2.1整式(教学设计)
- 格式:doc
- 大小:90.50 KB
- 文档页数:6
《2.1整式——单项式》教学设计课程名称《2.1整式—单项式》授课人邓列云学校名称广西玉林兴业县城隍二中教学对象七年级科目数学课时安排1课时一、教材分析本节课选自人教版数学七年级上册2.1整式—单项式节,本章属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域。
整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式、单项式系数和单项式次数的概念,为进一步学习多项式、整式的加减做充分的准备。
二、教学目标及难重点(知识与技能,方法和过程,情感态度与价值观)教学目标:知识与技能:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3. 会用含字母的式子表示具体问题中的数量关系,理解字母表示数的重要意义。
过程与方法:经历从具体情境中抽象出单项式的概念的培养。
情感、态度与价值观:经历概念的形成过程,培养学生自主探索知识和合作交流能力。
教学重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
教学难点:单项式概念的建立。
三、教学策略选择与设计1、引导——探究式,即通过实际问题引出课题。
2、师生合作交流总结单项式、单项式的系数、次数等概念。
3、通过例题、练习巩固基础知识。
4、小结。
5、布置作业。
四、教学环境及设备、资源准备1、认真学习课本内容,并能充分利用学习辅助资料,拓宽知识面。
2、首先认真观察、思考老师提出的问题,为以下的学习做好准备。
3.课堂上利用多媒体,对学生的练习进行展示,并将学生自己的学习成果在课堂上也可以展示出来,这样可以节约时间,提高课堂效率。
五、教学过程教学环节教师活动学生活动设计意图活动一、创设情境导入新课活动二:推进新课1、出示引言中的问题(1)青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时。
请根据这些数据回答问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?1、先填空,再请说出你所列式子有什么特点。
2.1.2整式一、教学目标:1.通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念;2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力;3.由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新;体会类比和逆向思维的数学思想.二、教学重点、难点:重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
三、学法与教学用具:学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标。
教学用具:投影仪四、教学过程:(一)创设情景,揭示课题列代数式:(1)长方形的长与宽分别为a、b,则长方形的周长是;(2)某班有男生x人,女生21人,则这个班共有学生人;(3)图中阴影部分的面积为_______;(4)鸡兔同笼,鸡a只,兔b只,则共有头个,脚只.2.观察以上所得出的四个代数式与上节课所学单项式有何区别.(1)2(a+b);(2)21+x;(3)a+b;(4)2a+4b.列代数式:(二)研探新知1.多项式:上面这些代数式都是由几个单项式相加而成的.像这样,几个单项式的和叫做多项式(polynomial).在多项式中,每个单项式叫做多项式的项(term).其中,不含字母的项,叫做常数项(constant term).例如,多项式有三项,它们是-2x,5.其中5是常数项.一个多项式含有几项,就叫几项式.多项式里,次数最高项的次数,就是这个多项式的次数.例如,多项式是一个二次三项式.注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号.1.例题:例1 判断:①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;②多项式3n4-2 n 2+1的次数为4,常数项为1.例2 指出下列多项式的项和次数:(1)3x-1+3x2;(2)4x3+2x-2y2.解:略.例3 指出下列多项式是几次几项式.(1)x 3-x+1;(2)x 3-2 x 2 y 2+3 y 2.解:略.整式的定义:单项式与多项式统称整式例4 已知代数式3 x n-(m-1)x+1是关于x的三次二项式,求m、n的条件.解:略.(三)巩固深化,反馈矫正①填空:-a2b-ab+1是次项式,其中三次项系数是,二次项为,常数项为,写出所有的项.②已知代数式2x2-mnx2+y2是关于字母x、y的三次三项式,求m、n的条件.①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几.(四)归纳小结这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统.(五)作业布置P59 练习题3,4。
2.1.1整式一、教学目标:1.理解单项式及单项式系数、次数的概念;2.会准确迅速地确定一个单项式的系数和次数;3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识;通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.二、教学重点、难点:重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.三、学法与教学用具:学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学用具:投影仪四、教学过程:(一)创设情景,揭示课题1.列代数式(1)若正方形的边长为a,则正方形的面积是;(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为;(3)若x表示正方形棱长,则正方形的体积是;(4)若m表示一个有理数,则它的相反数是;(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款元.2.请学生说出所列代数式的意义.3.请学生观察所列代数式包含哪些运算,有何共同运算特征.(二)研探新知1.单项式:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,如a2.练习:判断下列各代数式哪些是单项式?(1)mn;(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.3.单项式系数和次数:以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.4.例题:例1 判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x +1; ② x1; ③πr 2; ④-a 2b . 答:①不是,因为原代数式中出现了加法运算;②不是,因为原代数式是1与x 的商;③是,它的系数是π,次数是2;④是,它的系数是-1,次数是3.例2 下面各题的判断是否正确?①-7xy 2的系数是7;②-x 2y 3与x 3没有系数;③-ab 3c 2的次数是0+3+2;④-a 3的系数是-1;⑤-32x 2y 3的次数是7;⑥ πr 2h 的系数是 2.(三)巩固深化,反馈矫正课本P56 练习1,2游戏:规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.(四)归纳小结①单项式及单项式的系数、次数.②根据教学过程反馈的信息对出现的问题有针对性地进行小结.③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.(五)作业布置课本P59 习题2.1 练习1,2。
2.1 整式(第3课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减”2.1整式第3课时,内容包括多项式的概念,多项式的项数和次数的概念.2.内容解析多项式是在学生学习了单项式的基础上进一步学习的.通过本节课的学习让学生理解多项式的概念,并使学生能准确地确定一个多项式的次数和项数.通过多项式的学习加深对整式的认识.多项式既是学生学过单项式后的延续和拓展,又是后续研究整式的加减运算的基础.此外也可以用来表示数学关系以及解决相关的实际问题,它是整个初中数学中起着承上启下作用的核心知识之一.基于以上分析,确定本节课的教学重点为:多项式以及有关概念.二、目标和目标解析1.目标(1)理解多项式、多项式的项和次数、整式的概念;(2)会用多项式表示简单的数量关系,并根据多项式中字母的值求多项式的值;(3)会用整式解决简单的实际问题,体会用整式表示数量关系的简洁性和一般性.2.目标解析达成目标(1)的标志是:会根据概念判断多项式,能确定多项式的项、项数和次数,并能说出判断的依据,能举例说明.达成目标(2)的标志是:会分析简单实际问题中的数量关系,并能够正确地用多项式表示数量关系.目标(3)是“内容所蕴含的思想方法”,学生需要在分析多项式结构特征过程中,经历由特殊(具体)到一般(抽象)的认识过程,感受多项式是一种重要的数学式子,从中提高观察、分析、归纳、概括能力.学生需要从列多项式的过程中,进一步感受整式中的字母表示数,整式可以表示实际问题中的数量关系,整式更具有简洁性和一般性.三、教学问题诊断分析七年级的学生注意力易分散,学习新的知识需要较长的理解过程,就本节课知识而言,容易将单项式与多项式的相关概念混淆,所以教学中教师应予以简单明了、深入浅出地分析,带着学生去发现和探究新知识,以问题的提出、问题的解决为主线,同时要创造条件和机会,让学生发表见解,发挥学生学习的主动性,提高学习的积极性.基于以上分析,确定本节课的教学难点为:准确确定多项式的次数和项,并且掌握单项式和多项式次数之间的联系和区别.四、教学过程设计(一)复习巩固,引入新课问题1:什么叫单项式?单项式的系数和次数?由数与字母的乘积组成的代数式叫做单项式.单项式中的数字因数,叫作单项式的系数一个单项式中,所有字母的指数的和,叫做这个单项式的次数.问题2:填空:1. 单项式-5y 的系数是_____,次数是_____.2. 单项式a 3b 的系数是_____,次数是_____.3. 单项式32ab 的系数是_____,次数是____. 4. 5x 2yz 与-15xzy n 是同次单项式,则n = .答案:1. -5;1;2. 1;43. 32;2 4. 2.师生活动:学生讨论,学生代表回答,教师根据学生回答进行评价【设计意图】巩固单项式的相关知识,为形成多项式的概念打下基础,形成对比.(二)新知探究问题3:观察这些式子:v +2.5, v -2.5,3x +5y +2z ,212ab r π-, x 2+2x +18? 它们有什么共同特点?与单项式有什么联系?师生活动:学生小组讨论交流,自由发言回答上面的问题.教师参与小组讨论,并有针对性地进行指导.教师进一步提出问题,以上各式显然不是单项式,它们与单项式有联系吗?教师给出定义:这些式子都可以看作是几个单项式的和.多项式中,次数最高项的次数,叫做这个多项式的次数.多项式中,每个单项式叫做多项式的项.不含字母的项叫做常数项.一个多项式由几个单项式组成,就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2z 可以叫做三项多项式.教师进一步引导学生探究多项式次数的概念.学生可以发挥自己的想象去探究给多项式的次数命名的方法.教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.教师在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.教师总结:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.【设计意图】通过问题引出多项式的概念,进而通过教师的导与学生的学很自然地得出多项式的项数、次数的概念.针对训练:1.判断下列各式哪些是多项式?(1)a ; (2)213x y ; (3)2x -1; (4)x 2+xy +y 2. 解:多项式有(3)和(4).(1)和(2)是单项式.2.多项式x 2+y -z 是单项式___,___,___的和,它是___次___项式.(x 2;y ;-z ;)3.多项式3m 3-2m -5+m 2的常数项是____,二次项是_____,一次项的系数是_____.(-5;m 2;-2;)4. 一个多项式的次数是3,则这个多项式的各项次数( D )A .都等于3B .都小于3C .都不小于3D .都不大于3师生活动:在总结前面知识的基础上,进一步归纳,至此我们学习了单项式和多项式,单项式和多项式统称为整式.教师进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗?学生讨论后回答.教师根据学生回答情况予以点拨、强调.教师点拨:①多项式的项,要包括它前面的性质符号;②对多项式的每一项来讲来,有系数.但对常数项不说系数,对整个多项式来说,没有系数的概念;③多项式的次数是多项式中次数最高的项的次数.【设计意图】通过自主观察、小组讨论交流,分析式子的结构特征,发现共同特点,并通过特征描述,抽象概括出多项式的概念.通过观察、分析每个单项式的结构特征,发现不同点,在此基础上定义多项式的项、项数和次数的概念及整式的概念.在讨论中激发学生参与学习的热情,培养观察、比较、分析、抽象概括的能力.(三)典例分析例1:用多项式填空:(1)温度由t℃下降5℃后是℃;(2)甲数x的13与乙数y的12的差可以表示为_________.解:(1)(t-5);(2)1132x y.例2:如图所示,用式子表示圆环的面积.当R=15 cm,r=10cm时,求圆环的面积(π取3.14 ).解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR2-πr2.当R=15 cm,r=10cm时,圆环的面积(单位:cm2)是:3.14×152-3.14×102=392.5.这个圆环的面积是392.5cm2.针对训练:一个花坛的形状如图所示,这的两端是半径相等的半圆,求:(1)花坛的周长L;(2)花坛的面积S.解:(1)L=2a+2πr.(2)花坛的面积是一个长方形的面积与两个半圆的面积之和,即S=2ar+ πr2.师生活动:学生独立完成例1,例2由教师板书示范.此环节教师应关注学生书写的规范性.【设计意图】从实际问题出发,再次体验多项式的次数、项数的概念,教师从中及时反馈学生的掌握情况,进一步巩固多项式的有关概念,同时体会用字母表示数的意义和学习求多项式的值的方法.(四)当堂巩固1.指出下列多项式的项和次数a 5-a 2b +ab -b 3.解:多项式的项:a 5,-a 2b ,ab ,-b 3;多项式的次数: 5.2.式子3x a+1+4x –2b 是四次二项式,试求a ,b 的值.解:因为式子的次数是四次,所以a +1=4,所以a =3.又因为式子是二项式,所以2b =0,即b =0.所以a =3,b =0.3.下列整式中哪些是单项式?哪些是多项式?是单项式的指出系数和次数,是多项式的指出项和次数:212a b -,427m n ,x 2+y 2-1,x ,32t 3,3π,3x 2-y +3xy 3+x 4-1,2x -y .【设计意图】进一步巩固多项式、多项式的项、项数和次数的概念.(五)能力提升1.多项式112134634n n n n x x x x -++-+-是几次几项式?其中最高次项是哪项?最高次项的系数是多少? 解:n +2次多项式,最高次项是234n x +-, 最高次项系数是34-. 2.多项式-a +2a 2-3a 3+4a 4-5a 5+……第99项是 ,第2022项是 ,第n 项是 . (-99a 99;2022a 2022;(-1)n •n •a n .)3.某公园的门票价格是:成人10元/张;学生5元/张.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式,得10x+5y =10×37+5×15 =445.因此,他们应付445元门票费.【设计意图】提升学生灵活应用多项式及相关的概念解决问题的能力.(六)感受中考1.(3分)(2021•青海2/25)一个两位数,它的十位数字是x,个位数字是y,那么这个两位数是()A.x+y B.10xy C.10(x+y)D.10x+y【解答】解:一个两位数,它的十位数字是x,个位数字是y,这个两位数10x+y.故选:D.2.(8分)(2021•河北20/26)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m本甲种书和n本乙种书,共付款Q元.(1)用含m,n的代数式表示Q;(2)若共购进5×104本甲种书及3×103本乙种书,用科学记数法表示Q的值.【解答】(1)由题意可得:Q=4m+10n;(2)将m=5×104,n=3×103代入(1)式得:Q=4×5×104+10×3×103=2.3×105.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(七)课堂小结1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?【设计意图】通过小结,使学生梳理本节课所学内容,掌握本节课的核心——多项式、多项式的项、项数和次数的概念及整式的概念,体会多项式在实际中的应用,感受由“数”到“式”,由特殊(具体)到一般(抽象)的数学思想.(八)布置作业1.P59:习题2.1:第3、4题;2.P60:习题2.1:第6、7题.五、教学反思在此之前学生已经学习了单项式及单项式的系数、次数的概念,这为过渡到本节的学习起着铺垫的作用.教材遵循“由特殊到一般”的学习规律,先是引进背景比较熟悉的实际问题,从实际问题中抽象出多项式的概念,并且让学生体会到多项式概念的产生源于实际的需要.在本节课中,多项式概念的学习是在单项式的基础上引出来的,着重指出多项式是几个单项式的和.因此,本节课的教学设计是通过比较单项式与多项式之间的异同点,掌握两个概念之间的区别和联系来突出多项式概念的本质,帮助学生理解多项式的概念,以及多项式的项和次数的概念.因而,观察分析、抽象概括、练习巩固成为本节课学习的主要方式.。
2.1 整式(第1课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第二章“整式的加减”2.1整式第1课时,内容包括用含有字母的式子表示数量关系.2.内容解析本节课内容属于“数与代数”领域,是在学习了用字母表示数、简单的列式表示实际问题中的数量关系和简易方程的基础上,进一步研究用含有字母的式子(整式)表示实际问题中的数量关系.整式是初中数学的重要概念,是今后学习分式、二次根式、方程以及函数等知识的基础.理解字母表示数的意义,正确分析实际问题中的数量关系,并用整式表示数量关系,是学习一元一次方程的直接基础.用含有字母的式子表示数量关系,体现了由特殊(具体)到一般(抽象)的数学思想,对发展符号意识具有重要意义.本节课的核心内容是进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并列式表示,由于字母表示数,因而字母可以和数一样参与运算,这正是理解用整式表示数量关系的核心.用含有字母的式子表示数量关系时,需要结合具体情境,分析问题中的数量,寻找数量之间的关系,并依据数量关系用运算符号把数和表示数的字母连接起来.基于以上分析,确定本节课的教学重点为:进一步理解用字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系,感受其中“抽象”的数学思想.二、目标和目标解析1.目标(1)进一步理解用字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系(2)经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识.2.目标解析达成目标(1)的标志是:学生会用字母表示数,认识字母和数一样可以参与运算,能正确分析实际问题中的数量关系,将字母看成数参与运算,列出含有字母的式子.目标(2)是“内容所蕴含的思想方法”,学生需要结合大量的具体问题,分析数量关系并用式子表示,从中体会由实际问题抽象出数学问题,用数学符号表示数量关系的思想,感受式子中的字母表示数,含有字母的式子可以表示实际问题中的数量关系,式子更具有一般性.三、教学问题诊断分析在前面的学习中,主要学习的是数的有关概念和运算,学生习惯用数的相关知识解决实际问题.由“数”到“式”的过程,是一个抽象的过程.虽然学生小学学过用字母表示数,对含有字母的数学式子不会感到生疏,但七年级学生符号意识较弱,分析问题能力有待逐步提高,在具体的问题情境中,对于如何分析问题、寻找相关数量、确定数量之间的关系、用数学符号表达数量关系,学生会感到困难.教学中要通过大量的学生熟悉的实际问题,有针对性地进行引导,充分展示分析数量关系并列式的过程,积累感性认识,丰富学习体验,培养学生解决实际问题的能力.基于以上分析,确定本节课的教学难点为:正确分析实际问题中的数量关系,用式子表示数量关系.四、教学过程设计(一)创设情境,引入课题教师:青藏铁路是世界上海拔最高、线路最长的高原铁路.(展示图片,并结合图片说明.)【设计意图】通过展示图片,吸引学生注意力,激发学生的民族自豪感,引出下面的问题.问题1:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度是120千米/时,请根据这些数据回答:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?追问1:字母t表示时间有什么意义?如果用v表示速度,列车行驶的路程是多少?追问2:回顾以前所学的知识,你还能举出用字母表示数或数量关系的例子吗?师生活动:学生独立回答.教师引导学生归纳:用字母t表示时间,字母t可以像数一样参与运算,并且可以简明表示列车行驶的路程与时间、速度的关系,数与字母相乘或字母与字母相乘,通常将乘号写作“·”或省略不写.【设计意图】让学生经历由数到式的过程,感受从特殊(具体)到一般(抽象)的认识过程,体会用字母表示数的简洁性和必要性,为下面继续学习用含有字母的式子表示数量关系做好方法上的引导.(二)探究关系,解决问题问题2:怎样分析数量关系,并用含有字母的式子表示数量关系呢?例1:(1)苹果原价为每千克p元,按8折优惠出售,用式子表示现价;(2)某产品前年的产量是n件,去年的产量是前年产量的m倍,用式子表示去年的产量;(3)一个长方体包装盒的长和宽都是a cm,高是h cm,用式子表示它的体积;(4)用式子表示数n的相反数;(5)全校学生总数是 x ,其中女生占总数的 48%,则女生人数是____,男生人数是____;(6)一辆长途汽车从杨柳村出发,3h 后到达距出发地 s km 的溪河镇,这辆长途汽车的平均速度是_____km/h ;(7)产量由 m kg 增长 10%,就达到_________kg.师生活动:学生先独立列式,然后同桌交流,学生代表板演展示,教师巡视指导.解:(1)现价是每千克0.8p 元;(2)去年的产量是mn 件,(3)长方体包装盒的体积是a ·a ·h cm ,即a 2h cm 2;(4)数n 的相反数是-n .(5)0.48x ;x -0.48x ;(6)3s ; (7)(m +0.1m ).教师根据学生回答情况进行评价,可以适时追问下面的问题:(1)苹果现价比原价降低了多少元?你能再赋予0.8p 一个含义吗?(2)前年与去年产量的和是多少?去年的产量比前年多多少?你能再赋予mn 一个含义吗?(3)这里数n 一定是正数吗?【设计意图】熟悉用含有字母的式子表示实际问题中的数量关系,理解字母可以像数一样参与运算,为形成单项式的概念进行铺垫,在用数学符号表示数量关系中,感受其中“抽象”的数学思想.针对训练:1.下列含有字母的式子,符合书写规范要求的是( C )A .-1aB .5bC .0.5xyD .(x +y )÷z2.下列表述中,不能表示式子“4a ”的意义的是( D )A .4的a 倍B .a 的4倍C .4个a 相加D .4个a 相乘3.下列用字母表示数所列的式子中,书写规范的是( B )A .m ×12B .4x 3yz ²C . z ÷3D .273mn 例2:(1)一条河的水流速度为2.5 km/h ,船在静水中的速度为v km/h ,用式子表示船在这条河中顺水行驶和逆水行驶时的速度;(2)买一个篮球需要x 元,买一个排球需要y 元,买一个足球需要z 元,用式子表示买3个篮球、5个排球,2个足球共需要的钱数;(3)如下图(图中长度单位:cm ),用式子表示三角尺的面积;(4)如下图是一所住宅的建筑平面图(图中长度单位:m ),用式子表示这所住宅的建筑面积.师生活动:学生先独立列式,然后同桌交流,学生代表板演展示,教师巡视指导.解:(1)顺水行驶和逆水行驶时的速度分别是(v +2.5) km/h ,(v -2.5) km/h ;(2)买3个篮球、5个排球、2个足球共需要(3x +5y +2z )元;(3)三角尺的面积(单位:cm )为212ab r π-; (4)这所住宅的建筑面积(单位:㎡)为x 2+2x +18.教师根据学生回答情况可以适时追问下面的问题:(1)如果船在河中顺水行驶,3h 行驶多少千米?(2)当x =70,y =50,z =80 时,式子 3x +5y +2z 的值是多少?你能再赋予3x +5y +2z 一个含义吗?(3)列式时书写应注意什么?教师归纳:船在河流中行驶时,船的速度需要分两种情况讨论:①顺水行驶时,船的速度=船在静水中的速度+水流速度;②逆水行驶时,船的速度=船在静水中的速度-水流速度.1. 字母与字母相乘时省略乘号,例如:a ×b 可以写成ab ;2. 数字与字母相乘时,数字在前,字母在后,例如:100×t 可以写成100t 、 0.8×m 可以写成0.8m ;3. 1或-1与字母相乘时,1通常省略不写,例如1×a 可以写成a ,-1×a 可以写成-a ;4. 带分数与字母相乘时,把带分数化成假分数,例如312×y 必须写成32y ; 5. 相同字母相乘时应写成幂的形式,例如a ×a 可以写成a ²;6. 出现多个字母时,字母一般按照26个英文字母顺序排列;7. 数与字母相除时,写成分数形式,例如n ÷2可以写成2n ;8. 含有字母的式子表示数量关系时,若结果是加、减关系,有单位的必须把式子用括号括起来,再写单位,例如(2x+1.5y)元.问题3:上面的问题中,既有已知数,又有用字母表示的未知数,字母表示数有什么意义?用含有字母的式子表示数量关系有什么意义?教师归纳:用字母表示数,字母和数一样可以参与运算,可以用式子把数量关系简明地表示出来.列式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言,在形式上更简单,使用上更方便(也把它称为代数式).①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.【设计意图】进一步熟悉用含有字母的式子表示实际问题中的数量关系,体会字母的含义,进一步理解字母可以像数一样参与运算,为形成多项式的概念进行铺垫,在用数学符号表示数量关系中,感受其中“抽象”的数学思想.针对训练:1. 某种商品每袋4.8元,在一个月内的销售量是m 袋,用式子表示在这个月内销售这种商品的收入.2. 圆柱体的底面半径、高分别是r,h,用式子表示圆柱体的体积.3. 有两片棉田,一片有p hm2 (公顷,1 hm2 =104 m2 ),平均每公顷产棉花a kg;另一片有q hm2 ,平均每公顷产棉花b kg,用式子表示两片棉田上棉花的总产量.4. 在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm,小正方形的边长是b mm,用式子表示剩余部分的面积.1. 4.8m元;2.πr2h;3.ap+bq(kg);4.a2-b2(mm2).【设计意图】进一步理解字母表示数的意义,理解用含有字母的数学式子表示实际问题中数量关系的简洁性、必要性和一般性.例3:如图所示,搭一个正方形需要4根火柴棒.(1)按上面的方式,搭2个正方形需要根火柴,搭3个正方形需要根火柴.(2)搭7个这样的正方形需要根火柴.(3)搭100个这样的正方形需要多少根火柴?(4)如果用x 表示所搭正方形的个数,那么搭x 个这样的正方形需要多少根火柴?(5)根据你的计算方法,搭200个这样的正方形需要根火柴棒;搭2022个这样的正方形需要根火柴棒.解:(1)7;10;(2)22;(3)1+3×100;(4)4+3×(x-1);(5)601;6067.师生活动:学生先独立思考,然后小组合作讨论,学生小组代表尝试解答.对于(1),学生应能轻松解决.对于(4),引导学生尝试解释:搭第1个正方形,需要火柴4根;搭第2个正方形,需要火柴4+3×(2-1)根;搭第3个正方形,需要火柴4+3×(3-1)根;搭第4个正方形,需要火柴4+3×(4-1)根;……数量关系是:需要火柴的根数=4+3×(正方形的个数-1);所以搭第x个正方形,需要火柴4+3×(x-1)根;此环节教师应关注:①学生能否通过观察和分析,从中发现规律;②学生得出规律的不同方法;③学生能否将发现的规律用含字母x的式子表示出来教师引导学生妇纳:用整式表示实际问题中的数量关系和变化规律,可以从特殊值入手,借助表格分析,由特殊到一般,由个体到整体地观察、分析问题,发现规律,并用含有字母的式子表示一般的结论,这体现了由特殊(具体)到一般(抽象)的认识规律.【设计意图】借助具体的式子或表格,通过观察、分析、归纳发现规律,并用式子表示数量关系和变化规律,经历由特殊到一般的过程,使学生进一步感受从特殊(具体)到一般(抽象)的认规律,体会用字母便于探索和表达一些规律,字母比数字更具有一般性.(三)当堂巩固1. 用式子表示下列数量(1)5箱苹果重m kg ,每箱重 kg ;(2)一个数比a 的2倍小5,则这个数为 ;(3)全校学生总数是x ,其中女生占总数52%,则女生人数是 ,男生人数是 ;(4)某班有a 名学生,现把一批图书分给全班学生阅读,如果每人分4本,还缺25本,则这批图书共 本;(5)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm ,小正方形的边长是b mm ,则剩余部分的面积为 .2. 用火柴棒按下面方式搭图,填写表格1. (1)5m ;(2)2a -5;(3)0.52x ;0.48x ;(4)(4a -25);(5)(a 2-b 2)mm 2. 2. 7;12;17;22;……;5n +2.【设计意图】进一步提高用含有字母的式子表示实际问题中的数量关系的能力.(四)感受中考1.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)【解答】解:篮球队要买10个篮球,每个篮球m 元,一共需要10m 元,故答案为:10m .2.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A.8x元B.10(100-x)元C.8(100-x)元D.(100-8x)元【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100-x)元.故选:C.3.(2022•杭州)某体育比赛的门票分A票和B票两种,A票每张x元,B票每张y元.已知10张A 票的总价与19张B票的总价相差320元,则()A.10||32019xy=B.10||32019yx=C.|10x-19y|=320D.|19x-10y|=320【解答】解:由题意可得:|10x-19y|=320.故选:C.【设计意图】通过对最近几年的中考试题的训练,使学生提前感受到中考考什么,进一步了解考点.(五)课堂小结教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题:1. 本节课学了哪些主要内容?2. 用字母表示数有什么意义?用含有字母的式子表示数量关系有什么意义?3. 用含有字母的式子表示数量关系时要注意什么?列式时:①数与字母、字母与字母相乘省略乘号;②数与字母相乘时数字在前;③式子中出现除法运算时,一般按分数形式来写;④带分数与字母相乘时,把带分数化成假分数;⑤带单位时,适当加括号.【设计意图】通过小结,进一步巩固、梳理本节课所学用字母表示数的知识,使学生所学知识系统化,形成一个完整的知识体系.(六)布置作业P59:习题2.1:第1题,第2题;P60:习题2.1:第7题.五、教学反思“用字母表示数”这节课,是人教版版七年级上册第二章整式的加减的章节起始课,知识看似浅显,平淡,却在小学数学与初中代数之间起着承上启下的过渡作用.从具体的数到用字母表示数,是由具体的数和运算符号组成的式子过渡到含有字母的式子,是学生学习数学的一个转折点,也是认识过程上的一次飞跃,将为后继学习代数式、方程、函数等相关知识起到铺垫作用,将使学生进一步感受到符号化的数学思想.英国著名哲学家、数学家罗素说过,什么是数学?数学就是符号加逻辑.在教学设计中也注重了符号化思想的渗透,本着由简单到复杂,由具体到抽象的原则,采用了观察思考,合作探究,动手操作等不同的学习方式,同时注重区分“用字母表示数”与下一节课的内容“代数式”的不同要求,重点使学生认识到用字母表示数的优越性,感受到字母以它浓缩的形式,表达大量信息的优点.通过实例了解简单的用字母表示数的方法. 同时关注学生发展,激发学习兴趣,在感受知识价值的同时.融合师生关系,以新的教学理念指导教学行为,做学生学习的引导者,合作者,促进者,坚持“授之以鱼,不如授之以渔”的方针,适时鼓励学生,达到了预期的课堂教学效果.体会用字母能代表一大批具体的数,含有字母的式子能概括地表示数量关系.在提出的问题以后,提示学生想一想,比如题目里的a、b可以表示哪些数.学生最先想到的是如果继续,a、b可以表示任何数,让学生想一想、说一说.多次进行这样的从部分到全体的联想,学生就能体会到字母表示数具有概括性的特征.在学习用字母表示数的书写格式时,先让学生自己写出例题的答案,再与正确答案对照,在认知差异与冲突中形成了新知识,建立了一种符号意识;在规律题的解答中,教师结合多媒体的演示较直观的使学生形成了“一看二猜三验证”的模型思想. 对于规律题的探究是七年级学生的难点,借助多媒体的演示非常直观,适合学生抽象思维较弱的特点,浸润式的详细点拨讲解,使学生慢慢形成了一个解决规律题的模型,在设计时突出“模型思想”的渗透,同时也让学生体会到了从特殊到一般的数学思想.。
七年级(人教版)集体备课教学设计:2.1《整式(1)》一. 教材分析《整式(1)》是人教版七年级数学上册第二单元的第一节内容,本节课主要介绍整式的概念、性质和运算。
教材通过生活中的实际问题引入整式的概念,让学生感受数学与实际的联系,培养学生的数学素养。
整式是初等函数的基本形式,是高中数学的重要内容,对于学生来说,掌握整式的基础知识对于后续学习具有重要意义。
二. 学情分析七年级的学生已经掌握了实数、代数式等基础知识,对于生活中的实际问题有一定的理解能力。
但是,对于整式的概念、性质和运算规则,学生可能还存在一定的困难。
因此,在教学过程中,要注重引导学生从实际问题中抽象出整式的概念,让学生在理解的基础上掌握整式的性质和运算规则。
三. 教学目标1.理解整式的概念,掌握整式的性质。
2.学会整式的加减运算,能够熟练地进行整式运算。
3.培养学生的数学素养,提高学生解决实际问题的能力。
四. 教学重难点1.整式的概念和性质。
2.整式的加减运算规则。
五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生理解整式的概念,感受数学与实际的联系。
2.实例教学法:通过具体的例题,让学生掌握整式的性质和运算规则。
3.小组合作学习:引导学生分组讨论,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,展示生活中的实际问题,引导学生思考。
2.例题:挑选具有代表性的例题,让学生进行练习。
3.小组讨论:提前分组,让学生准备讨论。
七. 教学过程1.导入(5分钟)利用课件展示生活中的实际问题,引导学生思考,从而引入整式的概念。
2.呈现(10分钟)介绍整式的概念、性质和运算规则。
通过具体的例题,让学生掌握整式的性质和运算规则。
3.操练(10分钟)让学生进行整式的加减运算练习,巩固所学知识。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)挑选几道具有代表性的题目,让学生进行解答。
教师点评答案,指出学生的错误,巩固所学知识。
人教版七年级数学上册:2.1《整式》教学设计一. 教材分析《整式》是人教版七年级数学上册第二章的第一节内容,主要介绍了整式的概念、性质和运算。
本节内容是学生从小学数学过渡到初中数学的重要环节,对于培养学生抽象思维能力、逻辑推理能力以及初步解决实际问题的能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号、运算规则等有一定的了解。
但同时,他们对于整式的概念和性质可能还比较陌生,需要通过具体的例子和实际操作来逐步理解和掌握。
此外,学生的学习习惯、思维方式和学习动机等方面也存在差异,因此在教学过程中需要关注学生的个体差异,因材施教。
三. 教学目标1.了解整式的概念、性质和运算规则;2.培养学生抽象思维能力、逻辑推理能力以及解决实际问题的能力;3.培养学生合作交流、积极参与的学习态度和良好习惯。
四. 教学重难点1.整式的概念和性质;2.整式的运算规则;3.运用整式解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究整式的概念和性质;2.使用案例分析法,让学生通过具体例子理解整式的运算规则;3.运用练习法,巩固学生对整式的掌握程度;4.采用小组合作学习法,培养学生合作交流的能力。
六. 教学准备1.准备相关案例和练习题;2.制作多媒体课件,辅助讲解和展示;3.安排适当的时间进行课堂讨论和练习。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些实际问题,引导学生思考如何用数学方法来解决这些问题。
通过让学生观察和分析这些问题,引出整式的概念。
2.呈现(15分钟)讲解整式的定义和性质,引导学生理解整式的概念。
通过示例和讲解,让学生掌握整式的基本性质,如系数、次数等。
3.操练(10分钟)让学生分组讨论,分析给出的案例,运用整式的性质进行分析和解答。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生进行课堂练习,运用所学的整式知识解决实际问题。
教师及时批改和反馈,帮助学生巩固所学知识。
人教版七年级数学上册:2.1《整式》教学设计3一. 教材分析人教版七年级数学上册第2.1节整式是学生在学习了有理数、方程等基础知识后的进一步拓展。
整式的学习不仅为后续的代数学习打下基础,同时也培养学生的抽象思维能力。
本节内容主要包括整式的概念、分类和基本运算,通过学习,学生应能理解整式的定义,掌握整式的加减乘除运算。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数、方程等概念有了一定的了解。
但是,对于整式的理解还需要通过具体的例子和实际操作来加深。
学生在学习过程中,可能对整式的分类和运算规则感到困惑,需要教师通过生动的讲解和丰富的练习来引导学生理解和掌握。
三. 教学目标1.理解整式的定义,掌握整式的分类。
2.能够进行整式的加减乘除运算。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.整式的定义和分类。
2.整式的加减乘除运算规则。
五. 教学方法1.采用直观教学法,通过具体的例子和实际操作,让学生理解整式的概念和运算规则。
2.采用问题驱动法,引导学生主动思考和探索,提高学生的解决问题的能力。
3.采用分组合作学习法,让学生在合作中交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.准备相关的教学PPT,包括整式的定义、分类和运算规则的讲解。
2.准备一些实际的例子,用于解释和引导学生理解整式的概念和运算规则。
3.准备一些练习题,用于巩固学生的学习效果。
七. 教学过程导入(5分钟)教师通过一个实际问题引入整式的概念,如计算“3x^2 + 2x - 1”。
让学生尝试解释这个式子是什么,并引导学生思考如何进行整式的运算。
呈现(10分钟)教师通过PPT讲解整式的定义和分类,并举例说明。
同时,教师引导学生思考整式的运算规则,并展示整式的加减乘除运算的例子。
操练(10分钟)教师给出一些整式的运算题目,让学生独立完成,并互相交流解题思路。
教师在这个过程中给予学生个别化的指导,帮助学生理解和掌握整式的运算规则。
2.1整式(第一课时)1、知识与技能 1)、能用含有字母的式子表示数量关系,理解字母表示数的意义。
2)、理解单项式及其相关的概念。
3)、能用单项式表示实际问题中的数量关系2、过程与方法经历列式表示实际问题中的数量关系,发展符号感,通过观察代数式的特点,发现、归纳、单项式的感念,培养学生的观察、分析、归纳能力。
3、情感态度与价值观1)、通过交流、研究活动,培养学生主动与他人合作的意识。
2)、通过含有字母的式子描述现实世界中的数量关系,认识到它是解决实际问题的重要教学工具之一。
二、教学设想本节属于概念教学课,力图体现概念形成的过程。
本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。
因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。
三、教材分析本章是在学生已有的字母表示数以及有理数运算的基础上展开的。
单项式既是对前面所学知识的深化和发展,也是学习本章其他内容的直接基础,也是以后学习整式乘除、分式和根式运算、方程以及函数等知识的基础。
“整式”一节是“整式的加减”一章的起始课,整式是代数式中最基本的式子,而单项式又是整式中最基础的知识,学习本节内容具有承上启下的作用。
四、重点、难点教学重点:单项式、单项式系数及单项式次数概念。
教学难点:负系数的确定以及准确确定一个单项式的次数。
五、学情分析本节课是研究整式的开始,知识由数向式转化,由具体到抽象,从特殊到一般,与学生的认知基础和思维能力有一定差距,学习中会有一定困难。
为了突出重点,突破难点,教学中要把握以下两点:(1)加强直观性:从学生最近的发展区域为切入点,用足够的感知材料,丰富学生的感性认识,帮助学生认识概念。
(2)注重分析:在剖析单项式结构时,借助变式和反例练习,抓住概念易混处和判断易错处,强化认识。
2.1整式(教学设计)
一、内容及其分析:
1、内容:在实际问题中引出单项式的概念,使学生理解单项式、单项式的系数、单项式的次数,并能确定一个单项式的系数和次数。
2、解析:从生活中的实际问题引入,让学生经历由数字到用字母表示数的过程,再提出问题,让学生列出相应的关系式,学生探究式子特点,从而引出单项式的概念。
通过对问题的解决使学生对单项式有个初步的理解,并归纳总结出单项式的次数和系数等概念。
二、目标及其解析:
教学目标:
1、会用含字母的式子表示具体问题中的数量关系。
思考题1:
①正方形的边长为a,则正方形的周长是_______,面积是________。
②1支铅笔0.5元,买x支应付___________元。
2、理解单项式、单项式的系数、单项式的次数的概念;并能确定一个单项式的系数和次数。
思考题2: -2xy是单项式吗?如果是,那么它的系数是_______,次数是_______。
分析:通过丰富有趣的现实情景,使学生经历从具体问题中抽象出数量关系,在解决问题中了解数学的价值,发展“用数学”的信心。
三、教学问题诊断分析:
1、学生对单项式概念的理解不清,尤其是单个的数和字母也是单项式。
2、单项式的次数和系数的混淆。
解决方法:教师特别强调,让学生重点练习。
四、教学支持条件分析:
1、可利用多媒体课件辅助教学。
五、教学过程设计:
(一)教学基本流程
(二)教学情景
1、复习引入:复习小学已学知识,(用字母代替数,列代数式表示简单的数量关系)。
设计意图:利用学生已有的知识为切入点,创设与整式有关的背景,能使学生由无意注意到有意注意,引起学生对现实世界中的已有知识的回忆与联想,激发学习兴趣与探究热情。
2、学习新课
问题:填空,观察所填式子的特点
(1)边长为x的长方形的周长是__________;
(2)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;
(3)若正方体的的边长是a,则它的表面积是_______,体积是________;
(4)设n是一个数,则它的相反数是________.
设计意图:通过问题激发学生学习数学、解决实际问题的兴趣。
学生活动设计:学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解单项式的概念.所填式子是4x、v t、6a2、a3、-n,特点是都是数字或字母的乘积.
教师活动设计:引导学生在观察的基础上归纳单项式的定义:单项式:由数字或字母乘积组成的式子是单项式.
分析式子4x、v t、6a2、a3、-n得出:
单项式中的数字因数叫作单项式的系数(4x、v t、6a2、a3、-n 的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、v t、6a2、a3、-n的次数分别是1、2、2、3、1).
3、巩固提高
例题1:用单项式填空,并指出它们的系数和次数:
(1)每包书有12册,n包书有___________册;
(2)底边长为a,高为h的三角形的面积是_________;
(3)一个长方体的长、宽都是a ,高是h ,它的体积是________;
(4)一台电视机原价是a 元,现按原价的9折出售,那么这台电视机现在
的售价为______元;
(5)一个长方形的长是0.9,宽是a ,这个长方形的面积是_________. 解:(1)12n ,它的系数为12,次数是1;
(2)ah 12,它的系数是12
,次数是2; (3)a h 2,它的系数是1,次数是3;
(4)0.9a ,它的系数是0.9,次数是1;
(5)0.9a ,它的系数是0.9,次数是1.
设计意图:以例题示范,帮助学生进一步理解概念。
4、目标检测
教材56页练习1、2
设计意图:为学生提供实际演练的机会,加强对已学知识的复习,并检查对新学知识的掌握情况。
5、小结
单项式、单项式的系数、单项式的次数的概念。
设计意图:通过归纳总结,优化学生认知结构。
配餐作业
A 组题:
1、边长为xcm 的正方形的周长为_____________cm ,面积为
____________cm 2。
2、每支铅笔x 元,小红买了五支,共需要花________________元钱。
3、在下列式子:①-1;②23a -;③2x y +;④1x ;⑤2x y π;⑥b a
;⑦0;
⑧3a +b;⑨m 中,是单项式的有
_____________________________________。
4、下列说法中错误的是:( )
A 、数0是单项式;
B 、单项式a 的次数和系数都是1;
C 、221
2x y 是二次单项式;
D 、23ab -的系数是2
3-;
5、下列说法中正确的是:( )
A 、1
x 是单项式;
B 、3
35x y -是三次单项式;
C 、3是1次单项式;
D 、2a -的系数是1
2-;
B 组题:
1、在下列代数式:2x y ,2abc -,30.3m n ,
232a -,22ab -中,三次单项式的个数是( )
A 、1
B 、2
C 、3
D 、4 2、请写出23
223ab c
π-的次数和系数。
设计意图:以分层练习为课堂反馈形式,让不同学生学习不同的数学,达到不同要求,体现因材施教原则。
四、课后反思:。