形式例5 分解因式x:-9+8x=解:x:-9+8x=x:+8x-9=(x-l) (X+9)这里的“连乘积”,是指因式分解的结果必须是儿个整式的连乘积的形式,否则不是因式分解。
八年级上册第14章能力拓展训练一.选择题1.下列各选项中,因式分解正确的是()A.(a2+b2)=(a+b)2B.x2﹣4=(x﹣2)2C.m2﹣4m+4=(m﹣2)2D.﹣2y2+6y=﹣2y(y+3)2.下列运算正确的是()A.a•a5=a4B.2(a﹣b)=2a﹣bC.(a3)2=a5D.a2﹣2a2=﹣a23.下列多项式能用完全平方公式分解因式的是()A.x2﹣2x﹣1B.(a+b)(a﹣b)﹣4abC.a2+ab+b2D.y2+2y﹣14.已知a﹣b=1,ab=12,则a+b等于()A.7B.5C.±7D.±55.下列各式中,计算结果为a6的是()A.a2+a4B.a7÷a C.a8﹣a2D.a2•a36.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.(a+2b)(a﹣2b)B.(a+b)(a﹣b)C.(a+2b)(a﹣b)D.(a+b)(a﹣2b)7.计算(x﹣2)(2x+3)﹣(3x+1)2的结果中,x项的系数为()A.5B.﹣5C.7D.﹣7 8.计算(﹣0.25)2019•42020的结果为()A.4B.﹣4C.D.﹣9.下列各式中,能用平方差公式进行计算的是()A.(﹣2x﹣y)(2x﹣y)B.(﹣2x﹣y)(2x+y)C.(2x﹣y)(y﹣2x)D.(2x﹣y)(2x﹣y)10.42020×(﹣0.25)2019的值为()A.4B.﹣4C.0.25D.﹣0.25二.填空题11.计算a(a﹣b)+b(a﹣b)的结果是.12.不等式2x+15>﹣x的解集是;分解因式:2x2﹣2=.13.以下四个结论正确的是.(填序号)①若(x﹣1)x+1=1,则x只能是2②若(x﹣1)(x2+ax+1)的运算结果中不含x2项,则a=﹣1③若a+b=10,ab=24,则a﹣b=2或a﹣b=﹣2④若4x=a,8y=b,则22x﹣3y可表示为14.若x+m与2﹣x的乘积中不含x的一次项,则实数m的值为.15.若m+n=2,mn=1,则m3n+mn3+2m2n2=.三.解答题16.因式分解(1)x2﹣9;(2)8m2﹣8mn+2n2.17.已知a+b=2,ab=﹣24,(1)求a2+b2的值;(2)求(a+1)(b+1)的值;(3)求(a﹣b)2的值.18.如图,有一块长为(3a+b)米,宽为(2a+b)米的长方形空地,计划修筑东西、南北走向的两条道路,其余进行绿化(阴影部分),已知道路宽为a米,东西走向的道路与空地北边界相距1米,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.19.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.20.小亮在课余时间写了三个算式:32﹣12=8×1,52﹣32=8×2,72﹣52=8×3,通过认真观察,发现任意两个连续奇数的平方差是8的倍数.验证:(1)92﹣72的结果是8的几倍?(2)设两个连续奇数为2n+1,2n﹣1(其中n为正整数),写出它们的平方差,并说明结果是8的倍数;延伸:直接写出两个连续偶数的平方差是几的倍数.参考答案一.选择题1.解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(m﹣2)2,符合题意;D、原式=﹣2y(y﹣3),不符合题意.故选:C.2.解:A.a•a5=a6,故本选项不合题意;B.2(a﹣b)=2a﹣2b,故本选项不合题意;C.(a3)2=a6,故本选项不合题意;D.a2﹣2a2=﹣a2,故本选项符合题意.故选:D.3.解:a2+ab+b2=(a+b)2.故选:C.4.解:∵a﹣b=1,ab=12,∴(a+b)2=a2+2ab+b2=(a﹣b)2+4ab=1+48=49,∴a+b=±7,故选:C.5.解:(A)a2与a4不是同类项,故A不选.(B)原式=a6,故选B.(C)a8与a2,故C不选.(D)原式=a5,故D不选.故选:B.6.解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为(a+2b)(a﹣2b),故选:A.7.解:(x﹣2)(2x+3)﹣(3x+1)2=2x2+3x﹣4x﹣6﹣9x2﹣6x﹣1=﹣7x2﹣7x﹣7,故选:D.8.解:(﹣0.25)2019•42020=(﹣0.25)2019×42019×4=(﹣0.25×4)2019×4=(﹣1)2019×4=(﹣1)×4=﹣4.故选:B.9.解:(﹣2x﹣y)(2x﹣y)=﹣(2x+y)(2x﹣y),能用平方差公式进行计算;(﹣2x﹣y)(2x+y)=﹣(2x+y)2,不能用平方差公式进行计算;(2x﹣y)(y﹣2x)不能用平方差公式进行计算;(2x﹣y)(2x﹣y)=(2x﹣y)2,不能用平方差公式进行计算.故选:A.10.解:42020×(﹣0.25)2019=42019×=[4×]2019×4=﹣1×4=﹣4,故选:B.二.填空题11.解:a(a﹣b)+b(a﹣b)=a2﹣ab+ab﹣b2=a2﹣b2.故答案为:a2﹣b2.12.解:移项,得3x>﹣15,∴x>﹣5.2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1).故答案为:x>﹣5,2(x+1)(x﹣1).13.解:当(x﹣1)x+1=1时,x=﹣1时也成立,故①错误;(x﹣1)(x2+ax+1)=x3+ax2+x﹣x2﹣ax﹣1=x3+(a﹣1)x2+(1﹣a)x﹣1,∵(x﹣1)(x2+ax+1)的运算结果中不含x2项,∴a﹣1=0,解得:a=1,故②错误;∵a+b=10,ab=24,∴(a﹣b)2=(a+b)2﹣4ab=102﹣4×24=4,∴a﹣b=2或a﹣b=﹣2,故③正确;∵4x=a,8y=b,∴22x=a,23y=b,∴22x﹣3y==,故④正确;故答案为:③④.14.解:根据题意得:(x+m)(2﹣x)=2x﹣x2+2m﹣mx,∵x+m与2﹣x的乘积中不含x的一次项,∴m=2;故答案为:2.15.解:∵m+n=2,mn=1,∴m3n+mn3+2m2n2=mn(m2+2mn+n2)=mn(m+n)2=1×22=4.故答案为:4.三.解答题16.解:(1)原式=(x+3)(x﹣3);(2)原式=2(4m2﹣4mn+n2)=2(2m﹣n)2.17.解:(1)因为a+b=2,ab=﹣24,所以a2+b2=(a+b)2﹣2ab=4+2×24=52;(2)因为a+b=2,ab=﹣24,所以(a+1)(b+1)=ab+a+b+1=﹣24+2+1=﹣21;(3)因为a+b=2,ab=﹣24,所以(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=4+4×24=100.18.解:根据题意得:(3a+b﹣a)(2a+b﹣a)=(2a+b)(a+b)=2a2+3ab+b2(平方米),则绿化的面积是(2a2+3ab+b2)平方米;当a=3,b=2时,绿化面积是:2×32+3×3×2+22=40(平方米).19.解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.20.解:(1)92﹣72=81﹣49=32,32是8的4倍;(2)设两个连续奇数为2n+1,2n﹣1(其中n为正整数),则它们的平方差是8的倍数;(2n+1)2﹣(2n﹣1)2=(2n+1﹣2n+1)(2n+1+2n﹣1)=2×4n=8n,故两个连续奇数的平方差是8的倍数.延伸:82﹣62=64﹣36=28,两个连续偶数的平方差是4的倍数.。
因式分解的“八个注意”事项及“课本未拓展的五个的方法”在因式分解这一章中,教材总结了因式分解的四个步骤,可概括为四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”然而在初学因式分解时,许多同学在解题中还是会出现一些这样或那样的错误,或者都学透了,但是试卷上给出的题目却还是不会分解,本文提出以下“八个注意”事项及“五大课本未总结的方法”,以供同学们学习时参考。
一、“八个注意”事项(一)首项有负常提负例1把-a2-b2+2ab+4分解因式。
解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)这里的“负”,指“负号”。
如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
防止出现诸如-a2-b2=(-a+b)(-a-b)的错误。
(二)各项有公先提公例2因式分解8a4-2a2解:8a4-2a2=2a2(4a2-1)=2a2(2a+1)(2a-1)这里的“公”指“公因式”。
如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式。
防止出现诸如4a4-a2=(2a2+a)(2a2-a)而又不进一步分解的错误.(三)某项提出莫漏1例3因式分解a3-2a2+a解:a3-2a2+a=a(a2-2a+1)=a(a-1)2这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。
防止学生出现诸如a3-2a 2+a=a(a 2-2a)的错误。
(四)括号里面分到“底”。
例4 因式分解x 4-3x 2-4解:x 4+3x 2-4=(x 2+4)(x 2-1)=(x 2+4)(x +1)(x -1)这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。
即分解到底,不能半途而废的意思。
因式分解教案模板(10篇)因式分解教案 1教学目标:1、进一步巩固因式分解的概念;2、巩固因式分解常用的三种方法3、选择恰当的方法进行因式分解4、应用因式分解来解决一些实际问题5、体验应用知识解决问题的乐趣教学重点:灵活运用因式分解解决问题教学难点:灵活运用恰当的因式分解的方法,拓展练习2、3教学过程:一、创设情景:若a=101,b=99,求a2-b2的值利用因式分解往往能将一些复杂的运算简单化,那么我们先来回顾一下什么是因式分解和怎样来因式分解。
二、知识回顾1、因式分解定义:把一个多项式化成几个整式积的形式,这种变形叫做把这个多项式分解因式.判断下列各式哪些是因式分解?(让学生先思考,教师提问讲解,让学生明确因式分解的概念以及与乘法的关系)(1)._2-4y2=(_+2y)(_-2y)因式分解(2).2_(_-3y)=2_2-6_y整式乘法(3).(5a-1)2=25a2-10a+1整式乘法(4)._2+4_+4=(_+2)2因式分解(5).(a-3)(a+3)=a2-9整式乘法(6).m2-4=(m+4)(m-4)因式分解(7).2πR+2πr=2π(R+r)因式分解2、规律总结(教师讲解):分解因式与整式乘法是互逆过程.分解因式要注意以下几点:(1).分解的对象必须是多项式.(2).分解的结果一定是几个整式的乘积的形式.(3).要分解到不能分解为止.3、因式分解的方法提取公因式法:-6_2+6_y+3_=-3_(2_-2y-1)公因式的概念;公因式的求法公式法:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2+2ab+b2=(a+b)24、强化训练教学引入师:教材在《四边形》这一章《引言》里有这样一句话:把一个长方形折叠就可以得到一个正方形。
现在请同学们拿出一个长方形纸条,按动画所示进行折叠处理。
动画演示:场景一:正方形折叠演示师:这就是我们得到的正方形。
下面请同学们拿出三角板(刻度尺)和圆规,我们来研究正方形的几何性质—边、角以及对角线之间的关系。
2023年初高中衔接素养提升专题课时检测第一讲因式分解的拓展(精练)(解析版)(测试时间60分钟)一、单选题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2022·浙江金华·二模)下列多项式中,在实数范围内不能进行因式分解的是()A .24a -B .269a a ++C .216a +D .2961a a -+【答案】C解:A、()()2422,a a a -=+-故不符合题意.B、()22693,a a a ++=+故不符合题意.C、216a +,不能分解,故符合题意.D、()2296131,a a a -+=-故不符合题意.故选:C.2.(2023·甘肃二模)下列因式分解正确的是()A .22()()-=+-a b ab a a b a b B .22(21)(21)(21)--=+--+a b a b a b C .3222()-+=-a ab ab a a b D .2222244(2)-+=-a b a b a a b 【答案】B【解析】【分析】对各选项进行因式分解后进行判断即可.【详解】解:A 中()22()()a b ab ab a b a a b a b -=-≠+-,错误,故不符合题意;B 中22(21)(21)(21)--=+--+a b a b a b ,正确,故符合题意;C 中()32222()22a ab ab a a b b a a b -+=-+≠-,错误,故不符合题意;D 中()2222222()4422a b a b a a b ab -+=-≠-,错误,故不符合题意;故选B.3.(2022·江苏·泰州市第二中学附属初中七年级期中)将多项式2224912x y z yz ---分解成因式的积,结果是()A .(23)(23)x y z x y z +---B .(23)(23)x y z x y z ---+C .(23)(23)x y z x y z +++-D .(23)(23)x y z x y z ++--【答案】D【解析】原式)32)(32()32()1294(22222z y x z y x z y x yz z y x --++=+-=++-=.4.(2022银川一中初中七年级期中)要是二次三项式26x x m -+在整数范围内可因式分解,则正整数m 的取值可以有()A .2个B .3个C .5个D .6个【答案】B【解析】6=1+5,6=2+4,6=3+3,∴9,8,5=m .5.(2022秋·河北邢台·八年级统考期末)计算1−×1−×1−×1×1−).A .512B .12C .712D .1130【答案】C 【分析】原式各括号利用平方差公式变形,约分即可得到结果.【详解】原式=1×1+×1×1×1−×1+×1−×1+×1−×1=12×32×23×43×34×54×45×65×56×76,=12×76,=712,故选:C.二、填空题6.已知正数a 、b 、c 满足ab +a +b =bc +b +c =ac +a +c =3,则(a +1)(b +1)(c +1)=_________.【答案】8【解析】4111=+++=+++=+++c a ac c b bc b a ab ,即4)1)(1()1)(1()1)(1(=++=++=++c b c a b a ,∴2111=+=+=+c b a .7.因式分解22(34)(6)24x x x x +---+=_________.【答案】)8)(2)(3(2-+-+x x x x 【解析】原式=24)4)(3)(2)(1(24)3)(2)(1)(4(++-+-=+-+-+x x x x x x x x 24)2(10)2(24)12)(2(22222+-+--+=+-+-+=x x x x x x x x)8)(2)(3()8)(6(222-+-+=-+-+=x x x x x x x x .8.(2021·上海市第四中学八年级阶段检测)在实数范围内因式分解3x 2+6x ﹣2=____.【答案】3(x x +解:令212333620,33x x x x --++-=⇒==所以2113623()()x x x x x x +-=--⇒233333623()()3()()3333x x x x x x --+-=--=+-+三、解答题(解答时应写出文字说明、证明过程或演算步骤)9.(2020·广东·华南师范大学中山附属中学八年级期中)分解因式:(1)221632a a -+(2)22414x xy y --+【答案】(1)()224a -;(2)()()2121x y x y -+--.【解析】(1)221632a a -+,=()22816a a -+,=()224a -;(2)22414x xy y --+,()224=41x xy y -+-,()2=x-2y -1,()()=x 2121y x y -+--.10、已知a 、b 、c 是△ABC 的三条边,且满足2220a b c ab bc ac ++---=,试判断△ABC 的形状.【解析】两边同乘2,得:022*******=---++bc ac ab c b a ,即0)()()(222=-+-+-c a c b b a ,∴c b a ==.【答案】等边三角形11.(2022·江苏·泰州市第二中学附属初中七年级期中)先阅读下面的内容,再解决问题:问题:对于形如222x xa a ++,这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x xa a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x xa a +-中先加上一项2a ,使它与22x xa +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2222222323x xa a x xa a a a +-=++--()22()4x a a =+-22()(2)x a a =+-(3)()x a x a =+-像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.利用“配方法”,解决下列问题:(1)分解因式:265a a -+;(2)若2211264502a b a b m c +--++-=①当a b m ,,满足条件:248a b m ⨯=时,求m 的值;②若△ABC 的三边长是,,a b c ,且c 边的长为奇数,求ABC ∆的周长【答案】(1)(a -1)(a -5);(2)①4;②14或16【解析】(1)解:a 2﹣6a +5=a 2﹣6a +9﹣4=(a ﹣1)(a ﹣5)(2)∵2211264502a b a b m c +--++-=;∴(a 2﹣12a +36)+(b 2﹣6b +9)+|12m ﹣c |=0∴(a ﹣6)2+(b ﹣3)2+|12m ﹣c |=0∴a ﹣6=0,b ﹣3=0∴a =6,b =3①∵2a ×4b =8m∴26×43=8m ∴26×43=23m 时∴212=23m ∴12=3m ∴m =4;故答案为:4.②由①知,a =6,b =3,∵△ABC 的三边长是a ,b ,c ,∴3<c <9,又∵c 边的长为奇数,∴c =5,7,当a =6,b =3,c =5时,△ABC 的周长是:6+3+5=14,当a =6,b =3,c =7时,△ABC 的周长是:6+3+7=16,12.(2021·四川·成都教育科学研究院附属学校七年级期中)在二次三项式245x x +-先加上一项4,使它与24x x +成为一个完全平方式,然后再减去4,使整个式子的值不变,于是有:()22245444529x x x x x +-=++--=+-.像这种先添一适当项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.请利用“配方法”解决下列问题:(1)已知:2246130x y x y ++-+=,求x y 的值.(2)已知:2,3,a b b c -=-=求222a b c ab bc ca ++---的值.【答案】(1)8-(2)19【解析】(1)解: 2246130x y x y ++-+=2244690x x y y \+++-+=()()22230,x y \++-=20,30,x y \+=-=解得:2,3,x y =-=()328.y x \=-=-(2) 2,3,a b b c -=-=5,a c \-=∴222abc ab bc ca ++---()22212222222a b c ab bc ac =++---()22222212222a ab b a ac c b bc c =-++-++-+()142592=++19=。
因式分解配方法因式分解是一种将复杂的代数式分解为简单的乘积形式的方法。
它在代数学和数学中都是非常重要的。
在本文中,我们将详细介绍因式分解的配方法。
一、因式分解的概念因式分解是将一个代数式表示为多个因式的乘积形式。
这个过程可以被看作是代数式的拆解。
因式分解的简化形式可以大大简化计算的过程,并帮助我们更好地理解和分析代数式的性质。
二、配方法的基本原理配方法也称为配方,是一种利用两个数的乘积等于一个给定的数,并将给定的代数式表示为这两个数的和或差的平方的形式的方法。
通常,配方法的步骤如下:1.首先,观察代数式中是否有一些特定的形式。
这些特定的形式通常是两个单项式的乘积,其中一个单项式是平方的形式。
2.然后,根据观察到的特定形式选择相应的配方法。
3.运用配方法将代数式分解为两个因式的乘积形式。
这些因式通常是两个单项式的和或差。
4.最后,将分解后的代数式进行检验和整理,以确保分解的正确性。
三、配方法的应用举例下面我们通过几个例子来说明配方法的应用。
例1:将代数式x^2+6x+9进行因式分解。
首先,观察到x^2+6x+9是一个完全平方,可以写成(x+3)^2的形式。
因此,代数式可以分解为(x+3)(x+3)。
例2:将代数式x^2-13x+36进行因式分解。
观察到36可以分解为6*6,而13可以写成2*6+1的形式。
因此,代数式可以分解为(x-2)(x-6)。
例3:将代数式x^2+2x-35进行因式分解。
观察到35可以分解为5*7,而2可以写成5-3的形式。
因此,代数式可以分解为(x+7)(x-5)。
例4:将代数式x^2-10x+25进行因式分解。
观察到25可以写成5^2的形式,且10可以写成5*2的形式。
因此,代数式可以分解为(x-5)(x-5)。
通过这些例子,我们可以看到配方法的应用是非常灵活和多样的,我们需要根据具体的代数式结构选择相应的配方法。
在实践中,我们可以通过观察和试验来找到合适的配方法。
四、进一步拓展配方法不仅适用于简单的二次方程的因式分解,还可以应用于更复杂的代数式的因式分解。
因式分解教案(优秀5篇)初二数学因式分解教案篇一1、shouldshould是情态动词,意为“应当,应该”。
表示义务、责任,可用于各种人称,无人称和数的变化,也不能单独作谓语,只能和主要动词一起构成谓语,表示说话人的语气和情态;否定形式为should not,缩写为shouldn’t。
其主要用法有:(1)表示责任和义务,意为“应该”。
You should take your teacher’s advice.你应该听从你老师的建议。
You shouldn’t be late for class.你不应该上课迟到。
(2)表示推断,意为“可能,该”。
The train should have already left.火车可能已经离开了。
(3)当劝某人做或不做某事时,常用should do sth.或shouldn’t do sth.,比must和ought to 更加委婉。
You should brush your teeth vefore you go to bed.你在睡觉前应该刷牙。
2、need(1)need作实义动词,意为“需要,必然”,有人称、时态及数的变化。
sb./sth.需要某人/某物need+ to do sth.需要做某事doing需要(被)做He needs some help.他需要些帮助。
You didn’t need to come so early.你不必来这么早。
The flowers need watering.花需要浇水。
(2)need也可作情态动词,意为“需要,必须”,没有人称、数和时态的变化,后接动词原形,多用于否定句和疑问句中。
He need not go at once.他不必立刻走。
Need he go at once?他必须立刻走吗?用must提问的句子,其否定回答常用needn’t。
— Must he hand in his homework this morning?他必须今天上午交作业吗?— No, he needn’t.不,不必了。
2023年初高中衔接素养提升专题讲义第一讲因式分解的拓展(精讲)(解析版)【知识点透析】因式分解定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【方法精讲】一.提公因式法提取公因式法:把一个多项式各项都有的公因式提到括号外边来.符号语言:)(c b a m mc mb ma ++=++【例1】因式分解3(2)(2)x x x ---.【解析】提取公因式,原式=)13)(2(+-x x .【变式】因式分解324(1)2(1)q p p -+-.【解析】提取公因式,原式=)424()1(]2)1(4[)1(22pq q p p q p -+-=+--.【例2】计算9879879879871232684565211368136813681368⨯+⨯+⨯+⨯.【解析】原式=987)521456268123(1368987=+++⨯.【变式1】(2022·广东汕头·一模)已知4m n +=,5mn =-,则22m n mn +=________.【答案】20-【解析】∵m +n =4,mn =-5,∴m 2n +mn 2=mn (m +n )=-5×4=-20.故答案为:-20.【变式2】(2022·湖南娄底·七年级期中)因式分解:2229612abc a b abc -+;【答案】()23324ab c ab c -+【解析】:()222296123324abc a b abc ab c ab c -+=-+;二.公式法公式法:利用乘法公式的逆变换对多项式进行因式分解.常见的公式如下:(1)a 2-b 2=_))((b a b a -+_;(平方差公式)(2)a 2±2ab +b 2=_2)(b a ±_;(完全平方公式(两个数))(3)a 3±b 3=_))((22b ab a b a +± _;(立方和差公式)(4)a 3±3a 2b +3ab 2±b 3=_3)(b a ±_;(完全立方公式)(5)a 2+b 2+c 2+2ab +2bc +2ac =_2)(c b a ++_;(完全平方公式(三个数))【例3】因式分解22(2)(31)a a +--.【解析】法一:原式=)14)(23()132)(132(+-=+-+-++a a a a a a 法二:原式=)14)(23(310816944222+-=++-=-+-++a a a a a a a a .【变式】(2022·福建省泉州实验中学八年级期中)因式分解:(1)42−16+16;(2)2−+16−.【答案】(1)4−22;(2)−+4−4【解析】(1)先提取公因式,再利用完全平方公式分解即可求解;(2)先进行公式变形为2−−16−,再提取公因式,最后用平方差公式分解即可(1)解:42−16+16=42−4+4=4−22;(2)解:2−+16−=2−−16−=−2−16=−+4−4;【例4】.(2022·上海外国语大学尚阳外国语学校七年级阶段检测)多项式的乘法公式中,除了平方差公式,完全平方公式之外,还有立方和公式与立方差公式如下:立方和公式:()()2233a b a ab b a b+++=+立方差公式:()()2233a b a ab b a b -++=-如果把公式逆运用,则成为因式分解中的立方和与立方差公式.根据以上材料,请完成下列问题:(1)因式分解:99a b +(2)因式分解:66a b -(3)已知:6631a b ab a b +==+,,的值【答案】(1)(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)(a −b)(a+b)(a 4+a 2b 2+b 4).(3)322【详解】(1)因式分解:a 9+b 9=(a 3)3+(b 3)3=(a 3+b 3)(a 6−a 3b 3+b 6)=(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)因式分解:a 6−b6=(a 2)3−(b 2)3=(a 2−b 2)(a 4+a 2b 2+b 4)=(a −b)(a+b)(a 4+a 2b 2+b 4);(3)∵a+b=3,ab=1,∴a 2+b 2=(a+b)2−2ab=7,∴a 6+b 6=(a 2+b 2)(a 4−a 2b 2+b 4)=[(a+b)2−2ab][(a 2+b 2)2−2a 2b 2−a 2b 2]=7×(49−3×1)=322.【变式1】因式分解52(2)(2)x x y x y x -+-.【答案】原式=)1)(1)(2(22++--x x x y x x .【解析】原式=)1)(1)(2()1)(2())(2(223225++--=--=--x x x y x x x y x x x x y x 【变式2】分解下列因式(1)38x +(2)34381a b b -【解析】:(1)333282(2)(42)x x x x x +=+=+-+(1)3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++【变式3】分解因式:(1)30.12527b -(2)76a ab -【解析】:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.(1)333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++(2)76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+三.十字相乘法十字相乘法:对于二次三项式或可看作二次三项式的多项式分解因式.【例5】(2022·上海闵行·七年级期中)在因式分解的学习中我们知道对二次三项式2+++B 可用十字相乘法方法得出2+++B =++,用上述方法将下列各式因式分解:(1)2+5B −62=__________.(2)2−4+2+32+6=__________.(3)2−5−−6−2=__________.(4)20182−2017×2019−1=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成−3−+2,然后根据例题分解即可;(3)先化简,将B +62−2改写−3+−2−,然后根据例题分解即可;(4)将2017×2019改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=2+(−+6p +−⋅6=(x -y )(x +6y );(2)解:原式=2+−3−+2+−3−+2=(x -3a )(x -a -2);(3)解:原式=2−5B +B +62−2=2−5B +3−2+=2+−3++−2−+−3+−2−=(x +a -3b )(x -a -2b );(4)解:原式=20182−2018-12018+1−1=201822−20182-1−1=201822+1−20182−1=(20182x +1)(x -1).【例6】.(2023·山东济宁·八年级期末)【知识背景】八年级上册第121页“阅读与思考”中,我们利于因式分解是与整式乘法方向相反的变形这种关系得到:()()()2x p q x pq x p x q +++=++.【方法探究】对于多项式()2x p q x pq +++我们也可这样分析:它的二次项系数1分解成1与1的积;它的常数项pq 分解成p 与q 的积,按图1所示方式排列,然后交叉相乘的和正好等于一次项系数()p q ++.所以()()()2x p q x pq x p x q +++=++例如,分解因式:256x x ++它的二次项系数1分解成1与1的积;它的常数项6分解成2与3的积,按图2所示方式排列,然后交叉相乘的和正好等于一次项系数5.所以()2562(3x x x x ++=++).类比探究:当二次项系数不是1时,我们也可仿照上述方式进行因式分解.例如,分解因式:226x x --.分析:二次项系数2分解成2与1的积;常数项-6分解成-1与6(或-6与1,-2与3,-3与2)的积,但只有当-2与时按如图3所示方式排列,然后交叉相乘的和正好等于一次项系数-1.所以()22623(2)x x x x --=+-.【方法归纳】一般地,在分解形如关于x 的二次三项式2ax bx c ++时,二次项系数a 分解成1a 与2a 的积,分别写在十字交叉线的左上角和左下角;常数项c 分解成1c 与2c 的积,分别写在十字交叉线的右上角和右下角,把1a ,2a ,1c ,2c 按如图4所示方式排列,当且仅当1221a c a c b +=(一次项系数)时,2ax bx c ++可分解因式.即21122()()ax bx c a x c a x c ++=++.我们把这种分解因式的方法叫做十字相乘法.【方法应用】利用上面的方法将下列各式分解因式:(1)256x x -+;(2)21021x x +-;(3)()()22247412x x x x -+-+【答案】(1)(x -2)(x -3)(2)(2x +3)(5x -7)(3)2(2)x -(x -1)(x -3)【解析】(1)256x x -+=(x -2)(x -3).(2)21021x x +-=(2x +3)(5x -7).(3)()()22247412x x x x -+-+=22(44)(43)x x x x -+-+=2(2)x -(x -1)(x -3).【变式1】将下列各式分解因式(1)2615x x --;(2)231310x x -+.【解析】(1)原式=)53)(32(-+x x ;(2)原式=)5)(23(---x x .【变式2】(1)42222459x y x y y --;(2)223129x xy y ++.【答案】(1)原式=)94)(1(222-+x x y ;(2)原式=)33)(3(y x y x ++.【变式3】把下列各式因式分解:(1)226x xy y+-(2)222()8()12x x x x +-++【解析】:(1)222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2)22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-【例7】(提高型):分解因式613622-++-+y x y xy x .【解析】设613622-++-+y x y xy x =)2)(3(n y x m y x +-++,∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x--+++-+)23()(622,∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231mn m n n m ,解得⎩⎨⎧=-=32n m .∴原式=)32)(23(+--+y x y x .【变式】(1)2910322-++--y x y xy x ;(2)6752322+++++y x y xy x .解:原式=)12)(25(-++-y x y x 原式=)2)(32(++++y x y x 四.分组分解法根据多项式各项的特点,适当分组,分别变形,再对各组之间进行整体分解(先部分后整体的分解方法)【例8】.(2022·甘肃省兰州市教育局八年级期中)【阅读学习】课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++;(2)()2222222121(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.【学以致用】请仿照上面的做法,将下列各式分解因式:(1)1ab a b --+;(2)22444x xy y -+-.【拓展应用】已知:7x y +=,5x y -=.求:2222x y y x --+的值.【答案】(1)(1)(1)a b --;(2)(22)(22)x y x y -++-;【拓展应用】45.【详解】(1)1ab a b --+()()()()111ab a b a b =---=--(2)()()()()22222444444422222x xy y x xy y x y x y x y -+-=--+=--=-++-【拓展应用】()()()()222222222x y y x x y x y x y x y --+=-+-=-++∵7x y +=,5x y -=,代入得:原式=()(2)5(72)45x y x y -++=⨯+=.将下列各式分解因式(1)3232()()x x y y +-+;(2)32x x +-.【答案】(1)原式=))((22y x y xy x y x ++++-(2)原式=)2)(1(2++-x x x 【解析】(1)原式=))(())(()()(222233y x y x y xy x y x y x y x -++++-=-+-))((22y x y xy x y x ++++-=;(2)原式=)2)(1()1()1)(1(11223++-=-+++-=-+-x x x x x x x x x .【例9】分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.【变式】(1)323x x +-;(2)222(1)41m n mn n -+-+.【答案】(1)原式=)3)(1(2++-x x x (2)原式=)1)(1(+-+++-n m mn n m mn .【解析】(1)原式=)3)(1(22123++-=-+-x x x x x (2)原式=2222222221214n mn m mn n m n mn m n m -+-++=+-+-)1)(1()()1(22+-+++-=--+=n m mn n m mn n m mn .五.换元法换元法分解因式:是将多项式中的某一部分用新的变量替换,从而使较复杂的数学问题得到简化【例10】.(2022·福建漳州·八年级期中)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,这种方法就是换元法.对于()()22525312x x x x ++++-.解法一:设25x x y +=,则原式()()2231256y y y y =++-=+-()()()()()()()2226156512351y y x x x x x x x x =+-=+++-=+++-;解法二:设22x m +=,5x n =,则原式()()()()211212m n m n m n m n =+++-=+++-()()()()()()()2224356512351m n m n x x x x x x x x =+++-=+++-=+++-.请按照上面介绍的方法解决下列问题:(1)因式分解:()()2241479x x x x -+-++;(2)因式分解:()()()2221x y xy x y xy +-+-+-;(3)求证:多项式()()()()21236x x x x x +++++的值一定是非负数.【答案】(1)(1)()42x -(2)()()2211x y --(3)见解析【解析】(1)解:解法一:设2x x y -=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =-+()42x =-;方法二:设214x m x n +=-=,,则原式()()=69m n m n ++++()()269m n m n =++++()23m n =++()22143x x =+-+()2244x x =-+()42x =-;(2)解:设x y m xy n +==,,则原式()()()2221m n m n =--+-2222421m mn m n n n =--++-+()22221m mn m n =--+-()()22211m m n n =-+++()21m n =--()21x y xy =+--()()2211x y =--;(3)解:()()()()21236x x x x x +++++()()2227656x x x x x =+++++,设26x m x n +==,,则原式()()2=75m n m n n +++221236m mn n =++()26m n =+()2266x x =++,∵()22660x x ++≥,∴()()()()212360x x x x x ++++≥+,∴多项式()()()()21236x x x x x +++++的值一定是非负数.【变式1】将下列各式分解因式(1)221639a b ab ++;【答案】原式=)13)(3(++ab ab (2)22(1)(2)12x x x x ++++-【解析】原式=)5)(2(12)1()1(22222++-+=-+++++x x x x x x x x .)5)(1)(2(2++-+=x x x x .【变式2】(1)x 6-7x 3-8(2)(x +1)(x +2)(x +3)(x +4)+1【解析】(1)原式=)1)(42)(1)(2()1)(8(2233+-+++-=+-x x x x x x x x ;(2)原式=1)65)(45(1)3)(2)(4)(1(22+++++=+++++x x x x x x x x 2222)55(11)55(++=+-++=x x x x .六.配方法【例题11】.(2022·上海·七年级期末)阅读理解:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2223x ax a +-=222223x ax a a a ++--=22()4x a a +-=22()(2)x a a +-=(3)()x a x a +-,像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.请利用“配方法”进行因式分解:(1)2815x x -+;(2)4224a a b b ++.【答案】(1)(3)(5)x x --(2)2222()()a b ab a b ab +++-【解析】(1)原式=28161615x x a -+-+=2(4)1x --=(41)(41)x x -+--=(3)(5)x x --;(2)42244224222a a b b a a b b a b ++=++-=22222()a b a b +-=2222()()a b ab a b ab +++-.七.因式分解的应用【例题12】.(2022·江苏扬州·七年级期中)阅读下列材料:若一个正整数x 能表示成22a b -(a ,b 是正整数,a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解,例如22532=-,所以5是“明礼崇德数”3与2是5的平方差分解;再如:()22222222M x xy x xy y y x y y =+=++-=+-(,x y 为正整数),所以M 也是“明礼崇德数”,(x y +)与y 是M 的一个平方差分解.(1)判断9“明礼崇德数”(填“是”或“不是”);(2)已知()2x y +与2x 是P 的一个平方差分解,求代数式P ;(3)已知2223818N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的k 值,并说明理由.【答案】(1)是(2)222x y y +(3)k =-19【解析】(1)解∶∵22954=-,∴9是“明礼崇德数”;故答案为:是(2)解:()()2222P x y x =+-42242x x y y x =++-222x y y =+;(3)解:2223818N x y x y k =-+-+()()2224436919x x y y k=++-++++()()22223319x y k=+-+++2219k=+-+++∵N 是“明礼崇德数”,∴19+k =0,∴k =-19.【例题13】.已知a b =22a b ab -的值.【答案】【解析】【分析】先利用提公因式法把22a b ab -进行因式分解,再代入计算即可.【详解】解:∵()22a b ab ab a b -=-,又a =b∴a b =-=1ab +=-=,∴()221a b ab ab a b -=-=⨯=【变式1】.(1)因式分解:()()211x x x +-+.(2)先化简,再求值:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭,其中3x =.【答案】(1)1x +;(2)23x x -+,16【解析】【分析】(1)直接提公因式即可;(2)先算括号内的部分,将除法变乘法,最后约分化简后代入求值即可.【详解】(1)原式=()()11x x x ++-=x +1;(2)原式=212(3)22(2)(2)x x x x x x ++⎛⎫+÷ +++-⎝⎭23(2)(2)2(3)x x x x x ++-=⋅++23x x -=+,当3x =时,原式=3233-+16=.【变式2】.(2022·湖北十堰·八年级期末)阅读理解题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n ,依题意得x 2﹣4x +m =(x +3)(x +n ).即x 2﹣4x +m =x 2+(n +3)x +3n ,比较系数得:343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩.∴另一个因式为x﹣7,m的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣1,求另一个因式及k的值;(2)已知2x2﹣13x+p有一个因式x﹣4,则p=.【答案】(1)另一个因式为x+2,k的值为2(2)20(1)解:(1)设另一个因式为x+m,则2x2+3x—k=(2x—1)(x+m),即2x2+3x—k=2x2+(2m—1)x—m,比较系数得:213 mk m-=⎧⎨-=-⎩,解得22 mk=⎧⎨=⎩,∴另一个因式为x+2,k的值为2;(2)解:设另一个因式为(2x+m),由题意,得:2x2﹣13x+p=(x﹣4)(2x+m),则2x2﹣13x+p=2x2+(m﹣8)x﹣4m,∴8134mp m-=-⎧⎨=-⎩,解得520 mp=-⎧⎨=⎩,故答案为:20.。
2019初中数学因式分解的应用拓展创新题型专项训练六(附答案详解)1.如果一个正整数m 能写成m =a 2﹣b 2(a 、b 均为正整数,且a ≠b ),我们称这个数为“平方差数”,则a 、b 为m 的一个平方差分解,规定:F (m )=. 例如:8=8×1=4×2,由8=a 2﹣b 2=(a +b )(a ﹣b ),可得或.因为a 、b 为正整数,解得,所以F (8)=.又例如:48=132﹣112=82﹣42=72﹣12,所以F(48)=或或.(1)判断:6 平方差数(填“是“或“不是“),并求F (45)的值;(2)若s 是一个三位数,t 是一个两位数,s =100x +5,t =10y +x (1≤x ≤4,1≤y ≤9,x 、y 是整数),且满足s +t 是11的倍数,求F (t )的最大值.2.在日常生活中,如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x 4-y 4,因式分解的结果是(x -y )(x +y )·(x 2+y 2),若取x =9,y =9时,则各个因式的值是:(x -y )=0,(x +y )=18,x 2+y 2=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x 3-xy 2,取x =10,y =10时,请你写出用上述方法产生的密码.3.对任意一个正整数m ,如果()1m k k =+,其中k 是正整数,则称m 为“矩数”, k 为m 的最佳拆分点.例如, 56771=⨯+(),则称56是一个“矩数”, 7为56的最佳拆分点. (1)请判断110, 1560为“矩数”吗?如果是,请求出其最佳拆分点,如果不是,请说明理由.(2)把“矩数”p 与“矩数”q 的差记为(),D p q ,其中p q >, (),0D p q >.例如,2045=⨯, 623=⨯,则()20,620614D =-=.若“矩数”p 的最佳拆分点为t 与“矩数”q 的最佳拆分点为s ,当(),8D p q =时,求st的最大值.4.先阅读下面的两则材料,再解答后面的题目.材料1:若一个整数能表示成a2+b2(a,b是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为5=22+12,所以5是“完美数”.材料2:已知x2+y2-2x+4y+5=0,求x+y的值.解:由已知得(x2-2x+1)+(y2+4y+4)=0,即(x-1)2+(y+2)2=0.因为(x-1)2≥0,(y+2)2≥0,它们的和为0,所以必有(x-1)2=0,(y+2)2=0,所以x=1,y=-2.所以x+y=-1.(1)请你写出两个小于10的“完美数”,并判断29是否为“完美数”.(2)已知S=x2+4y2+4x-12y+k(x,y是整数,k是常数),要使S为“完美数”,试求出符合条件的一个k值,并说明理由.5.先阅读下面例题的解法,然后解答问题:例:若多项式2x3-x2+m分解因式的结果中有因式2x+1,求实数m的值.解:设2x3-x2+m=(2x+1)·A(A为整式).若2x3-x2+m=(2x+1)·A=0,则2x+1=0或A=0.由2x+1=0,解得x=-.∴x=-是方程2x3-x2+m=0的解.∴2×(-)3-(-)2+m=0,即--+m=0.∴m=.请你模仿上面的方法尝试解决下面的问题:若多项式x4+mx3+nx-16分解因式的结果中有因式(x-1)和(x-2),求实数m,n的值.6.一个能被11整除的自然数称为“一心一意数”,它的特征是去掉个位数字后,得到一个新数,新数减去原数的个位数字的差能被11整除,若所得差仍然较大不易判断,则可以再把差去掉个位数字,继续进行下去,直到容易判断为此,如:42581去掉个位是4258,4258减去1的差是4257,4257去掉个位后是425,425减去7的差是418,418去掉个位8后是41,41减去8的差是33,显然33能被11整除,所以42581是“一心一意数”. (1)请用上述规律判断2018和20180116是否是“一心一意数”; (2)一个能被66整除的自然数称为“祥和数”,已知一个四位“祥和数”(千位数字是a ,十位数字是b ,百位数字和个位数字都是c ,0<a≤9,0≤b≤9,0≤c≤9),求的值.7.阅读下列材料:(1)解方程: 22412x x x -+=- 解:方程化为: 22530x x -+=. 即化为:(2x-3)(x-1)=0, ∴ 2x-3=0或x-1=0, 解得:x=32或x=1. ∴方程的根为: 132x =, 21x =. (2)求解分式方程的过程是:将分式方程化为整式方程......,然后求解整式方程,然后将整工方程的根代入验根..,舍去增根,得到的根就是原方程的根. 参考上述材料,解决下列问题:(1)解方程:3x =-;(2)若方程3261160x x x -+-=的一个解是x=1,则方程的其他解是__________.8.先阅读材料,再回答问题:分解因式:(a-b)2-2(a-b)+1.解:将“a-b”看成整体,令a-b=M,则原式=M2-2M+1=(M-1)2,再将a-b=M还原,得到:原式=(a-b-1)2.上述解题中用到的是“整体思想”,它是数学中常用的一种思想,请你用整体思想解决下列问题:(1)分解因式:9+6(x+y)+(x+y)2=____________________.(2)分解因式:x2-2xy+y2-1=____________________.(3)若n为正整数,则(n+1)(n+4)(n2+5n)+4的值为某一个整数的平方,试说明理由.9.阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由如图给出了若干个边长为和边长为的小正方形纸片及若干个边长为的长方形纸片,如图是由如图提供的几何图形拼接而得,可以得到请解答下列问题:(1)请写出如图中所表示的数学等式:______________________________;(2)用(1)中所得到的结论,解决下面的问题:已知则的值为_________.(3)①请按要求利用所给的纸片拼出一个长方形,要求所拼出图形的面积为并将所拼出的图像画在的方框中;②再利用另一种计算面积的方法,可将多项式分解因式,即_________.10.一个各位数字都不为0的三位正整数N,现从它的百位、十位、个位上的数字中任意选择两个数字组成两位数若所有这些两位数的和等于这个三位数本身,则称这个三位数为本原数”例如:132,选择百位数字1和十位数字3所组成的两位数为:13和31;选择百位数字1和个位数字2所组成的两位数为:12和21;选择十位数字3和个位数字2所组成的两位数为:32和23,因为13+31+12+21+32+23=132,所以132是“本原数”(1)判断123是不是“本原数”?请说明理由;(2)一个三位正整数,若它的十位数字等于百位数字与个位数学的和,则称这样的三位数为“和中数”.若一个各位数字都不为0的“和中数”是“本原数”,求z与x的函数关系.11.阅读理解:阅读下列材料:已知二次三项式2x2+x+a有一个因式是(x+2),求另一个因式以及a的值解:设另一个因式是(2x+b),根据题意,得2x2+x+a=(x+2)(2x+b),展开,得2x2+x+a =2x2+(b+4)x+2b,所以,解得,所以,另一个因式是(2x−3),a的值是−6.请你仿照以上做法解答下题:已知二次三项式3x2+10x+m有一个因式是(x+4),求另一个因式以及m的值.答案:1.(1)不是;F(45)=或或;(2).解:(1)根据题意,6=2×3=1×6,由6=a2﹣b2=(a+b)(a﹣b)可得,或,因为a,b为正整数,则可判断出6不是平方差数.故答案为:不是.根据题意,45=3×15=5×9=1×45,由45=a2﹣b2=(a+b)(a﹣b),可得或或.∵a和b都为正整数,解得或或,∴F(45)=或或.(2)根据题意,s=100x+5,t=10y+x,∴s+t=100x+10y+x+5∵1≤x≤4,1≤y≤9,x、y是整数∴100≤100x≤400,10≤10≤90,6≤x+5≤9∴116≤s+t≤499∵s+t为11的倍数∴s+t最小为11的11倍,最大为11的45倍∵100x末位为0,10y末位为0,x+5末位为6到9之间的任意一个整数∴s+t为一个末位是6到9之间的任意一个整数①当x=1时,x+5=6∴11×16=176,此时x=1,y=7∴t=71根据题意,71=71×1,由71=a2﹣b2=(a+b)(a﹣b),可得,解得,∴F(t)=②当x=2时,x+5=7∴11×27=297,此时x=2,y=9∴t=92根据题意,92=92×1=46×2=23×4,由92=a 2﹣b 2=(a +b )(a ﹣b ),可得或或解得,∴F (t )= ③当x =3时,x +5=8∴11×38=418,此时x =3,y 没有符合题意的值 ∴11×28=308,此时x =3,y 没有符合题意的值 ④当x =4时,x +5=9∴11×39=429,此时x =4,y =2 ∴t =24根据题意,24=24×1=12×2=8×3=6×4,由24=a 2﹣b 2=(a +b )(a ﹣b ),可得或或或解得或,∴F (t )=或11×49=539不符合题意综上,F (t )=或F (t )=或F (t )=或F (t )= ∴F (t )的最大值为. 2.101030或103010或301010.解:4x 3-xy 2=x (4x 2-y 2)=x (2x -y )(2x +y ),再分别计算:x =10,y =10时,x ,(2x -y )和(2x +y )的值,从而产生密码.故密码为:101030,或103010,或301010.3.(1)1101560,都是“矩数”且它们的最佳拆分点分别为1039,; (2)34s t = 解:(1)()()110=1010+11560=3939+1⨯⨯,1101560∴,都是“矩数”且它们的最佳拆分点分别为1039,(2)根据题意,得: ()()p t t 1q s s 1=+=+,()()()D p,q t t 1s s 18=+-+=,即22t t s s 8+--= ()()t s t s 18∴-++= t s ,是整数, t s >t s t s 1∴-++,是正整数,且t s t s 1-<++. 81824=⨯=⨯118t s t s -=⎧∴⎨++=⎩或214t s t s -=⎧⎨++=⎩, 解得43t s =⎧⎨=⎩或5232t s ⎧=⎪⎪⎨⎪=⎪⎩t s ,是整数 43t s =⎧∴⎨=⎩ s 3t 4∴=. 4.(1)1和8;29是“完美数”;(2)13.解:(1)∵1=02+12 ,∴1是完美数,∵8=22+22,∴8是完美数,∵29=52+22,∴29是完美数,答:小于10的“完美数”有1和8(答案不唯一),29是完美数.(2)∵S=x 2+4y 2+4x-12y+k=(x+2)2+(2y-3)2+k-13,∴当k=13时,S 是完美数, 5.m=-5,n=20.解:设x 4+mx 3+nx-16=(x-1)(x-2)·C(C 为整式). 若x 4+mx 3+nx-16=(x-1)(x-2)·C=0, 则x-1=0或x-2=0或C=0, 由x-1=0或x-2=0,解得x=1或x=2.∴x=1,x=2都是方程x 4+mx 3+nx-16=0的解. ∴14+m·13+n·1-16=0或24+m·23+n·2-16=0, 即m+n=15①,4m+n=0②, ①②联立解得m=-5,n=20.6.(1)2018不是“一心一意数”;20180116是“一心一意数”;(2)=解:(1)2018去掉个位是201,208减去8的差是200,200去掉个位后是20,20减去0的差是20,20显然不能被11整除,所以2018不是“一心一意数”;20180116去掉个位是2018011,2018011减去6的差是2018005,2018005去掉个位后是201800,201800减去5的差是201795,201795去掉个位5后是20179,20179减去5的差是20174,20174去掉个位是2017,2017减去4的差是2013,2013去掉个位后是201,201减去3的差是198,显然198能被11整除,所以20180116是“一心一意数”; (2)∵是祥和数,∴是66的倍数,即也是2的倍数,也是11的倍数,∴c 是偶数.∵能被11整除的正整数特征被11整除的数的特征是奇位数之和与偶位上的数之和的差能被11整除,∴a +b ﹣2c =11k 且0<a ≤9,0≤b ≤9,0≤c ≤9,∴a +b ﹣2c =11,0≤a +b ≤18,∴c =2,则a +b =15,∴=.7.(1)x=3;(2)x=2,x=3.解:(2)两边平方,得22x 5x 3--=(x-3)2 方程化为: 2x x 12+-=0, 即化为:(x-3)(x+4)=0, ∴ x-3=0或x+4=0, 解得:x=3或x=-4.当x=3时,左=0=右符合题意, 当x=-4时, 7=左,右=-7,舍去, ∴方程的根为: x 3=;(2)由题意知,方程32x 6x 11x 60-+-=包含因式(x-1),32x 6x 11x 6-+-=(x-1)(x 2-5x+6)= (x-1)(x-2)(x-3)=0,∴x=1,x=2,或x=3.故方程其他的解为x=2,x=3.8.(1)(x+y+3)2(2)(x-y+1)(x-y-1) (3)解:(1)9+6(x+y)+(x+y)2= (x+y+3)2,故答案为(x+y+3)2;(2)x2-2xy+y2-1=(x-y)2-1=(x-y+1)(x-y-1),故答案为(x-y+1)(x-y-1);(3)(n+1)(n+4)(n2+5n)+4=(n2+5n+4)(n2+5n)+4设M=n2+5n,则原式=(M+4)M+4=M2+4M+4=(M+2)2将M=n2+5n代入还原,可得原式=(n2+5n+2)2;∵n为正整数,∴(n2+5n+2)2也是正整数,∴(n+1)(n+4)(n2+5n)+4是一个整数的平方.9.(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)45(3)①②(2a+b)(a+b) 解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(2)∵∴=(a+b+c)2-2(ab+bc+ac)=112-2×38=45(3)①如图:②=(2a+b)(a+b)10.(1)123不是“本原数”;理由;(2)z=2x.解:(1)因为13+31+12+21+32+23=132≠123,所以123不是“本原数”.(2)由题意,可得,∴22(x+x+z+z)=100x+10(x+z)+z,∴33z=66x,∴z=2x.11.另一个因式是(3x-2),m 的值是-8 解:设另一个因式是(3x+b),根据题意,得3x2+10x+m=(x+4)(3x+b),展开,得3x2+10x+m =3x2+(b+12)x+4b,所以,解得,。
第二讲 分解方法的拓展
一、换元法和主元法
【例1】 分解因式:10)3)(4(2424+++-+x x x x = .
思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.
【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).
A .(y -z)(x+y)(x -z)
B .(y -z)(x -y)(x +z)
C . (y+z)(x 一y)(x+z)
D .(y 十z)(x+y)(x 一z)
思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.
【例3】把下列各式分解因式:
(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (2)1999x 2一(19992一1)x 一1999;
(3)(x+y -2xy)(x+y -2)+(xy -1)2; (4)(2x -3y)3十(3x -2y)3-125(x -y)3.
【例4】把下列各式分解因式:
(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.
练习
1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .
2.分解因式:(x 2+x+1)(x 2+x+2)-12= .
3.分解因式:x 2-xy -2y 2-x -y= .
4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .
5.将多项式3224--x x 分解因式,结果正确的是( ).
A .)1)(3(22-+x x
B .)3)(1(22-+x x
C .)1)(1)(3(2+-+x x x
D .)3)(3)(1(2+-+x x x
6.下列5个多项式:
①12222---b a b a ;②322327279a xa ax x -+-;③b d c c b d y d c b x 222)()(-+-----+;④
)(6)(3m n n n m m -+- ;⑤x x 4)2(2+-
其中在有理数范围内可以进行因式分解的有( ).
A .①、②、③
B .②、③ 、④
C .①③ 、④、⑤
D .①、②、④
7.下列各式分解因式后,可表示为一次因式乘积的是( ).
A .2727923-+-x x x
B .272723-+-x x x
C .272734-+-x x x
D .279323-+-x x x
8.若51
-=+b a ,13=+b a ,则53
912322+++b ab a 的值为( ).
A .92
B .32
C .54
D .0
9.分解因式
(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;
(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;
(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .
10.分解因式:12)5)(3)(1(2+++-x x x = .
11.分解因式:22635y y x xy x ++++= .
12.分解因式:333)()2()2(y x y x -----= .
14.613223+-+x x x 的因式是( )
A .12-x
B .2+x
C .3-x
D .12+x
E .12+x
15.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )
A .M<N
B .M> N
C .M =N
D .不能确定
16.把下列各式分解因式:
(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ;
(3)2)1()21
(2)3()1(-+-++-+++y x y x xy xy xy ;
(4)4242410)13)(14(x x x x x ++++-; (5)z y xy xyz y x z x x 222232242-++--.
17.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长). 求证:b c a 2=+
二、配方法与待定系数法
【例1】分解因式:344422-+--y y x x = .
【例2】如果823+++bx ax x 有两个因式x+1和x+2,则a+b =( ).
A .7
B .8
C .15
D .2l
【例3】把下列各式分解因式:
(1)1724+-x x ; (2)22412a ax x x -+++;
(3)24222)1()1(2)1(y x y x y -++-+; (4)1232234++++x x x x
【例4】k 为何值时,多项式253222+-++-y x ky xy x 能分解成两个一次因式的积?
1.44+a d 分解因式的结果是( )
A .)22)(22(22+--+a a a a
B .)22)(22(22---+a a a a
C .)22)(22(22--++a a a a
D .)22)(22(22+-++a a a a
2.把下列各式分解因式:
(1)4416b a +; (2)4224y y x x ++;
(3)2222)()1(x x x x ++++ (4)))((4)(2b a c b a c ----;
(5)893+-x x ; (6)65223--+x x x
3.已知522++x x 是b ax x ++24的一个因式,求b a +的值.
4.已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则a = .
5.一个二次三项式的完全平方式是b ax x x x +++-23476,那么这个二次三项式是 . 6、(1)求证:8l 7一279—913能被45整除;
(2)证明:当n 为自然数时,2(2n+1)形式的数不能表示为两个整数的平方差;
(3)计算:)
41
9)(417)(415)(41
3)(411()
41
10)(418)(416)(414)(412(4444444444++++++++++。