最小二乘一次完成算法(程序)
- 格式:doc
- 大小:35.00 KB
- 文档页数:2
第3章 线性动态模型参数辨识-最小二乘法3.1 辨识方法分类根据不同的辨识原理,参数模型辨识方法可归纳成三类: ① 最小二乘类参数辨识方法,其基本思想是通过极小化如下准则函数来估计模型参数:min )()ˆ(ˆ==∑=θθLk k J 12ε 其中)(k ε代表模型输出与系统输出的偏差。
典型的方法有最小二乘法、增广最小二乘法、辅助变量法、广义最小二乘法等。
② 梯度校正参数辨识方法,其基本思想是沿着准则函数负梯度方向逐步修正模型参数,使准则函数达到最小,如随机逼近法。
③ 概率密度逼近参数辨识方法,其基本思想是使输出z 的条件概率密度)|(θz p 最大限度地逼近条件0θ下的概率密度)|(0θz p ,即)|()ˆ|(0m a x θθz p z p −−→−。
典型的方法是极大似然法。
3.2 最小二乘法的基本概念● 两种算法形式 ① 批处理算法:利用一批观测数据,一次计算或经反复迭代,以获得模型参数的估计值。
② 递推算法:在上次模型参数估计值)(ˆ1-k θ的基础上,根据当前获得的数据提出修正,进而获得本次模型参数估计值)(ˆk θ,广泛采用的递推算法形式为() ()()()~()θθk k k k d z k =-+-1K h其中)(ˆk θ表示k 时刻的模型参数估计值,K (k )为算法的增益,h (k -d ) 是由观测数据组成的输入数据向量,d 为整数,)(~k z 表示新息。
● 最小二乘原理定义:设一个随机序列)},,,(),({L k k z 21∈的均值是参数θ 的线性函数E{()}()T z k k θ=h其中h (k )是可测的数据向量,那么利用随机序列的一个实现,使准则函数21()[()()]LT k J z k k θθ==-∑h达到极小的参数估计值θˆ称作θ的最小二乘估计。
● 最小二乘原理表明,未知参数估计问题,就是求参数估计值θˆ,使序列的估计值尽可能地接近实际序列,两者的接近程度用实际序列与序列估计值之差的平方和来度量。
综述最小二乘法的系统辨识姓名:费冬妹学号:2010108102 专业:控制理论与控制工程摘要:在研究一个控制系统过程中,建立系统的模型十分必要。
因此,系统辨识在控制系统的研究中起到了至关重要的作用。
本文主要介绍了系统辨识的最小二乘方法,最小二乘法的一次完成过程进行了推导,最小二乘法的一次完成的缺陷在于对于有色噪声并没有很好的辨识效果。
其中系统辨识在工程中的应用非常广泛,系统辨识的方法有很多种,最小二乘法是一种应用极其广泛的系统辨识方法,阐述了动态系统模型的建立及其最小二乘法在系统辨识中的应用,并通过实例分析说明了最小二乘法应用于系统辨识中的重要意义。
关键词:系统辨识、最小二乘法一、系统辨识的定义系统辨识、状态估计和控制理论是现代控制理论三个相互渗透的环节。
1962年,L.A.zadeh给出“辨识”的定义为:系统辨识是在对输入和输出观测的基础上,在指定的一类系统中,确定一个与被识别的系统等价的系统。
[1]最先提出了系统辨识的定义。
随着科技的发展,数学建模对科学研究及指导及生产都有非常重要的意义。
给一个系统建立数学模型是一个比较复杂的工作,其中关键的一个环节是系统辨识。
系统辨识就是研究如何利用系统的输入、输出信号建立系统的数学模型。
[7]系统数学模型是系统输入、输出及其相关变量间的数学关系式,它描述系统输入、输出及相关变量之间相互影响、变化的规律性。
换句话说,系统辨识就是从系统的运算和实验数据建立系统的模型(模型结构和参数)。
系统辨识的三要素:数据、模型类和准则。
系统辨识的基本原理:在输入输出的基础上,从一类系统中确定一个与所测系统等价的系统。
[2]二、最小二乘法的引出最小二乘法是1795年高斯在预测星体运行轨道最先提出的,它奠定了最小二乘估计理论的基础.到了20世纪60年代瑞典学者Austron把这个方法用于动态系统的辨识中,在这种辨识方法中,首先给出模型类型,在该类型下确定系统模型的最优参数。
我们可以将所研究的对象按照对其了解的程度分成白箱、灰箱和黑箱。
基于Matlab的最小二乘法的仿真摘要:任何待研究的对象都可以看成是一个系统。
系统的数学模型是系统本质特征的数学抽象,是建立系统状态参数之间以及与外作用之间最主要的相互作用、相互制约的数学表达式。
系统辨识是研究建立系统数学模型的理论与方法它研究的领域非常广阔,包括自动控制、航天、航空、天文学、海洋、医学、生物学、生态学以及省会经济学等众多领域。
本文主要介绍了系统辨识中最经典的数据处理方法最小二乘法,并将matlab用在最小二乘法的数据处理中。
The Simulation Of Least Square Method Using Matlab关键字:最小二乘法 matlabAbstract:the object of study for any can be as a system. Themathematical model of the system is the system of mathematics abstract nature, it is to establish the system state between the parameters of the function and between the most main, the interaction between a restraint mathematical expressions.System identification is research to establish a system of mathematical model theory and method of the field of study it is very wide, including automatic control, aerospace, aviation,astronomy, Marine, medicine, biology, ecology and provincial capital economics, etc. This paper mainly introduces the identification of the most classic of system data processing method, and the least square method with matlab in least square method of data processing.Key word:Least square method matlab引言最小二乘法是一种以选用误差平方和最小为准则,来最佳拟合出符合实验数据约最优参数估计的数学方法。
课 程 设 计 报 告学 院: 自动化学院 专业名称: 自动化 学生姓名: ** 指导教师: *** 时 间:2010年7月课程设计任务书一、设计内容SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+参数取真值为:[]0.35 0.39 0.715 1.642=T θ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
二、主要技术要求用参数的真值及差分方程求出)(k z 作为测量值,)(k υ是均值为0,方差为0.1、0.5和0.01的不相关随机序列。
选取一种最小二乘算法利用MATLAB 的M 语言辨识参数。
三、进度要求2周(6月28日-7月11日)完成设计任务,撰写设计报告3000字以上,应包含设计过程、 计算结果、 图表等内容。
具体进度安排:◆ 6月28日,选好题目,查阅系统辨识相关最小二乘法原理的资料。
◆ 6月29日,掌握最小二乘原理,用MATLAB 编程实现最小二乘一次完成算法。
◆ 6月30日,掌握以最小二乘算法为基础的广义最小二乘递推算法。
◆ 7月1日,用MATLAB 编程实现广义最小二乘递推算法。
◆ 7月2日,针对题目要求进行参数辨识,并记录观察相关数据。
◆ 7月3日-7月5日,对参数辨识结果进行分析,找出存在的问题,提出改进方案,验证改进优化结果。
◆ 7月6日-7月7日,撰写课程设计报告。
◆ 7月8日,对课程设计报告进行校对。
◆ 7月9日,打印出报告上交。
学 生王景 指导教师 邢小军1. 设计内容设SISO 系统的差分方程为:)()2()1()2()1()(2121k k u b k u b k z a k z a k z υ+-+-=-+-+ 式(1-1)参数取真值为:[]0.35 0.39 0.715 1.642=Tθ,利用MATLAB 的M 语言辨识系统中的未知参数1a 、2a 、1b 、2b 。
最小二乘法拟合fai0 fai1 fai2
最小二乘法是一种常用的数据拟合方法,可以用于拟合各种函数形式。
如果你要用最小二乘法来拟合一个二次函数 y = fai0 + fai1 * x + fai2 * x^2,其中 fai0、fai1、fai2 是待求的系数,可以按照以下步骤进行拟合:
1.收集数据:收集一组包含自变量 x 和因变量 y 的数据点。
2.建立方程:将二次函数的形式代入拟合方程,得到拟合方
程为 y = fai0 + fai1 * x + fai2 * x^2。
3.设定目标函数:定义一个目标函数,表示实际观测值与拟
合值之间误差的平方和。
4.最小化目标函数:使用最小二乘法的思想,通过最小化目
标函数来确定未知系数 fai0、fai1、fai2 的值。
可以使用数值计算方法(如迭代法)或解析解法(如求导)来求解最小化目标函数的过程。
5.拟合结果:根据求解得到的 fai0、fai1、fai2 的值,得
到最佳拟合的二次函数模型。
需要注意的是,在实际应用中,可能会遇到数据噪声、非线性问题等,此时需要对数据进行预处理、选择合适的拟合模型,并评估拟合结果的准确性和可靠性。
最小二乘法是一种经典的拟合方法,可以应用于不同类型的数据拟合问题。
希望以上步骤能帮助你进行二次函数的最小二乘法拟合。
《系统辨识与建模》(MATLAB编程)
信研0701 孙娅萍2007000694
编程第四次作业
仿真模型参数为:a=[-1.5 0.7];b=[1.0 0.5],由下式递推产生502组数据,并形成如下矩阵:
z(k)=1.5z(k–1)-0.7z(k–2)+1.0u(k–1)+0.5u(k–2)+v(k)
试用一次完成最小二乘法辨识系统模型。
程序部分:
%************************************************************%
% ***** 二阶系统的最小二乘一次完成算法辨识程序*****%
% 系统辨识的输入信号u是6阶的M序列,长度是500;
L = 500;
u = load('u.txt'); u2 = load('u2.txt'); u1 = load('u1.txt');
z = zeros(1,L+1);
for k = 3 : (L+1)
% 理想输出作为系统观测值
z(k) = 1.5 * z(k-1) - 0.7 * z(k-2) + u(k-1) + 0.5 * u(k-2);
end
% 绘制输入信号和输出观测值的图形
figure(1)
i = 1 : 1 : L;
subplot(2,1,1)
plot(i,u)
k = 1 : 1 : (L+1);
subplot(2,1,2)
plot(k,z)
z = z'
z1 = load('z1.txt'); z2 = load('z2.txt'); z3 = load('z3.txt');
Na = 2; Nb = 2; % 定义Na、Nb;
for i = 1 : (Na+Nb)
if ((i == 1))
H = -1 * z2;
end
if (i == 2)
H = -1 * z1;
end
if (i == (Na+1))
H = u2;
end
if (i ==(Na+2))
H = u1;
end
if ( i == 1)
HL = H;
else
HL = [HL,H];
end
end% 给样本矩阵HL赋值;
ZL = z3; % 给样本矩阵ZL赋值;
HL
% 计算参数Cita
C1 = HL'* HL;
C2 = inv(C1);
C3 = HL' * ZL
C = C2 * C3;
Cita = C'
程序运行结果:
估计值:Cita = -1.5000 0.7000 1.0004 0.4995
真值:Cita = -1.5 0.7 1 0.5。