光学谐振腔的图解分析与设计方法
- 格式:pdf
- 大小:442.11 KB
- 文档页数:30
光学谐振腔的设计
光学谐振腔是一种利用反射和干涉的光学元件,它可用于放大和调制激光光束,并在激光器、激光放大器和光学振荡器中广泛应用。
下面将从谐振腔的构成、特点和设计等方面进行解释。
光学谐振腔由两个反射镜构成,它们之间的距离称为谐振腔长度。
当光线进入谐振腔并在两个反射镜之间反射时,它们会相互干涉,从而形成一个稳定的光场,这被称为谐振模式。
谐振模式的频率与谐振腔的长度和反射镜的反射率有关。
一个典型的光学谐振腔由曲率半径为R1 和R2 的两个反射镜组成,它们之间的距离为L。
反射镜的反射率为R1 和R2,分别对应入射和反射光线的反射率。
通过调整反射镜的曲率半径和距离,可以改变谐振模式的频率和增益。
在设计谐振腔时,需要考虑一些重要的参数,包括谐振腔长度、反射镜的曲率半径和反射率、谐振腔的损耗和色散等。
谐振腔的长度应该被精确控制,以确保所需的谐振模式可以得到支持。
反射镜的曲率半径应该被选择为使反射光线汇聚在焦点上,从而减少光学损耗。
反射率也应该被仔细确定,以最大限度地提高谐振场的增益。
谐振腔的损耗和色散也是重要的参数,需要在设计中加以考虑。
总之,光学谐振腔是一种重要的光学元件,能够实现光学放大和调制。
在设计过程中,需要仔细考虑一些重要的参数,以确保所需的谐振模式可以得到支持,并
最大限度地提高谐振场的增益。
光学谐振腔光学谐振腔是常用激光器的三个主要组成部分之一。
组成:在简单情况下,它是在激活物质两端适当地放置两个反射镜。
目的:就是通过了解谐振腔的特性,来正确设计和使用激光器的谐振腔,使激光器的输出光束特性达到应用的要求。
光学谐振腔的理论:近轴光线处理方法的几何光学理论、波动光学的衍射理论无源腔:又称为非激活腔或被动腔,即无激活介质存在的腔。
有源腔(激活腔或主动胺):当腔内充有工作介质并设有能源装置后。
一、构成、分类及作用1、谐振腔的构成和分类构成:最简单的光学谐振腔是在激光工作物质两端适当位置放置两个镀高反射膜的反射镜。
与微波腔相比光频腔的主要特点是:侧面敞开没有光学边界,以抑制振荡模式,并且它的轴向尺寸(腔长)远大于振荡波长:L》λ,一般也远大于横向尺寸即反射镜的线度。
因此,这类腔为开放式光学谐振腔,简称开腔。
开式谐振腔是最重要的结构形式----气体激光器、部分固体激光器谐振腔2、激光器中常见的谐振腔的形式1)平行平面镜腔。
由两块相距上、平行放置的平面反射镜构成2)双凹球面镜腔。
由两块相距为L,曲率半径分别为R1和R2的凹球面反射镜构成当R1=R2=L时,两凹面镜焦点在腔中心处重合,称为对称共焦球面镜腔;当R1+R2=L表示两凹面镜曲率中心在腔内重合,称为共心腔。
3)平面—凹面镜腔。
相距为L的一块平面反射镜和一块曲率半径为R的凹面反射镜构成。
当R=2L时,这种特殊的平凹腔称为半共焦腔4)特殊腔。
如由凸面反射镜构成的双凸腔、平凸腔、凹凸腔等,在某些特殊激光器中,需使用这类谐振腔5)其他形状的3、谐振腔的作用(1) 提供光学正反馈作用谐振腔为腔内光线提供反馈,使光多次通过腔工作物质,不断地被放大,形成往复持续的光频振荡;取决因素:组成腔的两个反射镜面的反射率,反射率越高,反馈能力越强;反射镜的几何形状以及它们之间的组合方式。
上述因素的变化会引起光学反馈作用大小的变化,即引起腔内光束能量损耗的变化。
(2) 对振荡光束的控制作用主要在方向和频率的限制,其功能为:①有效地控制腔内实际振荡的模式数目,使大量的光子集结在少数几个沿轴向、且满足往返一次位相变化为2π的整数倍的光子状态中,提高了光子简并度,从而获得单色性好、方向性好及相干性强的优异辐射光。