2018秋人教版九年级数学上册《第二十四章圆》检测题含答案
- 格式:doc
- 大小:494.80 KB
- 文档页数:7
人教版九年级上册第二十四章-圆综合检测一、选择题1.已知⊙O 半径为3,A 为线段PO的中点,则当OP=6时,点A与⊙O的位置关系为()A. 点在圆内B. 点在圆上C. 点在圆外D. 不能确定2.有一条弧的长为2πcm,半径为2cm,则这条弧所对的圆心角的度数是()A. 90°B. 120°C. 180°D. 135°3.下列说法正确的是()A. 相等的圆心角所对的弧相等B. 在同圆中,等弧所对的圆心角相等C. 在同圆中,相等的弦所对的弧相等D. 相等的弦所对的弧相等4.在平面直角坐标系xOy中,以点(3,4)为圆心,4为半径的圆一定()A. 与x轴和y轴都相交B. 与x轴和y轴都相切C. 与x轴相交、与y轴相切D. 与x轴相切、与y轴相交5.如上图,四边形ABCD是半圆的内接四边形,AB是直径,DC⌢=CB⌢.若,则∠ABC的度数等于()A.B.C.D.6.如图,⊙O的半径等于4,如果弦AB所对的圆心角等于120°,那么圆心O到弦AB的距离等于()A. 1B. √3C. 2D. 2√37.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=144°,则∠C的度数是()A. 14°B. 72°C. 36°D. 108°8.如图,在Rt△AOB中,∠AOB=90°,OA=OB=6,⊙O的半径为√6,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值是()A. 2√6B. 2√3C. 3√6D. 3√39.如图,AB是⊙O的直径,C,D是⊙O上的两点,且BC平分∠ABD,AD分别与BC,OC相交于点E,F,则下列结论不一定成立的是()A. OC//BDB. AD⊥OCC. △CEF≌△BEDD. AF=FD10.如图,从一块直径为4的圆形铁皮上剪出一个圆心角为90°的扇形CAB,且点C,A,B都在⊙O上,将此扇形围成一个圆锥,则该圆锥底面圆的半径是()A. 12B. √2C. √22D. √2411.圆锥的底面半径r=6,高ℎ=8,则圆锥的侧面积是()A.15πB. 30πC. 45πD. 60π12.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则AB的长为()A.3.5cmB. 4cmC. 4.5cmD. 5cm 13.如图,抛物线y =14x2−4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连结OQ.则线段OQ的最大值是()A. 3B. √412C. 72D. 414.已知正方形MNOK和正六边形ABCDEF的边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……在这样连续6次旋转的过程中,点B,M间的距离可能是()A. 1.4B. 1.1C. 0.8D. 0.5二、填空题15.在半径为8π的圆中,60°的圆心角所对的弧长等于______.16.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆的直径长为______.17.平面直角坐标系中,以原点O为圆心,2为半径作⊙O,则点A(2,2)与⊙O的位置关系为______.18.如图,在△ABC中,∠BOC=140°,I是内心,O是外心,则∠BIC=______.19.如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD=______.三、解答题20.已知:如图,△ABC内接于⊙O,∠C=45°,AB=2,求⊙O的半径.21.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=√3,求⊙O的直径.第2页,共7页22.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过点F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=2√3,求图中阴影部分的面积.23.已知∠MAN=30°,O为边AN上一点,以O为圆心,2为半径作⊙O,交AN于D,E两点,设AD=x.①②(1)如图①,当x取何值时,⊙O与AM相切?(2)如图②,当x取何值时,⊙O与AM相交于B,C两点,且∠BOC=90°?24.在平面直角坐标系中,已知抛物线y=14x2+kx+c的图象经过点C(0,1),当x=2时,函数有最小值.(1)求抛物线的解析式;(2)直线l⊥y轴,垂足坐标为(0,−1),抛物线的对称轴与直线l交于点A.在x轴上有一点B,且AB=√2,试在直线l上求异于点A的一点Q,使点Q在△ABC的外接圆上;(3)点P(a,b)为抛物线上一动点,点M为坐标系中一定点,若点P到直线l的距离始终等于线段PM的长,求定点M的坐标.第4页,共7页答案1.【答案】B2.【答案】C3.【答案】B4.【答案】D5.【答案】A6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】C11.【答案】D12.【答案】B13.【答案】C14.【答案】C15.【答案】8316.【答案】1017.【答案】圆外18.【答案】125°19.【答案】4√320.【答案】解:连结OB,OA,∵∠BCA=45°,∴∠BOA=90°,∵OB=OA,∴∠OBA=∠OAB=45°,∵AB=2,∴OB=OA=√2.答:⊙O的半径为√2.21.【答案】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC−∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=√3,∴2OA=2PD=2√3.∴⊙O的直径为2√3.22.【答案】(1)证明:连接OF,AO,∵AB=AF=EF,∴AB⏜=AF⏜=EF⏜,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB//OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵AB⏜=AF⏜=EF⏜,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=2√3,∴AF=4,∴AO=4,∵AF//BE,∴S △ABF=S△AOF,∴图中阴影部分的面积=60⋅π×42360=8π3.23.【答案】解:(1)如图1,过O作OF⊥AM于F,当OF=r=2时,⊙O与AM相切,此时OA=OF÷sin30°=4,故x=AD=2;(2)如图2,过O点作OG⊥AM于G当∠BOC=90°,∵OB=OC=2,∴BC=2√2,又∵OG⊥BC,∴BG=CG=√2,∴OG=12BC=√2,又∵∠A=30°,∴OA=2√2,∴x=AD=2√2−2.24.【答案】解:(1)∵图象经过点C(0,1),∴c=1,∵当x=2时,函数有最小值,∴对称轴x=2,∴−k2×14=2,解得k=−1,∴抛物线解析式为y=14x2−x+1;(2)由题意可知A(2,−1),设B(t,0),∵AB=√2,∴(t−2)2+1=2,∴t=1或t=3,∴B(1,0)或B(3,0),∵B(1,0)时,A、B、C三点共线,舍去,∴B(3,0),∴AC=2√2,BC=√10,∴AC2+AB2=10=BC2,∴∠BAC=90°,∴△ABC为直角三角形,BC为外接圆的直径,外接圆的圆心为BC的中点(32,12),半径为√102,设Q(x,−1),则有(x−32)2+(12+1)2=(√102)2,∴x=1或x=2(舍去),∴Q(1,−1);(3)设定点M(m,n),∵P(a,b)为抛物线上一动点,∴b=14a2−a+1,第6页,共7页∵P 到直线l 的距离等于PM , ∴(m −a)2+(n −b)2=(b +1)2,即a 2+m 2−2ma +n 2−(2n +2)b −1=0,即a 2+m 2−2ma +n 2−(2n +2)(14a 2−a +1)−1=0, ∴1−n 2a 2+(2n −2m +2)a +(m 2+n 2−2n −3)=0,∵a 为任意值上述等式均成立, ∴{1−n2=02+2n −2m =0m 2+n 2−2n −3=0, ∴{n =1m =2,∴定点M(2,1).。
人教版九年级上册单元检测:第二十四章圆(含答案)一.选择题1.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是()A.360πcm2B.720πcm2C.1800πcm2D.3600πcm2 2.如图,在⊙O中,直径CD⊥弦AB,若∠C=30°,则∠BOD的度数是()A.30°B.40°C.50°D.60°3.⊙O的半径为7,点P在⊙O外,则OP的长可能是()A.4 B.6 C.7 D.84.如图,四边形ABCD内接于⊙O,若∠A:∠C=5:7,则∠C=()A.210°B.150°C.105°D.75°5.如图,AB是⊙O的直径,若∠BAC=30°,则∠D的度数是()A.30°B.45°C.60°D.75°6.下列说法正确的是()A.三点确定一个圆B.三角形的外心到三角形各顶点的距离相等C.相等的圆心角所对的弧相等D.圆内接四边形的对角互余7.已知圆O的半径是3,A,B,C三点在圆O上,∠ACB=60°,则弧AB的长是()A.2πB.πC.πD.π8.如图,△ABC为直角三角形,∠C=90°,AC=6,BC=8,以点C为圆心,以CA为半径作⊙C,则△ABC斜边的中点D与⊙C的位置关系是()A.点D在⊙C上B.点D在⊙C内C.点D在⊙C外D.不能确定9.如图,正六边形ABCDEF是半径为2的圆的内接六边形,则图中阴影部分的面积是()A.B.C.D.10.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC.若∠B=20°,则∠P等于()A.20°B.30°C.40°D.50°的面积11.如图,AB是⊙O的直径,且经过弦CD的中点H.已知,BD=5,则S△OCH 为()A.B.C.1 D.12.如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,6),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3二.填空题13.扇形半径为3cm,弧长为5cm,则它的面积为cm2.14.如图点A是半圆上一个三等分点(靠近点N这一侧),点B是弧AN的中点,点P是直径MN上的一个动点,若⊙O半径为3,则AP+BP的最小值为.15.已知⊙O中,弦AB=8cm,圆心到AB的距离为3cm,则此圆的半径为.16.如图,正方形ABCD的边长为4,点O是AB的中点,以点O为圆心,4为半径作⊙O,分别与AD、BC相交于点E、F,则劣弧的长为17.如图,矩形ABCD的边AB=1,BE平分∠ABC,交AD于点E,AD=2AB,以点B为圆心,BE为半径画弧,交BC于点F,则图中阴影部分的面积是.18.如图,以长为18的线段AB为直径的⊙O交△ABC的边BC于点D,点E在AC上,直线DE与⊙O相切于点D.已知∠CDE=20°,则的长为.三.解答题19.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=45°,∠B=20°.(1)求∠APD的大小;(2)已知AD=4,求圆心O到BD的距离是多少?20.如图,已知直线l与⊙O相离,OA⊥l于点A,OA与⊙O相交于点P,点B在⊙O上,BP 的延长线交直线l于点C,且AB=AC.(1)直线AB与⊙O相切吗?请说明理由;(2)若OA=5,PC=2,求⊙O的半径.21.如图,AB为⊙O的直径,CD⊥AB于E,CO⊥AD于F,(1)求证:AD=CD.(2)若∠ADC=60°,BE=2,求⊙O的半径.22.如图,在Rt△ABC中,∠C=90°,O为AB边上一点,⊙O交AB于E,F两点,BC切⊙O于点D,且CD=EF=1.(1)求证:⊙O与AC相切;(2)求图中阴影部分的面积.23.如图,AB是⊙O的直径,CD是⊙O的切线,C是切点,∠ADC=90°,连接AC.(1)如图1,求证:AC平分∠BAD;(2)如图2.AD交⊙O于点E,若E是弧AC的中点,DE=1,求AC长.24.如图,四边形ABCD是⊙O的内接四边形,点F是CD延长线上的一点,且AD平分∠BDF,AE⊥CD于点E.(1)求证:AB=AC.(2)若BD=11,DE=2,求CD的长.25.如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线;(2)作DH⊥BC交BC的延长线于点H,连接CD,试判断线段AE与线段CH的数量关系,并说明理由.(3)若BC=4,AB=6,试求AE的长.参考答案一.选择题1.解:圆锥的侧面积=×80π×90=3600πcm2,故选:D.2.解:如图,连接AO,∵∠C=30°,∴∠AOD=60°,∵直径CD⊥弦AB,∴=,∴∠AOD=∠BOD=60°,故选:D.3.解:∵⊙O的半径为7,点P在⊙O外,∴OP>7,∵4、6、7都不符合,只有8符合,故选:D.4.解:∵∠A+∠C=180°,∠A:∠C=5:7,∴∠C=180°×=105°.故选:C.5.解:∵AB是⊙O的直径,∴∠ACB=90°,又∵∠BAC=30°,∴∠B=60°∴∠D=∠B=60°.故选:C.6.解:不在同一直线上的三点确定一个圆,A错误;三角形的外心到三角形各顶点的距离相等,B正确;在同圆或等圆中,相等的圆心角所对的弧相等,C错误;圆内接四边形的对角互补,D错误;故选:B.7.解:如图,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∴l===2π.故选:A.8.解:∵Rt△ABC中,∠C=Rt∠,AC=6,BC=8,∴AB==10,∵D为斜边AB的中点,CD=AB=5,d=5,r=6,∴d<r,∴点D与⊙C内,故选:B.9.解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣)=4π﹣6.故选:A.10.解:∵OC=OB,∴∠B CO=∠B=20°.∴∠AOC=40°∵AB是⊙O的直径,PA切⊙O于点A,∴OA⊥PA,即∠PAO=90°,∴∠P=90°﹣∠AOC=50°故选:D.11.解:如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵,BD=5,∴DH=4,∴BH=3,设OH=x,则OC=OB=x+3,在Rt△OCH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;∴S=OH•CH=OH•BH=××4=.△OCH故选:D.12.解:∵A、B、M、O四点共圆,∴∠BAO+∠BMO=180°,∵∠BMO=120°,∴∠BAO=60°,∵A(0,6),∴AO=6,∵在Rt△AOB中,∠AOB=90°,∠BAO=60°,AO=6,∴AB=2AO=12,∴⊙C的半径为6,故选:A.二.填空题13.解:设扇形的圆心角为n,则:5π=,得:n=300°.==cm2.∴S扇形故答案为:.14.解:作B点关于MN的对称点B′,连结OA、OB′、AB′,AB′交MN于P′,如图,∵P′B=P′B′,∴P′A+P′B=P′A+P′B′=AB′,∴此时P′A+P′B的值最小,∵点A是半圆上一个三等分点,∴∠AON=60°,∵点B是弧AN的中点,∴∠BPN=∠B′ON=30°,∴∠AOB′=∠AON+∠B′ON=60°+30°=90°,∴△AOB′为等腰直角三角形,∴AB′=OA=3,∴AP+BP的最小值为3.故答案为3.15.解:如图,作OC⊥AB于C,则AC=BC,∵AB=8cm,∴AC=,在Rt△OAC中,∵OC=3cm,AC=4cm,∴==5cm.故答案为:5cm.16.解:∵O是AB的中点,∴AO=BO,∵正方形ABCD的边长为4,∴∠A=∠B=90°,∵AB=4,∴AO=BO=2,在Rt△AOE中,由cos∠AOE=,得∠AOE=30°,同理可得∠BOF=30°,∴∠EOF=120°,∴劣弧的长为,故答案为:.17.解:∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴AB=AE=1,BE=,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S矩形ABCD ﹣S△ABE﹣S扇形EBF=1×2﹣×1×1﹣=﹣.故答案为:﹣.18.解:连接OD,∵直线DE与⊙O相切于点D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°﹣90°﹣20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的长==7π,故答案为:7π.三.解答题19.解:(1)∵∠C=∠B=25°,∠CAB=40°,∴∠APD=∠C+∠CAB=65°;(2)作OE⊥BD于E,则DE=BE,又∵AO=BO,∴OE=AD,∴圆心O到BD的距离为2.20.解:(1)直线AB与⊙O相切.理由如下:连接OB,∵AB=AC,∴∠ABC=∠ACB,又∵OP=OB,∴∠OPB=∠OBP,∵OA⊥l,∴∠OAC=90°,∴∠ACB+∠APC=90°,而∠APC=∠OPB=∠OBP,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴直线AB是⊙O的切线;(2)设⊙O半径为r,则OP=OB=r,PA=5﹣r;在Rt△ACP中,AC2=PC2﹣PA2=(2)2﹣(5﹣r)2在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,∵AC=AB,∴(2)2﹣(5﹣r)2=52﹣r2,解得r=3,即⊙O的半径为3.21.证明:(1)∵CD⊥AB,CO⊥AB,∴∠OEC=∠OFA=90°,AD=2AF,CD=2CE,在△OCE和△OAF中,,∴△OCE≌△OAF(AAS),∴CE=AF,∴AD=CD.(2)连接OD,∵∠ADC=60°,CD⊥AB于E,∴∠DAB=30°,∴∠DOB=60°,∵BE=2,可得:2(OB﹣BE)=OD,即2(r﹣2)=r,解得:r=4,∴⊙O的半径=4.22.(1)证明:连接OD,过点O作OH⊥AC于点H,∵BC是⊙O的切线,∴OD⊥BC.∵∠C=90°,∴∠OHC=∠ODC=∠C=90°,∴四边形OHCD是矩形.∵CD=EF,∴OH=EF=OE.∵OH⊥AC,∴AC是⊙O的切线;(2)解:∵OD=EF=1,CD=1,∠DOH=90°,=1×1﹣=1﹣π.∴S阴影23.(1)证明:如图,连接OC,∵直线CD切半圆O于点C,∴OC⊥CD,∵CD⊥AD,∴OC∥AD∴∠1=∠3,∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平分∠DAB(2)解:连接OE,CE,如图,∵∠1=∠2,∴=,∵E是弧AC的中点,∴=,∴==,∴∠AOE=∠EOC=∠BOC=60°,∴△AOE和△COE都是等边三角形,∴∠OCE=60°,CE=OE=AE=1,在Rt△CDE中,∠DCE=90°﹣60°=30°,∴CD=DE=,∵∠EAO=60°,∴∠1=∠2=30°,∴AC=2CD=2.24.(1)证明:∵AD平分∠BDF,∴∠ADF=∠ADB,∵∠ABC+∠ADC=180°,∠ADC+∠ADF=180°,∴∠ADF=∠ABC,∵∠ACB=∠ADB,∴∠ABC=∠ACB,∴AB=AC;(2)解:过点A作AG⊥BD,垂足为点G.∵AD平分∠BDF,AE⊥CF,AG⊥BD,∴AG=AE,∠AGB=∠AEC=90°,在Rt△AED和Rt△AGD中,,∴Rt△AED≌Rt△AGD,∴GD=ED=2,,∴Rt△AEC≌Rt△AGB(HL),∴BG=CE,∵BD=11,∴BG=BD﹣GD=11﹣2=9,∴CE=BG=9,∴CD=CE﹣DE=9﹣2=7.25.解:(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∵∠MAC=∠ABC,∴∠CAB+∠MAC=90°,即∠MAB=90°,∴MN是半圆的切线;(2)AE=CH,理由如下:连接AD,∵D是弧AC的中点,∴,∴AD=CD,∠HBD=∠ABD,∵DE⊥AB,DH⊥BC,∴DE=DH,且∠AED=∠DHC,,∴Rt△ADE≌Rt△CDH(HL),∴AE=CH;(3)由(2)知DH=DE,∠DHB=∠DEB=90°,在△RtDBH和Rt△DBE中,,∴△RtDBH≌Rt△DBE(HL),∴BE=BH,∴BA﹣AE=BC+CH,且AE=CH,∴BA﹣AE=BC+AE,又∵AB=6,BC=4,∴6﹣AE=4+AE,∴AE=1.人教版九年级上册第二十四章圆单元检测(含答案)一、单选题1.下列命题中,不正确的是( )A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对2.如图,AB 是如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为弧BC 的中点,点P 是直径AB 上一动点,则PC+PD 的最小值是( )A.1 3.如图,⊙P 与y 轴相切于点C(0,3),与x 轴相交于点A(1,0),B(9,0).直线y=kx-3恰好平分⊙P 的面积,那么k 的值是 ( )A .65B .12C .56 D .24.已知⊙O 的直径为10,圆心O 到弦AB 的距离OM 为3,则弦AB 的长是() A .4 B .6 C .7 D .85.如图,⊙O 的半径为4,点A 为⊙O 上一点, OD ⊥弦BC 于D ,如果∠BAC=60°,那么OD 的长是( )A.4 B.C.2 D6.下列命题:①长度相等的弧是等弧②半圆既包括圆弧又包括直径③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形其中正确的命题共有()A.0个B.1个C.2个D.3个7.如图,AB,CD是⊙O的直径,若∠AOC=55°,则的度数为()A.55°B.110°C.125°D.135°8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC =∠BOC;③AD=CD=OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个9.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A.57°B.66°C.67°D.44°10.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定11.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8B.6C.12D.1012.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1B C .2 D .二、填空题13.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠︒=,则阴影部分的面积为_____(结果保留π).15.如图,正六边形ABCDEF 内接于⊙O ,边长AB =2,则扇形AOB 的面积为_____.16.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO 为_____.三、解答题17.如图,在⊙O 中,已知∠ACB=∠CDB=60°,AC=3,求△ABC 的周长.18.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:(1)桥拱半径.(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?19.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.21.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=.22.已知△ABC中,a、b、c分别为∠A、∠B、∠C的对边,方程20ax bx c+-=是关于x 的一元二次方程.(1)判断方程20ax bx c+-=的根的情况为(填序号);①方程有两个相等的实数根;②方程有两个不相等的实数根;③方程无实数根;④无法判断(2)如图,若△ABC内接于半径为2的⊙O,直径BD⊥AC于点E,且∠DAC=60°,求方程20ax bx c+-=的根;(3)若14x c=是方程20ax bx c+-=的一个根,△ABC的三边a、b、c的长均为整数,试求a、b、c的值.答案1.D2.B3.A4.D5.C6.B7.C8.A9.A10.B11.C12.B 13.36︒十14.34π-15.23π.16.417.∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°.∴△ABC为等边三角形.AC=3,∴△ABC的周长为9.18.(1)∵拱桥的跨度AB=16m,∴AD=8m,因为拱高CD=4m,利用勾股定理可得:AO2-(OC-CD)2=82,解得OA=10(m).所以桥拱半径为10m;(2)设河水上涨到EF位置(如图所示),这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),∴EM=12EF=6m,连接OE,则有OE=10m,OM2=OE2-EM2=102-62=64,所以OM=8(m)OD=OC-CD=10-4=6(m),OM-OD=8-6=2(m).即水面涨高了2m.19.(1)证明:连接OC,∵D为BC的中点,∴CD=BD,∴∠DOB=12∠BOC,∵∠A=12∠BOC,∴∠A=∠DOB;(2)DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)如图,连接OD,OF;在Rt△ABC中,∠C=90°,AC=12cm,BC=9cm;根据勾股定理=15cm;四边形OFCD中,OD=OF,∠ODC=∠OFC=∠C=90°;则四边形OFCD是正方形;由切线长定理,得:AD=AE,CD=CF,BE=BF;则CD=CF=12(AC+BC-AB);即:r=12(12+9-15)=3cm.(2)当AC=b,BC=a,AB=c,由以上可得:CD=CF=12(AC+BC-AB);即:r=12(a+b-c).则⊙O的半径r为:12(a+b-c).21.(1)证明:连接OF,AO,∵AB=AF=EF,∴AB AF EF==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵AB AF EF==,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=∴AF=4,∴AO=4,∵AF∥BE,∴S△ABF=S△AOF,∴图中阴影部分的面积=26048 3603ππ⨯=.22.(1)△=b2-4a•(-c)=b+4ac,∵a、b、c分别为∠A、∠B、∠C的对边,即a、b、c都是正数,∴△>0,∴方程有两个不相等的实数根;故选②;(2)连接OA,如图,∵BD ⊥AC ,∴弧AB=弧CB ,弧AD=弧CD ,∴AB=CB ,∠ABD=∠DAC=60°,∴△OAB 为等边三角形,∴AB=OB=2,∴AE=2∴AC=2AE=即a=2,b=c=2,方程20ax bx c +-=变形为2220x +-=,整理得:210x -=,解得1x =2x = (3)把14x c =代入20ax bx c +-=得:210164ac bc c +-= 整理得:44ac b =-,则4-b >0, 即b <4,∵a 、b 、c 的长均为整数,∴b=1,2,3,当b=1时,ac=12,则a=1,c=12;a=2,c=6;a=3,c=4;a=6,c=2;a=12,c=1,都不符合三角形三边的关系,舍去;当b=2时,ac=8,则a=1,c=8;a=2,c=4;a=4,c=2;a=8,c=1,都不符合三角形三边的关系,舍去;当b=3时,ac=4,则a=1,c=4;a=2,c=2;a=4,c=1,其中a=2,c=2符合三角形三边的关系,∴a=2,b=3,c=2人教版九年级上册数学单元练习题:第二十四章圆(含解析答案)一.选择题1.如图,AB是⊙O直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠A=25°,则∠C的度数是()A.40°B.50°C.65°D.25°2.如图,在△ABC中,O是AB边上的点,以O为圆心,OB为半径的⊙O与AC相切于点D,BD平分∠ABC,AD=OD,AB=12,CD的长是()A.2B.2 C.3D.43.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°4.等边三角形的内切圆半径、外接圆半径和高的比为()A.3:2:1 B.1:2:3 C.2:3:1 D.3:1:25.下列说法中,正确的是()A.正n边形有n条对称轴B.相等的圆心角所所对的弦相等C.三角形的外心到三条边的距离相等D.同一个平面上的三个点确定一个圆6.如图,AB,BC是⊙O的两条弦,AO⊥BC,垂足为D,若⊙O的半径为5,BC=8,则AB的长为()A.8 B.10 C.D.7.如图,⊙O的弦AB=8,半径ON交AB于点M,M是AB的中点,且OM=3,则MN的长为()A.2 B.3 C.4 D.58.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠BAO的度数是()A.40°B.45°C.50°D.55°9.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC =3,则BC的长为()A.5B.3C.2D.10.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A.65°B.35°C.25°D.15°11.如图,⊙O的半径为4,A、B、C、D是⊙O上的四点,过点C,D的切线CH,D G相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF的值是()A.4 B.2C.4D.值不确定12.如图,在△ABC中,∠C=90°,BC=3cm,AC=2cm,把△ABC绕点A顺时针旋转90°后,得到△AB1C1,则线段BC所扫过的面积为()A.πcm2B.πcm2C.πcm2D.5πcm2二.填空题13.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连接DE,过点D作DF⊥AC于点F.若AB=6,∠CDF=15°,则阴影部分的面积是.14.如图,已知AB是⊙O的弦,C是的中点,联结OA,AC,如果∠OAB=20°,那么∠CAB 的度数是.15.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.16.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=.17.如图,⊙O的半径为10cm,AB是⊙O的弦,OC⊥AB于D,交⊙O于点C,且CD=4cm,弦AB的长为c m.18.如图,在坐标系中以原点为圆心,半径为2的圆,直线y=kx﹣(k+1)与⊙O有两个交点A、B,则AB的最短长度是.三.解答题19.如图,△ACB内接于圆O,AB为直径,CD⊥AB与点D,E为圆外一点,EO⊥AB,与BC 交于点G,与圆O交于点F,连接EC,且EG=EC.(1)求证:EC是圆O的切线;(2)当∠ABC=22.5°时,连接CF,①求证:AC=CF;②若AD=1,求线段FG的长.20.如图,OA、OB是⊙O的两条半径,OA⊥OB,点C在⊙O上,AC与OB交点D,点E在OB 的延长线上,且CE=DE.(1)求证:CE是⊙O的切线;(2)当∠A=30°,OA=6时,则CD的长为.21.(1)如图1,在△ABC中,∠BAC=120°,AB=3,AC=6,以BC为边作等边三角形BCD,连接AD,求AD的值.(2)如图2,四边形ABCD中.△ABM,△CDN是分别以AB,CD为一条边的等边三角形,E,F分别在这两个三角形的外接圆上,试问AE+EB+EF+FD+FC是否存在最小值?若存在最小值,则E,F两点的位置在什么地方?井说明理由.若不存在最小值,亦说明理由.22.如图,已知⊙O是△ABC的外接圆,连接OC,过点A作AD∥OC,交BC的延长线于D,AB交OC于E,∠ABC=45°.(1)求证:AD是⊙O的切线;(2)若AE=,CE=3.①求⊙O的半径;②求图中阴影部分的面积.23.如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.24.如图,点A在数轴上对应的数为20,以原点O为圆心,OA为半径作优弧,使点B在O右下方,且tan∠AOB=,在优弧上任取一点P,且能过P作直线l∥OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧上一段的长为10π,求∠AOP度数及x的值.(2)若线段PQ的长为10,求这时x的值.参考答案一.选择题1.解:连接OD,∵AO=OD,∴∠A=∠ODA=25°,∵∠COD=∠A+∠ADO,∴∠COD=50°,∵CD与⊙O相切于点D,∴∠ODC=90°,∵∠C+∠COD=90°,∴∠C=40°,故选:A.2.解:∵⊙O与AC相切于点D,∴AC⊥OD,∴∠ADO=90°,∵AD=OD,∴tan A==,∴∠A=30°,∵BD平分∠ABC,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠CBD,∴OD∥BC,∴∠C=∠ADO=90°,∴∠ABC=60°,BC=AB=6,AC=BC=6,∴∠CBD=30°,∴CD=BC=×6=2;故选:A.3.解:连接FB.∵∠AOF=40°,∴∠FOB=180°﹣40°=140°,∴∠FEB=∠FOB=70°∵EF=EB∴∠EFB=∠EBF=55°,∵FO=BO,∴∠OFB=∠OBF=20°,∴∠EFO=∠EBO,∠EFO=∠EFB﹣∠OFB=35°,故选:B.4.解:如图,⊙O为△ABC的内切圆,设⊙O的半径为r,作AH⊥BC于H,∵△ABC为等边三角形,∴AH平分∠BAC,即∠BAH=30°,∴点O在AH上,∴OH=r,连接OB,∵⊙O为△ABC的内切圆,∴∠ABO=∠CBO=30°,∴OA=OB,在Rt△OBH中,OB=2OH=2r,∴AH=2r+r=3r,∴OH:OA:AH=1:2:3,即等边三角形的内切圆半径、外接圆半径和高的比为1:2:3.故选:B.5.解:A、正n边形有n条对称轴,故本选项正确;B、如图,圆心角相等,但是弦AB和弦CD不相等,故本选项错误;C、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三角形三边的距离相等,故本选项错误;D、在同一直线上的三个点不能作一个圆,故本选项错误;故选:A.6.解:连接OB,∵AO⊥BC,AO过O,BC=8,∴BD=CD=4,∠BDO=90°,由勾股定理得:OD===3,∴AD=OA+OD=5+3=8,在Rt△ADB中,由勾股定理得:AB==4,故选:D.7.解:连接OA,∵在圆O中,M为AB的中点,AB=8,∴OM⊥AB,AM=AB=4,在Rt△OAM中,OM=3,AM=4,根据勾股定理得:OA==5.∴MN=5﹣3=2故选:A.8.解:∵AB是⊙O的弦,OC⊥AB,OC过O,∴=,∴∠AOC=∠BOC,即∠AOB=2∠AOC,∵∠ABC=20°,∴∠AOC=2∠ABC=40°,∴∠AOB=40°+40°=80°,∵OA=OB,∴∠BAO=∠ABO=(180°﹣∠AOB)=50°,故选:C.9.解:连接OB,作OD⊥BC于点D.∵AB与⊙O相切于点B,∴∠ABO=90°,∴∠OBD=∠ABC﹣∠ABO=120°﹣90°=30°,在直角△OBD中,BD=OB•cos30°=3×=,则BC=2BD=3.故选:B.10.解:∵∠BOC=180°﹣∠AOC,∠AOC=130°,∴∠BOC=50°,∴∠D=∠BOC=25°,故选:C.11.解:当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图:∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴=,=.∴+=+=1.∴+=1.∴PE+PF=4.∴当∠ADG =∠BCH =30°时,PE +PF =4.故选:A .12.解:∵∠C =90°,BC =3cm ,AC =2cm ,∴AB =cm ,如图,由旋转知,∠BAB 1=∠CAC 1=90°,△ABC ≌△AB 1C 1,则线段BC 所扫过的面积S =+﹣S △ABC ﹣=﹣=﹣=π(cm 2),故选:A .二.填空题(共6小题)13.解:连接OE ,∵∠CDF =15°,∠C =75°,∴∠OAE =30°=∠OEA ,∴∠AOE =120°,S △OAE =AE ×OE sin ∠OEA =×2×OE ×cos ∠OEA ×OE sin ∠OEA =,S阴影部分=S 扇形OAE ﹣S △OAE =×π×32﹣=3π﹣.故答案3π﹣.14.解:连接OC 交AB 于E .∵C 是的中点,∴OC ⊥AB ,∴∠AEO =90°,∵∠BAO =20°,∴∠AOE =70°,∵OA =OC ,∴∠OAC =∠C =55°,∴∠CAB =∠OAC ﹣∠OAB =35°,故答案为35°.15.解:作直径AD ,连接CD ,如图所示:∵AD 是圆O 的直径,∴∠ACD =90°,∴∠OAC +∠D =90°,∵∠ABC +∠D =180°,∴∠ABC ﹣∠OAC =180°﹣90°=90°;故答案为:90°.16.解:连接BD.∵AB是直径,∴∠C=∠D=90°,∵∠CAB=60°,AD平分∠CAB,∴∠DAB=30°,∴AB=AD÷cos30°=4,∴AC=AB•cos60°=2,故答案为2.17.解:连接OA,∵OA=OC=10cm,CD=4cm,∴OD=10﹣4=6cm,在Rt△OAD中,有勾股定理得:AD==8cm,∵OC⊥AB,OC过O,∴AB=2AD=16cm.故答案为16.18.解:∵直线y=kx﹣(k+1)可化为y=(x﹣1)k﹣1,∴此直线恒过点(1,﹣1).过点D作DH⊥x轴于点H,∵OH=1,DH=1,OD===.∵OB=2,∴BD===,∴AB=2.故答案为:2.三.解答题(共6小题)19.(1)证明:连接OC,∵OC=OB,∴∠OCB=∠B,∵EO⊥AB,∴∠OGB+∠B=90°,∵EG=EC,∴∠ECG=∠EGC,∵∠EGC=∠OGB,∴∠OCB+∠ECG=∠B+∠OGB=90°,∴OC⊥CE,∴EC是圆O的切线;(2)①证明:∵∠ABC=22.5°,∠OCB=∠B,∴∠AOC=45°,∵EO⊥AB,∴∠COF=45°,∴=,∴AC=CF;②解:作CM⊥OE于M,∵AB为直径,∴∠ACB=90°∵∠ABC=22.5°,∠GOB=90°,∴∠A=∠OGB=∠67.5°,∴∠FGC=67.5°,∵∠COF=45°,OC=OF,∴∠OFC=∠OCF=67.5°,∴∠GFC=∠FGC,∴CF=CG,∴FM=GM,∵∠AOC=∠COF,CD⊥OA,CM⊥OF,∴CD=DM,在Rt△ACD和Rt△FCM中∴Rt△ACD≌Rt△FCM(HL),∴FM=AD=1,∴FG=2FM=2.20.(1)证明:如图连接OC.∵OA=OC,∴∠A=∠OCA,∵OA⊥OB,∴∠AOB=90°,∴∠A+∠ADO=90°,∵ED=EC,∴∠EDC=∠ECD=∠ADO,∴∠OCD+∠DCE=90°,∴OC⊥CE,∴CE是⊙O的切线.(2)解:在Rt△AOD中,∵OA=6,∠A=30°,∴OD=,∵OA=OC,∴∠OCA=∠A=30°,∠COA=120°,∠DOC=30°,∴∠DOC=∠OCD=30°,∴CD=OD=2.故答案为:2.21.(1)证明:在AD上截取AP=AB,连结PB,如图,∵△DBC为等边三角形,∴∠DBC=∠DCB=∠BDC=60°,DB=CB,∵∠BAC=120°∴∠BAC+BDC=180°,∴A、B、D、C四点共圆,∴∠BAP=∠DCB=60°,∴△PAB为等边三角形,∴∠ABP=60°,BP=BA,∴∠DBC﹣∠PBC=∠ABP﹣∠PBC,即∠DBP=∠CBA,∴△DBP≌△CBA(SAS),∴PD=AC,∴AD=DP+AP=AC+AB=9.(2)当点E、F为直线MN与两圆的交点时,AE+EB+EF+FC+FD的值最小.证明:连结ME、NF,如图,由(1)的结论得EA+EB=ME,FC+FD=FN,∴AE+EB+EF+FC+FD=ME+EF+FN,∴当点M、E、F、N共线时,ME+EF+FN的值最小,此时点E、F为直线MN与两圆的交点.22.解:(1)证明:连接OA,∵∠ABC=45°,∴∠AOC=2∠ABC=90°,∵AD∥OC,∴∠DAO=∠COA=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;(2)①设OE=x,∵OC=OA,∴OA=x+3,由于AE=,在Rt△AOE中,由勾股定理可知:x2+(x+3)2=17,∴x2+3x﹣4=0,∴x=1,∴OC=x+3=4,∴⊙O的半径为4,;②S==4π,扇形OACS=×4×4=8,△AOC∴图中阴影部分的面积=4π﹣8.23.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=,设CD=k,BC=2k,∴BD==k=10,∴k=2,∴CD=2,BC=AC=4,∵∠ADF=∠BAC,∴∠FAC=∠ADC,∵∠ACF=∠DCA,∴△ACF∽△DCA,∴=,∴CF=8,∴DF=CF﹣CD=6.24.解:(1)如图1,由=10π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB==∴OQ=∴x=;(2)分三种情况:①如图2,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或k=(舍弃),∴OQ=2k=此时x的值为②如图3,作OH⊥PQ交PQ的延长线于H.设OH=k,QH=k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10+k)2,整理得:k2+5k﹣75=0,解得k=(舍弃)或k=(舍弃),∴OQ=2k=,此时x的值为﹣+5③如图4,作OH⊥PQ于H,设OH=k,QH=k.在Rt△OPH中,∵OP2=OH2+PH2,∴202=(k)2+(10﹣k)2,整理得:k2﹣5k﹣75=0,解得k=或(舍弃),∴OQ=2k=此时x的值为.。
人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。
第二十四章综合检测试卷(满分:100分时间:90分钟)一、选择题(每小题2分,共20分)1.下列命题中正确的有(A)(1)平分弦的直径垂直于弦;(2)经过半径一端且与这条半径垂直的直线是圆的切线;(3)在同圆或等圆中,圆周角等于圆心角的一半;(4)平面内三点确定一个圆;(5)三角形的外心到各个顶点的距离相等.A.1个B.2个C.3个D.4个2.【2016·江苏南京中考】已知正六边形的边长为2,则它的内切圆的半径为(B)A.1B.3C.2D.233.【2017·江苏宿迁中考】若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是(D)A.2cm B.3cmC.4cm D.6cm4.【2016·福建三明中考】如图,AB是⊙O的弦,半径OC⊥AB于点D,若⊙O的半径为5,AB=8,则CD的长是(A)A.2B.3C.4D.5第4题第5题第6题5.如图,线段AB是⊙O的直径,点C、D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于(A)A.20°B.25°C.30°D.40°6.如图,直线PA、PB是⊙O的两条切线,A、B分别为切点,∠APB=120°,OP=10cm,则弦AB的长为(D)cm B.103cmA.532C.5cm D.53cm7.【辽宁营口中考】将弧长为2πcm,圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高及侧面积分别是(B)A.2cm,3πcm2B.22cm,3πcm2C.22cm,6πcm2D.10cm,6πcm28.小明想用直角尺检查某些工件是否恰好是半圆形,下列几个图形是半圆形的是(B)9.如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,4),点M是第三象限内OB︵上一点,∠BMO=120°,则⊙C的半径为(A)第9题A.4B.5C.6D.2310.【贵州遵义中考】将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1,B1C1交CD于点E,AB=3,则四边形AB1ED的内切圆半径为(B)第10题A.3+12B.3-32C.3+13D.3-33二、填空题(每小题3分,共24分)11.已知扇形的半径为3cm,其弧长为2πcm,则此扇形的圆心角等于__120__度,扇形的面积是__3πcm2__.(结果保留π)12.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是__180°__.13.【2017·四川雅安中考】⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是__4≤OP≤5__.14.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则BD︵的度数为__50°__.第14题15.【2016·江苏盐城中考】如图,正六边形ABCDEF 内接于半径为4的圆,则B 、E 两点间的距离为__8__.第15题16.【2016·黑龙江绥化中考】如图,在半径AC 为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则图中阴影部分的面积是__π-1__.第16题17.如图,直线AB 、CD 相交于点O ,∠AOC =30°,半径为1cm 的⊙P 的圆心在射线OA 上,开始时,PO =6cm.如果⊙P 以1cm/s 的速度沿由A 向B 的方向移动,那么当⊙P 的运动时间t (秒)满足条件__4<t <8__时,⊙P 与直线CD 相交.第17题18.【山东莱芜中考】如图,在扇形OAB 中,∠AOB =60°,扇形半径为r ,点C 在AB ︵上,CD ⊥OA ,垂足为点D ,当△OCD 的面积最大时,AC ︵的长为__14πr__.第18题三、解答题(共56分)19.(6分)如图所示,残缺的圆形轮片上,弦AB 的垂直平分线CD 交圆形轮片于点C ,垂足为点D ,解答下列问题:(1)用尺规作图找出圆形轮片的圆心O 的位置并将圆形轮片所在的圆补全;(要求:保留作图痕迹,不写作法)(2)若弦AB =8,CD =3,求圆形轮片所在圆的半径R .第19题解:(1)图略.(2)连结OA .∵CD 是弦AB 的垂直平分线,AB =8,∴AD =12AB =4.在Rt △ADO 中,AO =R ,AD =4,DO =R -3,根据勾股定理,得R 2=16+(R -3)2,解得R =256.20.(8分)【2016·福建福州中考】如图,正方形ABCD 内接于⊙O ,M 为AD ︵中点,连结BM 、CM .(1)求证:BM =CM ;(2)当⊙O 的半径为2时,求BM ︵的长.第20题(1)证明:∵四边形ABCD 是正方形,∴AB =CD ,∴AB ︵=CD ︵.∵M 为AD ︵中点,∴AM ︵=DM ︵,∴AB ︵+AM ︵=CD ︵+DM ︵,即BM ︵=CM ︵,∴BM =CM .(2)解:∵⊙O 的半径为2,∴⊙O 的周长为4π.∵AM ︵=DM ︵=12AD ︵=12AB ︵,∴BM ︵=AB ︵+AM ︵=32AB ︵,∴BM ︵的长=32×14×4π=38×4π=32π.21.(8分)已知:△ABC 内接于⊙O ,过点A 作直线EF .(1)如图1,AB 为直径,要使EF 为⊙O 的切线,还需添加的条件是(只需写出两种情况):①__BA ⊥EF __;②__∠CAE =∠B __;(2)如图2,AB 是非直径的弦,∠CAE =∠B ,求证:EF 是⊙O 的切线.第21题证明:连结AO 并延长交⊙O 于点D ,连结CD ,则AD 为⊙O 的直径,∴∠D +∠DAC =90°.∵∠D =∠B ,∠CAE =∠B ,∴∠D =∠CAE ,∴∠DAC +∠EAC =90°,即∠DAE =90°,∴EF 是⊙O 的切线.22.(10分)【2016·江西中考】如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P作PE ⊥AB ,垂足为点E ,射线EP 交AC ︵于点F ,交过点C 的切线于点D .第22题(1)求证:DC =DP ;(2)若∠CAB =30°,当F 是AC ︵的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由.(1)证明:连结OC.∵∠OAC =∠ACO ,PE ⊥OE ,OC ⊥CD ,∴∠APE =∠PCD.∵∠APE =∠DPC ,∴∠DPC =∠PCD ,∴DC =DP.(2)解:以A 、O 、C 、F 为顶点的四边形是菱形.理由:连结BC 、OF 、AF.∵∠CAB =30°∴∠B =60°,∴△OBC 为等边三角形,∴∠AOC =120°.∵F 是AC ︵的中点,∴∠AOF =∠COF =60°,∴△AOF 与△COF 均为等边三角形,∴AF =AO =OC =CF ,∴四边形AOCF 为菱形.23.(12分)如图,点B 、C 、D 都在半径为6的⊙O 上,过点C 作AC ∥BD 交OB 的延长线于点A ,连结CD ,已知∠CDB =∠OBD =30°.第23题(1)求证:AC 是⊙O 的切线;(2)求弦BD 的长;(3)求图中阴影部分的面积.(1)证明:连结OC 交BD 于点E .∵∠CDB =∠OBD =30°,∴∠COB =2∠CDB =60°,CD ∥AB .又∵AC ∥BD ,∴四边形ABDC 为平行四边形,∴∠A =∠D =30°,∴∠OCA =180°-∠A -∠COB =90°,即OC ⊥AC .又∵OC 是⊙O 的半径,∴AC 是⊙O 的切线.(2)解:由(1)知,OC ⊥AC .∵AC ∥BD ,∴OC ⊥BD ,∴BE =DE .∵在Rt △BEO 中,∠OBD =30°,OB =6,∴BE =33,∴BD =2BE =6 3.(3)解:由(2)知,BE =DE .又∠OEB =∠CED ,∠CDB =∠OBD ,∴△OEB ≌△CED ,∴S 阴影=S 扇形BOC =60π·62360=6π.24.(12分)【2017·江苏盐城中考】如图,在平面直角坐标系中,Rt △ABC 的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分∠BAC 交边BC 于点E ,经过点A 、D 、E 的圆的圆心F 恰好在y 轴上,⊙F 与y 轴相交于另一点G .第24题(1)求证:BC 是⊙F 的切线;(2)若点A 、D 的坐标分别为A (0,-1),D (2,0),求⊙F 的半径;(3)试探究线段AG 、AD 、CD 三者之间满足的等量关系,并证明你的结论.(1)证明:连结EF .∵AE 平分∠BAC ,∴∠FAE =∠CAE .∵FA =FE ,∴∠FAE =∠FEA ,∴∠FEA =∠EAC ,∴FE ∥AC ,∴∠FEB =∠C =90°,即BC 是⊙F 的切线.(2)解:连结FD .设⊙F 的半径为r ,则r 2=(r -1)2+22,解得r =52,即⊙F 的半径为52.(3)解:AG =AD +2CD .证明:作FR ⊥AD 于点R ,则∠FRC =90°.又∠FEC =∠C =90°,∴四边形RCEF是矩形,∴EF =RC =RD +CD .∵FR ⊥AD ,∴AR =RD ,∴EF =RD +CD =12AD +CD ,∴AG =2FE =AD +2CD .。
第二十四章达标检测卷一、选择题(每题3分,共30分) 1.下列说法中不正确的是( )A .圆是轴对称图形B .三点确定一个圆C .半径相等的两个圆是等圆D .每个圆都有无数条对称轴2.若⊙O 的面积为25π,在同一平面内有一个点P ,且点P 到圆心O 的距离为4.9,则点P 与⊙O 的位置关系为( ) A .点P 在⊙O 外 B .点P 在⊙O 上 C .点P 在⊙O 内D .无法确定3.如图,⊙O 是△ABC 的外接圆,∠BOC =120°,则∠BAC 的度数是( )A .70°B .60°C .50°D .30°(第3题) (第4题) (第5题) (第6题)4.如图所示,⊙O 的半径为13,弦AB 的长度是24,ON ⊥AB ,垂足为点N ,则ON =( ) A .5B .7C .9D .115.如图,在Rt △ABC 中,∠C =90°,AC =4,BC =7,点D 在边BC 上,CD =3,⊙A的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外,那么⊙D 的半径长r 的取值范围是( ) A .1<r <4B .2<r <4C .1<r <8D .2<r <86.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC =105°,∠BAC =25°,则∠E 的度数为( ) A .45°B .50°C .55°D .60°7.如图,⊙O 与矩形ABCD 的边相切于点E ,F ,G ,点P 是EFG ︵上一点,则∠P 的度数是( ) A .45°B .60°C .30°D .无法确定8.如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A ′B ′C ,则点B 转过的路径长为( ) A.π3B.3π3C.2π3D .π(第7题) (第8题) (第10题)9.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为( ) A .60°B .90°C .120°D .180°10.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切……按这样的规律进行下去,正六边形A 10B 10C 10D 10E 10F 10的边长为( ) A.24329B.81329C.8129D.81328二、填空题(每题3分,共30分)11.如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4∶3∶5,则∠D 的度数是________.(第11题) (第12题) (第13题) (第14题)12.如图,PA ,PB 是⊙O 的切线,切点分别为A ,B ,若OA =2,∠P =60°,则AB ︵的长为________.13.如图,⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为________.14.如图,AB 是⊙O 的直径,BD ,CD 分别是过⊙O 上点B ,C 的切线,且∠BDC =110°.连接AC ,则∠A 的度数是________.15.一元钱硬币的直径约为24 mm ,则用它能完全覆盖住的正六边形的边长最大不能超过________mm.16.如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E =________°. 17.一个圆锥形漏斗,某同学用三角板测得其高度的尺寸如图所示,则该圆锥形漏斗的侧面积为________.(第16题) (第17题) (第18题) (第19题)18.如图,AC ⊥BC ,AC =BC =4,以BC 长为直径作半圆,圆心为点O .以点C 为圆心,BC 长为半径作弧AB ,过点O 作AC 的平行线交两弧于点D ,E ,则阴影部分的面积是________.19.如图,AB 是⊙O 的一条弦,点C 是⊙O 上一动点,且∠ACB =30°,点E ,F 分别是AC ,BC 的中点,直线EF 与⊙O 交于G ,H 两点,若⊙O 的半径是7,则GE +F H 的最大值是________.(第20题)20.如图所示,在⊙O 中,C ,D 分别是OA ,OB 的中点,MC ⊥AB ,ND ⊥AB ,M ,N在⊙O 上.下列结论:①MC =ND ;②AM ︵=MN ︵=NB ︵;③四边形MCDN 是正方形;④MN =12AB ,其中正确的结论是________.(填序号)三、解答题(21、22题每题8分,23、24题每题10分,其余每题12分,共60分) 21.如图,AB 是圆O 的直径,CD 为弦,AB ⊥CD ,垂足为H ,连接BC 、BD . (1)求证:BC =BD ;(2)已知CD =6,O H =2,求圆O 的半径长.(第21题)22.“不在同一条直线上的三个点确定一个圆”.请你判断平面直角坐标系内的三个点A(2,3),B(-3,-7),C(5,11)是否可以确定一个圆.23.如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长,交直线l于点C,恰有AB=AC.(1)求证:AB是⊙O的切线;(2)若PC=25,OA=5,求⊙O的半径.(第23题) 24.如图,AB与⊙O相切于点C,OA,OB分别交⊙O于点D,E,CD=CE.(1)求证:OA=OB;(2)已知AB=43,OA=4,求阴影部分的面积.(第24题)25.如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80米,桥拱到水面的最大高度为20米.(1)求桥拱的半径.(2)现有一艘宽60米,顶部截面为长方形且高出水面9米的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.(第25题)26.已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.(1)当直线CD与半圆O相切时,如图①,连接OC,求∠DOC的度数;(2)当直线CD与半圆O相交时,如图②,设另一交点为E,连接AE,OC,若AE∥OC.①试猜想AE与OD的数量关系,并说明理由;②求∠ODC的度数.(第26题)答案一、1.B 2.C 3.B 4.A 5.B 6.B7.A 点拨:连接OE ,OG ,易得OE ⊥AB ,OG ⊥AD .∵四边形ABCD 是矩形,∴∠A=90°,∴∠EOG =90°,∴∠P =12∠EOG =45°. 8.B 点拨:∵∠ACB =90°,∠ABC =30°,AB =2,∴AC =12AB =1.∴BC =AB 2-AC 2=22-12= 3.∴点B 转过的路径长为60π·3180=3π3. 9.C10.D 点拨:∵正六边形A 1B 1C 1D 1E 1F 1的边长为2=(3)1-121-2,∴正六边形A 2B 2C 2D 2E 2F 2的外接圆的半径为3,则正六边形A 2B 2C 2D 2E 2F 2的边长为3=(3)2-122-2,同理,正六边形A 3B 3C 3D 3E 3F 3的边长为32=(3)3-123-2,…,正六边形A nB nC nD nE nF n 的边长为(3)n -12n -2,则当n =10时,正六边形A 10B 10C 10D 10E 10F 10的边长为(3)10-1210-2=(3)8·328=34·328=81328,故选D. 二、11.120° 12.43π 13.65° 14.35° 15.1216.215 点拨:∵A ,B ,C ,D 四点共圆,∴∠B +∠ADC =180°.又∵A ,C ,D ,E 四点共圆,∴∠E +∠ACD =180°.∴∠ACD +∠ADC +∠B +∠E =360°.∵∠ACD +∠ADC =180°-35°=145°,∴∠B +∠E =360°-145°=215°. 17.15π 18.53π-23 19.10.520.①②④ 点拨:连接OM ,ON ,易证Rt △OMC ≌Rt △OND .可得MC =ND ,故①正确.在Rt △MOC 中,CO =12MO .得∠CMO =30°,所以∠MOC =60°.易得∠MOC =∠NOD =∠MON =60°,所以A M ︵=M N ︵=NB ︵.故②正确.易得CD =12AB =OA =OM ,因为MC <OM ,所以MC <CD .所以四边形MCDN 不是正方形.故③错误.易得MN =CD =12AB ,故④正确.三、21.(1)证明:∵AB 是圆O 的直径,CD 为弦,AB ⊥CD ,∴BC ︵=BD ︵,∴BC =BD .(第21题)(2)解:如图,连接OC .∵AB 是圆O 的直径,CD 为弦,AB ⊥CD ,CD =6, ∴CH =3,∴OC =OH 2+CH 2=22+32=13,即圆O 的半径长为13.22.解:设经过A ,B 两点的直线对应的函数解析式为y =kx +b .∵A (2,3),B (-3,-7), ∴⎩⎨⎧2k +b =3,-3k +b =-7.解得⎩⎨⎧k =2,b =-1.∴经过A ,B 两点的直线对应的函数解析式为y =2x -1. 当x =5时,y =2×5-1=9≠11, ∴点C (5,11)不在直线AB 上, 即A ,B ,C 三点不在同一条直线上.∴平面直角坐标系内的三个点A (2,3),B (-3,-7),C (5,11)可以确定一个圆. 23.(1)证明:如图,连接OB .∵OA ⊥l , ∴∠PAC =90°, ∴∠APC +∠ACP =90°. ∵AB =AC ,OB =OP ,∴∠ABC =∠ACB ,∠OBP =∠OPB . ∵∠BPO =∠APC ,∴∠ABC +∠OBP =90°,即∠OBA =90°, ∴OB ⊥AB , ∴AB 是⊙O 的切线.(第23题)(2)解:设⊙O 的半径为r ,则AP =5-r ,OB =r . 在Rt △OBA 中,AB 2=OA 2-OB 2=52-r 2, 在Rt △APC 中,AC 2=PC 2-AP 2=(25)2-(5-r )2. ∵AB =AC ,∴52-r 2=(25)2-(5-r )2, 解得r =3,即⊙O 的半径为3. 24.(1)证明:连接OC .∵AB 与⊙O 相切于点C , ∴OC ⊥AB . ∵CD =CE , ∴∠AOC =∠BOC . 在△AOC 和△BOC 中,⎩⎨⎧∠AOC =∠BOC ,OC =OC ,∠ACO =∠BCO =90°,∴△AOC ≌△BOC ,∴OA =OB .(2)解:∵△AOC ≌△BOC ,∴AC =BC =12AB =2 3.∵OB =OA =4,且△OCB 是直角三角形,∴根据勾股定理,得OC =OB 2-BC 2=2,∴OC =12OB ,∴∠B =30°, ∴∠BOC =60°. ∴S 阴影=S △BOC -S 扇形COE =12×2×23-60π×22360=23-23π. 25.解:(1)如图,设点E 是桥拱所在圆的圆心.过点E 作EF ⊥AB 于点F ,延长EF 交⊙E 于点C ,连接AE , 则CF =20米.由垂径定理知,F 是AB 的中点,∴AF =FB =12AB =40米.设圆的半径是r ,由勾股定理,得AE 2=AF 2+EF 2=AF 2+(CE-CF)2,即r2=402+(r-20)2.解得r=50米.∴桥拱的半径为50米.(第25题)(2)这艘轮船能顺利通过.理由如下:如图,设MN=60米,MN∥AB,EC与MN的交点为D,连接EM,易知DE⊥MN,∴MD=30米,∴DE=E M2-D M2=502-302=40(米).∵EF=EC-CF=50-20=30(米),∴DF=DE-EF=40-30=10(米).∵10米>9米,∴这艘轮船能顺利通过.26.解:(1)∵直线CD与半圆O相切,∴∠OCD=90°.∵OC=OA,CD=OA,∴OC=CD,∴∠DOC=∠ODC=45°,即∠DOC的度数是45°.(2)①AE=OD.理由如下:如图,连接OE.∵OC=OA,CD=OA,∴OC=CD,∴∠COD=∠CDO.∵AE∥OC,∴∠EAD=∠COD,∴∠EAD=∠CDO,∴AE=DE.∵OA=OE,OC=CD,∴∠DOE=2∠EAD,∠OCE=2∠CDO,∴∠DOE=∠OCE.∵OC=OE,∴∠DEO=∠OCE,∴∠DOE=∠DEO,∴OD=DE,∴AE=OD.②由①得,∠DOE=∠DEO=2∠ODC. ∵∠DOE+∠DEO+∠ODC=180°,∴2∠ODC+2∠ODC+∠ODC=180°,∴∠ODC=36°.(第26题)。
第二十四章圆一、单选题1.下列命题中,不正确的是( )A.圆是轴对称图形B.圆是中心对称图形C.圆既是轴对称图形,又是中心对称图形D.以上都不对2.如图,AB是如图,AB是⊙O的直径,AB=2,点C在⊙O上,∠CAB=30°,D为弧BC的中点,点P是直径AB上一动点,则PC+PD的最小值是()A.1 2353.如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(9,0).直线y=kx-3恰好平分⊙P的面积,那么k的值是( )A.6 5B.1 2C.5 6D.24.已知⊙O的直径为10,圆心O到弦AB的距离OM为3,则弦AB的长是()A.4 B.6 C.7 D.85.如图,⊙O的半径为4,点A为⊙O上一点,OD⊥弦BC于D,如果∠BAC=60°,那么OD的长是()A.4 B.C.2 D6.下列命题:①长度相等的弧是等弧②半圆既包括圆弧又包括直径③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形其中正确的命题共有()A.0个B.1个C.2个D.3个7.如图,AB,CD是⊙O的直径,若∠AOC=55°,则的度数为()A.55°B.110°C.125°D.135°8.如图,C、D为半圆上三等分点,则下列说法:①AD=CD=BC;②∠AOD=∠DOC=∠BOC;③AD=CD =OC;④△AOD沿OD翻折与△COD重合.正确的有()A.4个B.3个C.2个D.1个9.如图,A、D是⊙O上的两个点,若∠ADC=33°,则∠ACO的大小为()A .57°B .66°C .67°D .44°10.⊙O 的半径为5cm ,点A 到圆心O 的距离OA =3cm ,则点A 与圆O 的位置关系为( ) A .点A 在圆上 B .点A 在圆内 C .点A 在圆外 D .无法确定11.如图,P 为⊙O 外一点,P A 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交P A 、PB 于点C 、D ,若P A =6,则△PCD 的周长为( )A.8B.6C.12D.1012.边长为2的正方形内接于⊙O ,则⊙O 的半径是( )A .1 BC .2D .二、填空题13.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.14.如图,半圆的直径6AB =,点C 在半圆上,30BAC ∠︒=,则阴影部分的面积为_____(结果保留π).15.如图,正六边形ABCDEF内接于⊙O,边长AB=2,则扇形AOB的面积为_____.16.如图,圆锥的侧面积为15π,底面半径为3,则圆锥的高AO为_____.三、解答题17.如图,在⊙O中,已知∠ACB=∠CDB=60°,AC=3,求△ABC的周长.18.一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:(1)桥拱半径.(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?19.如图,AB为⊙O的直径,C为⊙O上一点,D为BC的中点.过点D作直线AC的垂线,垂足为E,连接OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有怎样的位置关系?请说明理由.20.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.21.如图,正六边形ABCDEF内接于⊙O,BE是⊙O的直径,连接BF,延长BA,过F作FG⊥BA,垂足为G.(1)求证:FG是⊙O的切线;(2)已知FG=.22.已知△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,方程20ax bx c +-=是关于x 的一元二次方程.(1)判断方程20ax bx c +-=的根的情况为 (填序号); ①方程有两个相等的实数根; ②方程有两个不相等的实数根; ③方程无实数根; ④无法判断(2)如图,若△ABC 内接于半径为2的⊙O ,直径BD ⊥AC 于点E ,且∠DAC=60°,求方程20ax bx c +-=的根;(3)若14x c =是方程20ax bx c +-=的一个根,△ABC 的三边a 、b 、c 的长均为整数,试求a 、b 、c 的值. 答案 1.D 2.B 3.A4.D5.C6.B7.C8.A9.A10.B11.C12.B 13.36︒十14.93 34π-15.23π.16.417.∠A=∠BDC,而∠ACB=∠CDB=60°,∴∠A=∠ACB=60°.∴△ABC为等边三角形.AC=3,∴△ABC的周长为9.18.(1)∵拱桥的跨度AB=16m,∴AD=8m,因为拱高CD=4m,利用勾股定理可得:AO2-(OC-CD)2=82,解得OA=10(m).所以桥拱半径为10m;(2)设河水上涨到EF位置(如图所示),这时EF=12m,EF∥AB,有OC⊥EF(垂足为M),∴EM=12EF=6m,连接OE,则有OE=10m,OM2=OE2-EM2=102-62=64,所以OM=8(m)OD=OC-CD=10-4=6(m),OM-OD=8-6=2(m).即水面涨高了2m.19.(1)证明:连接OC,∵D为BC的中点,∴CD=BD,∴∠DOB=12∠BOC,∵∠A=12∠BOC,∴∠A=∠DOB;(2)DE与⊙O相切,理由:∵∠A=∠DOB,∴AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙O相切.20.(1)如图,连接OD,OF;在Rt△ABC中,∠C=90°,AC=12cm,BC=9cm;根据勾股定理=15cm;四边形OFCD中,OD=OF,∠ODC=∠OFC=∠C=90°;则四边形OFCD是正方形;由切线长定理,得:AD=AE,CD=CF,BE=BF;则CD=CF=12(AC+BC-AB);即:r=12(12+9-15)=3cm.(2)当AC=b,BC=a,AB=c,由以上可得:CD=CF=12(AC+BC-AB);即:r=12(a+b-c).则⊙O的半径r为:12(a+b-c).21.(1)证明:连接OF,AO,∵AB=AF=EF,∴AB AF EF==,∴∠ABF=∠AFB=∠EBF=30°,∵OB=OF,∴∠OBF=∠BFO=30°,∴∠ABF=∠OFB,∴AB∥OF,∵FG⊥BA,∴OF⊥FG,∴FG是⊙O的切线;(2)解:∵AB AF EF==,∴∠AOF=60°,∵OA=OF,∴△AOF是等边三角形,∴∠AFO=60°,∴∠AFG=30°,∵FG=∴AF=4,∴AO=4,∵AF∥BE,∴S△ABF=S△AOF,∴图中阴影部分的面积=26048 3603ππ⨯=.22.(1)△=b2-4a•(-c)=b+4ac,∵a、b、c分别为∠A、∠B、∠C的对边,即a、b、c都是正数,∴△>0,∴方程有两个不相等的实数根;故选②;(2)连接OA,如图,∵BD ⊥AC ,∴弧AB=弧CB ,弧AD=弧CD ,∴AB=CB ,∠ABD=∠DAC=60°,∴△OAB 为等边三角形,∴AB=OB=2,∴3∴AC=2AE=23即a=2,b=c=2,方程20ax bx c +-=变形为2220x +-=,整理得:210x +-=,解得1x =2x = (3)把14x c =代入20ax bx c +-=得:210164ac bc c +-= 整理得:44ac b =-,则4-b >0, 即b <4,∵a、b、c的长均为整数,∴b=1,2,3,当b=1时,ac=12,则a=1,c=12;a=2,c=6;a=3,c=4;a=6,c=2;a=12,c=1,都不符合三角形三边的关系,舍去;当b=2时,ac=8,则a=1,c=8;a=2,c=4;a=4,c=2;a=8,c=1,都不符合三角形三边的关系,舍去;当b=3时,ac=4,则a=1,c=4;a=2,c=2;a=4,c=1,其中a=2,c=2符合三角形三边的关系,∴a=2,b=3,c=2。
人教版九年级数学上册第二十四章圆单元测试题第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50° C.40° D.20°2.如图,BC是半圆O的直径,D,E是弧BC上两点,连接BD,CE并延长交于点A,连接OD,OE,如果∠A=70°,那么∠DOE的度数为A.35°B.38°C.40°D.42°3.下列命题:①直线外一点到这条直线的垂线段,叫做点到直线的距离;②两点之间线段最短;③相等的圆心角所对的弧相等;④平分弦的直径垂直于弦.其中,真命题的个数()A.1 B.2 C.3 D.44.如图,△ABC是圆O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为A.32 °B.31°C.29°D.61°5.如图1,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF =EB ,EF 与AB 交于点C ,连接OF .若∠AOF =40°,则∠F 的度数是( )图1A .20°B .35°C .40°D .55°6 如图2,在⊙O 中,AB ︵所对的圆周角∠ACB =50°,若P 为AB ︵上一点,∠AOP =55°,则∠POB 的度数为( )图2A .30°B .45°C .55°D .60°7 如图3,四边形ABCD 内接于⊙O ,点I 是△ABC 的内心,∠AIC =124°,点E 在AD 的延长线上,则∠CDE 的度数为( )图3A .56°B .62°C .68°D .78°8 如图4,已知⊙O 的半径为5,弦AB ,CD 所对的圆心角分别是∠AOB ,∠COD ,若∠AOB 与∠COD 互补,弦CD =6,则弦AB 的长为( )图4A .6B .8C .5 2D .5 39 如图5,在半径为6的⊙O 中,点A ,B ,C 都在⊙O 上,四边形OABC 是平行四边形,则图中阴影部分的面积为( )图5A .6πB .3 3π C.2 3π D.2π10 如图6,线段AB 经过⊙O 的圆心,AC ,BD 分别与⊙O 相切于点C ,D .若AC =BD =4,∠A =45°,则CD ︵的长度为( )图6A .π B.2π C .2 2π D.4π第Ⅱ卷 (非选择题 共70分)二、填空题(每小题3分,共18分)11.若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC 是等径三角形,则等径角的度数为________.12.如图10,AB 是⊙O 的直径,点C 在⊙O 上,∠BAC =43°,点P 在线段OB 上运动.设∠ACP =x ,则x 的取值范围是________.图1013.如图11是一个汽油桶的截面图,其上方有一个进油孔,该汽油桶的截面直径为50 dm ,此时汽油桶内液面宽度AB =40 dm ,现在从进油孔处倒油,当液面AB =48 dm 时,液面上升了________dm .图1114.如图12,将弧长为6π,圆心角为120°的扇形纸片OAB 围成圆锥形纸帽,使扇形的两条半径OA 与OB 重合(粘连部分忽略不计),则圆锥形纸帽的高是________.图1215.已知直线y =kx(k ≠0)经过点(12,-5),将直线向上平移m(m >0)个单位长度,若平移后得到的直线与半径为6的⊙O 相交(点O 为坐标原点),则m 的取值范围为________. 16.如图13,正方形ABCD 的边长为4 cm ,以正方形的一边BC 为直径在正方形ABCD 内作半圆,过点A 作半圆的切线,与半圆相切于点F ,与DC 相交于点E ,则△ADE 的面积为________cm 2.图13三、解答题(共52分)17.(5分)如图14,A 是半径为3的⊙O 上的点,尺规作图:作⊙O 的内接正六边形ABCDEF.图1418.(5分)如图15,P 是⊙O 外的一点,PA ,PB 分别与⊙O 相切于点A ,B ,C 是AB ︵上的任意一点,过点C 的切线分别交PA ,PB 于点D ,E.若PA =4,求△PED 的周长.图1519.(5分)如图16所示,⊙O 的直径AB 和弦CD 交于点E ,已知AE =6 cm ,EB =2 cm ,∠CEA =30°,求CD 的长.图1620.(5分)如图17,⊙O 是△ABC 的外接圆,BC 为⊙O 的直径,点E 为△ABC 的内心,连接AE 并延长交⊙O 于点D ,连接BD 并延长至点F ,使得DF =BD ,连接CF ,BE. 求证:(1)DB =DE ; (2)直线CF 为⊙O 的切线.图1721.(7分)如图18,⊙O 是正五边形ABCDE 的外接圆,F 是AB ︵的中点,连接CF ,EF. (1)请直接写出:∠CFE =________°;(2)求证:EF =CF ;(3)若⊙O 的半径为5,求CF ︵的长.图1822.(7分)如图19,在△ABC 中,∠ABC =90°,∠A =30°,AC =2. (1)如图(a ),将△ABC 绕点C 顺时针旋转120°得△A ′B ′C. ①求点B 旋转经过的路径长;②连接BB ′,求线段BB ′的长.(2)如图(b ),过点C 作AC 的垂线与AB 的延长线交于点D ,将△ACD 绕点C 顺时针旋转90°得△A ′CD ′.在图(b )中画出线段AD 绕点C 旋转所形成的图形(用阴影表示),并求出该图形的面积.图1923.(8分)先阅读材料,再解答问题:小明同学在学习与圆有关的角时了解到:在同圆或等圆中,同弧(或等弧)所对的圆周角相等.如图20(a),A,B,C,D均为⊙O上的点,则有∠C=∠D.小明还发现,若点E在⊙O外,且与点D在直线AB的同侧,则有∠D>∠E.请你参考小明得出的结论,解答下列问题:(1)如图(b),在平面直角坐标系xOy中,点A的坐标为(0,7),点B的坐标为(0,3),点C 的坐标为(3,0).①在图(b)中作出△ABC的外接圆(保留必要的作图痕迹,不写作法);②若在x轴的正半轴上有一点D,且∠ACB=∠ADB,则点D的坐标为________.(2)如图(c),在平面直角坐标系xOy中,点A的坐标为(0,m),点B的坐标为(0,n),其中m>n>0.P为x轴正半轴上的一个动点,当∠APB达到最大时,求此时点P的坐标.图2024.(10分)如图21①至图③,⊙O均作无滑动滚动,⊙O1,⊙O2,⊙O3,⊙O4均表示⊙O与线段AB或BC相切于端点时刻的位置,⊙O的周长为c.阅读理解:(1)如图①,⊙O从⊙O1的位置出发,沿AB滚动到⊙O2的位置,当AB=c时,⊙O恰好自转1周.(2)如图②,∠ABC相邻的补角是n°,⊙O在∠ABC外部沿A-B-C滚动,在点B处,必须由⊙O1的位置旋转到⊙O2的位置,⊙O绕点B旋转的角∠O1BO2=n°,⊙O在点B处自转n360周.实践应用:(1)在阅读理解的(1)中,若AB=2c,则⊙O自转________周;若AB=l,则⊙O自转________周.在阅读理解的(2)中,若∠ABC=120°,则⊙O在点B处自转________周;若∠ABC=60°,则⊙O 在点B 处自转________周.(2)如图③,∠ABC =90°,AB =BC =12c.⊙O 从⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动到⊙O 4的位置,⊙O 自转________周. 拓展联想:(1)如图④,△ABC 的周长为l ,⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由. (2)如图⑤,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多边形滚动,又回到与该边相切于点D 的位置,直接写出⊙O 自转的周数.图21答案1-10 BCAAB BCBAB 11.30°或150° 12.43°≤x ≤90° 13.8或22 14.6 2 15.0<m <13216.617.解:首先连接OA ,然后以点A 为圆心,OA 长为半径画弧,交⊙O 于B ,F 两点,再分别以点B ,F 为圆心,OA 长为半径画弧,交⊙O 于C ,E 两点,再以点E 为圆心,OA 长为半径画弧,交⊙O 于点D ,连接AB ,BC ,CD ,DE ,EF ,FA ,则正六边形ABCDEF 即为所求.18.解:∵PA ,PB 分别与⊙O 相切于点A ,B , ∴PA =PB =4.∵过点C 的切线分别交PA ,PB 于点D ,E , ∴DC =DA ,EC =EB ,∴△PED 的周长=PD +DE +PE =PD +DC +EC +PE =PD +DA +EB +PE =PA +PB =4+ 4=8. 19.解:∵AE =6 cm ,EB =2 cm ,∴OA =12×(6+2)=4(cm),∴OE =4-2=2(cm).如图,过点O 作OF ⊥CD 于点F ,可得∠OFE =90°,即△OEF 为直角三角形. ∵∠CEA =30°, ∴OF =12OE =1 cm.连接OC ,在Rt △COF 中,根据勾股定理可得CF =OC 2-OF 2=42-12=15(cm). ∴CD =2CF =215 cm.20.证明:(1)∵点E 是△ABC 的内心, ∴∠BAE =∠CAE ,∠EBA =∠EBC . ∵∠BED =∠BAE +∠EBA ,∠DBE =∠EBC +∠DBC ,∠DBC =∠CAE , ∴∠BED =∠DBE , ∴DB =DE . (2)如图,连接CD .由(1)知∠DAB =∠DAC , ∴BD ︵=CD ︵, ∴BD =CD . ∵BD =DF , ∴CD =BD =DF ,∴∠DBC =∠BCD ,∠DCF =∠F .又∵∠DBC +∠BCD +∠DCF +∠F =180°, ∴∠BCD +∠DCF =90°, ∴∠BCF =90°,即BC ⊥CF , ∴直线CF 是⊙O 的切线. 21.解:(1)72(2)证明:∵五边形ABCDE 是正五边形, ∴AE =BC , ∴AE ︵=BC ︵. ∵F 是AB ︵的中点, ∴AF ︵=BF ︵, ∴AE ︵+AF ︵=BC ︵+BF ︵,即EF ︵=CF ︵,∴EF =CF .(3)∵⊙O 是正五边形ABCDE 的外接圆,∴AB ︵=BC ︵=CD ︵=DE ︵=AE ︵,∴AB ︵的长=BC ︵的长=15×2πr =2π, ∴BF ︵的长=12AB ︵的长=π, ∴CF ︵的长=BF ︵的长+BC ︵的长=3π.22.解:(1)①∵AC =2,∠B =90°,∠A =30°,∴BC =1,∴点B 旋转的路径长为13×2π×1=23π. ②如图(a)所示,连接BB ′,交A ′C 于点E .在△BCB ′中,CB =CB ′,∠BCB ′=120°,A ′C ⊥BB ′,∴BE =32,∴BB ′=2BE = 3. (2)如图(b)所示.∵S 1=S 2,∴S 2+S 4=S 1+S 4=14π(AC 2-BC 2)=14π×(22-12)=34π. 在Rt △ACD 中,CD =2 33,S 3=S 扇形CED ′-S △CED ′=16π×⎝ ⎛⎭⎪⎫2 332-12×2 33×1=29π-33, ∴S 2+S 3+S 4=34π+29π-33=3536π-33. 23.解:(1)①如图(a)所示.②(7,0)(2)由阅读材料可知,当以AB 为弦的圆与x 轴正半轴相切,切点为P 时,∠APB 达到最大值.如图(b),过圆心C 作CD ⊥y 轴于点D ,连接CP ,CB .∵点A 的坐标为(0,m ),点B 的坐标为(0,n ),∴点D 的坐标是(0,m +n 2), 即BC =PC =m +n2.在Rt △BCD 中,BC =m +n 2,BD =m -n 2, 则CD =BC 2-BD 2=mn ,则OP =CD =mn .故点P 的坐标是(mn ,0).24.解:实践应用(1)2 l c 16 13(2)54拓展联想(1)⊙O 自转了(l c +1)周.理由:∵△ABC 的周长为l ,∴⊙O 在三边上自转了l c周.又∵三角形的外角和是360°,∴在三个顶点处,⊙O 自转了360360=1(周). ∴⊙O 共自转了(l c+1)周. (2)⎝ ⎛⎭⎪⎫l c +1周.。
圆测试题时间:120分钟分数:120分一、选择题(每小题3分,共30分)1.已知⊙O 的半径为4cm ,A 为线段OP 的中点,当OP=7cm 时,点A 与⊙O 的位置关系是()A .点A 在⊙O 内B .点A 在⊙O 上C .点A 在⊙O 外D .不能确定2.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为()A .9cm B .6cm C .3cm D .cm413.在△ABC 中,I 是内心,∠BIC=130°,则∠A 的度数为()A .40°B .50°C .65°D .80°4.如图24—B —1,⊙O 的直径AB 与AC 的夹角为30°,切线CD 与AB 的延长线交于点D ,若⊙O 的半径为3,则CD 的长为()A .6 B .3C .3 D .335.如图24—B —2,若等边△A 1B 1C 1内接于等边△ABC 的内切圆,则AB B A 11的值为()A .21B .22C .31D .336.如图24—B —3,⊙M 与x 轴相切于原点,平行于y 轴的直线交圆于P 、Q 两点,P 点在Q 点的下方,若P 点的坐标是(2,1),则圆心M 的坐标是()A .(0,3)B .(0,25)C .(0,2)D .(0,23)7.已知圆锥的侧面展开图的面积是15πcm 2,母线长是5cm ,则圆锥的底面半径为()A .cm 23B .3cmC .4cmD .6cm8.如图24—B —4,⊙O 1和⊙O 2内切,它们的半径分别为3和1,过O 1作⊙O 2的切线,切点为A,则O1A的长是()A.2 B.4 C.3D.59.如图24—B—5,⊙O的直径为AB,周长为P1,在⊙O内的n个圆心在AB上且依次相外切的等圆,且其中左、右两侧的等圆分别与⊙O内切于A、B,若这n个等圆的周长之和为P2,则P1和P2的大小关系是()A.P1< P2 B.P1= P2 C.P1> P2 D.不能确定10.若正三角形、正方形、正六边形的周长相等,它们的面积分别是S1、S2、S3,则下列关系成立的是()A.S1=S2=S3 B.S1>S2>S3 C.S1<S2<S3 D.S2>S3>S1二、填空题(每小题3分,共30分)⌒⌒11.如图24—B—6,AB是⊙O的直径,BC=BD,∠A=25°,则∠BOD=。
2017-2018学年度第一学期人教版九年级数学上册第24章圆单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.下列结论正确的是()A.长度相等的两条弧是等弧B.半圆是弧C.相等的圆心角所对的弧相等D.弧是半圆2.已知的半径是,点到同一平面内直线的距离为,则直线与的位置关系是()A.相交B.相切C.相离D.无法判断3.如图,在中,直径于点,则下列结论错误的是()A. B. C. D.4.如图,,已知中,,,的顶点、分别在边、上,当点在边上运动时,随之在上运动,的形状始终保持不变,在运动的过程中,点到点的最小距离为()A. B. C. D.5.有一个边长为的正方形洞口,要用一个圆盖去盖住这个洞口,那么圆盖的直径至少应为()A. B. C. D.6.已知扇形的半径是,圆心角是,则扇形的弧长是()A. B. C. D.7.是的弦,于,再以为半径作同心圆,称作小,点是上异于,,的任意一点,则点位置是()A.在大上B.在大外部C.在小内部D.在小外而大内8.如图,、、、四点在同一个圆上.下列判断正确的是()A. B.当为圆心时,C.若是的中点,则一定是此圆的圆心D.9.如图,,且,半径,则下列结论不正确的是()A. B.C.的度数为D.弦10.如图,是的外接圆,是直径.若,则等于()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.在中,,,,分别以、为圆心的两圆外切,如果点在圆内,那么圆的半径长的取值范围是________.12.如图,的直径,,则________.13.的半径为,弦的长为,以为圆心,为半径作圆,与弦有________个公共点.14.蔬菜基地圆弧形蔬菜大棚的剖面如图所示,已知,半径,则高度为________.15.一个半径为的圆,在边长为的正六边形内任意挪动(圆可以与正六边形的边相切),则圆在正六边形内不能达到的部分的面积为________.16.如图,内接于,,则________.17.已知一条圆弧所在圆半径为,弧长为,则这条弧所对的圆心角是________.18.一个圆柱形油桶的底面直径为米,高为米,那么这个油桶的侧面积为________.19.有下列说法:①弦是直径②半圆是弧③圆中最长的弦是直径④半圆是圆中最长的弧⑤垂直平分弦的直线必经过圆心⑥平分弦的直径垂直于弦,其中错误的有________个.20.如图,两同心圆的圆心为,大圆的弦切小圆于,两圆的半径分别为、,则图中阴影部分的面积是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,有一直径是米的圆形铁皮,现从中剪出一个圆周角是的最大扇形,求的长;求图中阴影的面积;若用该扇形铁皮围成一个圆锥,求所得圆锥的底面圆的半径.22.一跨河桥,桥拱是圆弧形,跨度为米,拱高为米,求:桥拱半径若大雨过后,桥下河面宽度为米,求水面涨高了多少?23.如图,在中,﹑为上两点,是的直径,已知,.求:的长;的度数.24.如图,是的直径,点、是圆上两点,且,与交于点.求证:为的中点;若,,求的长度.25.如图,已知四边形内接于圆,对角线与相交于点,在上,,.若,求的度数;求证:.26.如图①,、分别是的内接正的边、上的点且,连接、,求的度数;图②、③、…④中,、分别是的内接正方形、正五边、…正边形 …的边、上的点,且,连接、,则图②中的度数是________,图③中的度数是________;…由此可猜测在边形图中的度数是________;若,各自有一个正多边形,则从中任取个图形,恰好都是中心对称图形的概率是________.答案1.B2.A3.B4.B5.C6.C7.D8.B9.D10.C11.12.13.14.15.16.17.18.19.20.21.解: ∵ ,∴ 为的直径,即,∴;;设所得圆锥阴影圆扇形的底面圆的半径为,根据题意得,解得.22.解: ∵拱桥的跨度,拱高,∴ ,利用勾股定理可得:,解得.设河水上涨到位置(如上图所示),这时,,有(垂足为),∴,连接,则有,,.23.解: ∵ ,,∴ ;由,得,又∵,∴.24.解: ∵ 是半圆的直径,∴ ,∵ ,∴ ,∴ ,∴ ,∴ 为的中点;设圆的半径为,则,,∵,在中,,∴ ,解得,∴.25.解: ∵ ,,∴ ,又∵ ,∴ ,∴ ,∵ ,∴ ;令,则,∵四边形是圆的内接四边形,∴ ,即,又∵ ,∴ ,∴ ,∴ ,∴ ,即.26.。
九年级数学(上)第24章《圆》单元检测题一、选择题(每小题3分,共30分)1.若⊙O的半径为8cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是(A)A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.不能确定2.如图在⊙O中,圆心角∠BOC=60°,则圆周角∠BAC等于(D)A.60°B.50°C.40°D.30°3.如图,AB为⊙O的直径,∠BED=40°,则∠ACD的度数是(B)A.90°B.50°C.45°D.30°4.已知⊙O的半径为5,圆心到直线l的距离为4,则直线l与⊙O的位置关系是(A)A.相交B.相离C.相切D.相交或相切5.在Rt△ABC中,两直角边AC=6cm,BC=8cm,则它的外接圆的面积为(C)A.100πcm²B.15πcm²C.25πcm²D.50πcm²6.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是(C)A.10πB.15πC.20πD.25π7.如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为(C)A.10πB CπD.π8.半径为R的圆内接正三角形的面积是(D)A .22RB .2R πC .22RD .24R 9.(2015临沂改)如图,AB 为⊙O 的直径,CD 切⊙O 于点D ,AC ⊥CD 交⊙O 于点E ,若∠BAC=60°,AB =4,则阴影部分的面积是(A )A .23πB . 3πC . 4πD .25π10.如图,点C 在以AB 为半径的半圆上,AB =8,∠CBA =30°,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF ⊥DE 于点D ,并交EC 的延长线与点F .下列结论:①CE =CF ;②线段EF的最小值为AD =2时,EF 与半圆相切;④当点D 从点A 运动到点B 时,线段EF 扫过的面积是C )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共18分)11.如图,⊙O 是△ABC 的外接圆,∠OCB =40°,则∠A 的度数等于 .(50°)12.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于 .(5)13.正六边形的半径为2,则该正六边形的边长是.(2)14.如图所示,⊙C过原点,且与两坐标轴分别交于点A,B两点,点A的坐标为(0,3),M是第三象限内 OB上一点,∠BMO=120°,则⊙C的半径为.(3)15.如图,由7个形状、大小完全相同的正六边形组成的网络,正六变形的顶点称为格点.已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是________.(解:过O做OM⊥AB于M,利用垂径定理.18.(本题8分)如图,直线AB经过⊙O上的一点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线.解:连OC,利用等腰三角形的三线合一性质证OC⊥AB.19.(本题8分)如图,在△ABC中,∠C=90°,∠A,∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.⑴求证:四边形CFDE是正方形;⑵若AC=3,BC=4,求△ABC的内切圆半径.解:⑴过D作DG⊥AB交AB于G点,∵AD是∠BAC的角平分线,∴DF=DG,同理可证DE=DG,∴DE=DF,∵∠C=∠CFD=∠CED=90°,∴四边形CFDE是正方形;⑵∵AC=3,BC=4,∴AB=5,由⑴知AF=AG,BE=BG,∴AF+BE=AB,∵四边CFDE是正方形,∴2CE=AC+CB-AB=2,即CE=1,△ABC的内切圆半径为1.20.(本题8分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后的到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;⑶如果网格中小正方形的边长为1,求点B经过⑴、⑵变换的路径总长.解:⑴25°⑵设OC交AD于M,证OC⊥AD,AM=DM,△ACM≌△BAD,∴BD=AM=DM,设2x=24,∴,∴AD.BD=x,则AD=2x,在△ABD中,2x+()2。
人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、如图,是的弦,半径于点,下列判断中错误的是()A. B. C. D.2、如图,AB为⊙O的直径,C,D两点在圆上,∠CAB=20°,则∠ADC的度数等于()A.114°B.110°C.108°D.106°3、如右图是一个正八边形,图中空白部分的面积等于20,则阴影部分的面积等于()A.20B.C.18D.4、若扇形的弧长是,半径是18,则该扇形的圆心角是()A. B. C. D.5、如图,从外一点引圆的切线切点为连结并延长交于点连结.若则的度数是()A. B. C. D.6、已知:如图,在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC的度数为()A.30°B.35°C.45°D.70°7、如图,在⊙O中,弦AC与半径OB平行,若∠BOC=50°,则∠B的大小为()A.25°B.30°C.50°D.60°8、已知⊙O的直径为3cm,点P到圆心O的距离OP=2cm,则点P()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定9、如图,一张半径为1的圆形纸片在边长为a(a≥3)的正方形内任意移动,则该正方形内,这张圆形纸片“不能接触到的部分”的面积是()A.a 2﹣πB.(4﹣π)a 2C.πD.4﹣π10、如图,圆O的内接四边形ABCD中,BC=DC,∠BOC=130°,则∠BAD的度数是()A.120°B.130°C.140°D.150°11、如图,PA切⊙O于A,PB切⊙O于B,连接OP.若∠APO=30°,OA=2,则BP=()A. B. C.4 D.212、如图,A,B,C是⊙O上三点,∠ACB=25°,则∠BAO的度数是()A.50°B.55°C.60°D.65°13、如图,等腰直角△ABC中,AB=AC=8,以AB为直径的半圆O交斜边BC于D,则阴影部分的面积为(结果保留π)()A. B. C. D.1614、如图,以M(﹣5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4B.等于4C.等于6D.随P点位置的变化而变化15、已知,如图,,下列结论不一定成立的是()A. B. C. D.都是等边三角形二、填空题(共10题,共计30分)16、如图,在半径为2 的中,点、点是弧的三等分点,点是直径的延长线上一点,,则图中阴影部分的面积是________(结果保留).17、如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线.若大圆半径为,小圆半径为,则弦的长为________.18、如图,以正方形ABCD的BC边向外作正六边形BEFGHC,则∠ABE=________度.19、如图,已知Rt△ABC是⊙O的内接三角形,其中直角边AC=6、BC=8,则⊙O 的半径是________.20、如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4 ,则S阴影=________.21、如图,在扇形AOB中,∠AOB=100°,半径OA=9,将扇形OAB沿着过点B 的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长等于________.22、如图,点A的坐标为,点B的坐标为,⊙A与y轴相切,点C是⊙A上的动点,射线与x轴交于点D,则长的最大值等于________.23、如图,、、、为一个正多边形的顶点,为正多边形的中心,若,则这个正多边形的边数为________.24、在中,AC=BC=2,∠ACB=90°,过点A画AP⊥AC,与以点C为圆心,长为半径的圆交于点P,则线段PB的长为________.25、如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于________.三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(1,﹣4),B (3,﹣3),C(1,﹣1).(每个小方格都是边长为一个单位长度的正方形)(1)将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.28、如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,S△ABC =10cm2, C△ABC=10cm,且∠C=60°求:(1)⊙O的半径r;(2)扇形OEF的面积(结果保留π);(3)扇形OEF的周长(结果保留π)。
人教版九年级数学上册《第二十四章圆》测试卷-带含有答案一、单选题1.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144°B.132°C.126°D.108°2.如图,点A,B,C在上,若,则的度数等于()A.40°B.35°C.30°D.20°3.如图,四边形内接于,的半径为,则的长是()A.B.C.D.4.如图所示,BC是的直径,D,E是上两点,连结BD,CE并延长交于点,连结OD,OE.如果,那么的度数为().A.B.C.D.5.如图,在中,直径与弦相交于点P,连接,若,则()A.B.C.D.6.如图所示,射线PB,PD分别交于点A,B和点C,D,且.已知的半径等于5,OA∥PC,则OP的长为().A.8 B.C.D.107.如图,不等边内接于,I是其内心,AC=14,BC=13,内切圆半径为()A.4 B.C.D.8.已知点A,B,C在上,把劣弧沿着直线折叠交弦于点D.若,则的长为()A.B.9 C.D.二、填空题9.已知的直径,弦,且于点,则的面积为. 10.如图,点A在半圆O上,BC为直径.若∠ABC=30°,BC=3,则的长是.11.如图,为的直径,弦,垂足为E ,CE=1,AB=6,则弦的长度为.12.如图,是的外接圆,为的直径,连接,若,则的长为cm.13.如图,在扇形中平分交于点,点为半径的中点.若,则阴影部分的面积为.三、解答题14.如图,A,C,B.D四点都在⊙O上,AB是⊙O的直径,且AB=6,∠ACD=45°,求弦AD的长.15.如图.为的直径,连接,点E在上.求证:(1)平分;(2).16.如图,AB是的直径,点C,M为上两点,且C点为的中点,过C点的切线交射线BM、BA于点EF.(1)求证:;(2)若求的长度.17.如图,以菱形的边为直径作交于点,连接交于点,是上的一点,且,连接.(1)求证:;(2)求证:是的切线.18.如图,在中以为直径的分别与、相交于点、E,连接过点作,垂足为点(1)求证:是的切线;(2)若的半径为,求图中阴影部分的面积.参考答案:1.A2.D3.C4.C5.D6.C7.A8.C9.32或810.11.12.613.14.解:∵AB是⊙O的直径∴∠ADB=90°∵∠ABD=∠ACD=45°∴△ABD为等腰直角三角形∴。
2018-2019九年级数学上册第24章圆测试题(带答案新人教版)第二十四章测评 (时间:45分钟,满分:100分) 一、选择题(每小题4分,共32分) 1.在矩形ABCD中,AB=8,BC=3√5,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是( ) A.点B,C均在圆P 外 B.点B在圆P外、点C在圆P内 C.点B在圆P内、点C在圆P外D.点B,C均在圆P内2.(2017•海南中考)如图,点A,B,C在�O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( ) A.25° B.50° C.60° D.80° 3.(2017•江苏苏州中考)如图,在Rt△ABC中,∠ACB=90°,∠A=56°.以BC为直径的�O交AB于点D,E是�O上一点,且⏜CE=⏜CD,连接OE,过点E作EF⊥OE,交AC的延长线于点F,则∠F=() A.92° B.108° C.112° D.124° (第2题图) (第3题图)4.(2017•内蒙古呼和浩特中考)如图,CD为圆O的直径,弦AB⊥CD,垂足为M,若AB=12,OM∶MD=5∶8,则圆O的周长为( ) A.26π B.13πC.96π/5 D.(39√10 π)/55.如图,圆锥形的烟囱帽底面半径为15 cm,母线长为20 cm,制作这样的一个烟囱帽所需要的铁皮面积至少是( ) A.150π cm2 B.300π cm2 C.600π cm2 D.150 cm26.(2017•吉林长春中考)如图,点A,B,C在�O上,∠ABC=29°,过点C作�O的切线交OA的延长线于点D,则∠D的大小为( ) A.29° B.32° C.42° D.58°7.如图,点P是等边三角形ABC外接圆�O上的点,在下列判断中,不正确的是( ) A.当弦PB最长时,△APC是等腰三角形 B.当△APC是等腰三角形时,PO⊥AC C.当PO⊥AC时,∠ACP=30° D.当∠ACP=30°时,△BPC是直角三角形8.如图,以等边三角形ABC的BC边为直径画半圆,分别交AB,AC于点E,D,DF是圆O的切线,过点F 作BC的垂线交BC于点G.若AF的长为2,则FG的长为( ) A.4 B.3√3 C.6 D.2√3 二、填空题(每小题4分,共20分)9.�O的圆心到直线l的距离为d,�O的半径为r,若d,r是关于x的方程x2-4x+m=0的两根,当直线l和�O相切时,m的值为. 10.如图,点A,B,C在半径为9的�O上,⏜AB的长为2π,则∠ACB的大小是. 11.如图,在�O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=°. (第10题图) (第11题图)12.如图,AB为�O的直径,C为�O外一点,过C作�O的切线,切点为B,连接AC交�O于点D,∠C=38°.点E在AB右侧的半圆周上运动(不与A,B重合),则∠AED的度数为. 13.如图,AB,AC分别是�O的直径和弦,OD⊥AC,垂足为D,连接BD,BC,AB=5,AC=4,则BD= . (第12题图) (第13题图)三、解答题(共48分) 14.(10分)在同一平面直角坐标系中有5个点:A(1,1),B(-3,-1),C(-3,1),D(-2,-2),E(0,-3). (1)画出△ABC的外接圆�P,并指出点D与�P的位置关系; (2)若直线l经过点D(-2,-2),E(0,-3),判断直线l与�P的位置关系.15.(12分)如图,AB为�O的直径,点C在�O上,延长BC至点D,使DC=CB.延长DA与�O的另一个交点为点E,连接AC,CE. (1)求证:∠B=∠D; (2)若AB=4,BC-AC=2,求CE的长.16.(12分)如图,已知在�O中,AB=4√3,AC是�O的直径,AC⊥BD,垂足为F,∠A=30°. (1)求图中阴影部分的面积; (2)若用阴影扇形OBD 围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.17.(14分)如图,△ABC内接于�O,AB是�O的直径,�O的切线PC交BA的延长线于点P,OF∥BC,且交AC于点E,交PC于点F,连接AF. (1)判断AF与�O的位置关系并说明理由; (2)若�O的半径为4,AF=3,求AC的长.参考答案第二十四章测评一、选择题 1.C 2.B ∵OA=OB,∠BAO=25°,∴∠B=25°.∵AC∥OB, ∴∠B=∠CAB=25°, ∴∠BOC=2∠CAB=50°. 故选B. 3.C ∵∠ACB=90°,∠A=56°, ∴∠B=34°. 在�O中,∵⏜CE=⏜CD, ∴∠COE=2∠B=68°, ∴∠F=112°,故选C. 4.B 连接OA, 设OM=5x,MD=8x, 则OA=OD=13x. 又AB=12,由垂径定理可得AM=6, ∴在Rt△AOM中,(5x)2+62=(13x)2,解得x=1/2, ∴半径OA=13/2.根据圆周长公式C=2πr,得圆O的周长为13π. 5.B 6.B 作直径B'C,交�O于B',连接AB',则∠AB'C=∠ABC=29°. ∵OA=OB',∴∠AB'C=∠OAB'=29°. ∴∠DOC=∠AB'C+∠OAB'=58°. ∵CD是�的切线, ∴∠OCD=90°. ∴∠D=90°-58°=32°.故选B. 7.C 对于选项A:当弦PB最长时,PB是�O的直径,O既是等边三角形ABC的内心,也是外心,所以∠ABP=∠CBP,根据圆周角性质,⏜PA=⏜PC,所以PA=PC;对于选项B:当△APC是等腰三角形时,点P是⏜AC的中点或与点B重合,由垂径定理,都可以得到PO⊥AC;对于选项C:当PO⊥AC时,由点P是⏜AC的中点或与点B重合,易得∠ACP=30°或∠ACP=60°;对于选项D:当∠ACP=30°时,分两种情况,点P是⏜AC 或⏜AB的中点,都可以得到△BPC是直角三角形. 8.B 连接OD,因为DF为圆O的切线,所以OD⊥DF. 因为△ABC为等边三角形,所以AB=BC=AC,∠A=∠B=∠C=60°. 因为OD=OC,所以△OCD为等边三角形. 所以OD∥AB.所以DF⊥AB. 又O为BC的中点, 所以D为AC的中点. 在Rt△AFD中,∠ADF=30°,AF=2,所以AD=4,即AC=8. 所以FB=AB-AF=8-2=6. 在Rt△BFG中,∠BFG=30°, 所以BG=3,则根据勾股定理得FG=3√3,故选B. 二、填空题 9.4 当直线l和�O相切时,d=r,方程x2-4x+m=0有两个相等的实数根,此时(-4)2-4×1×m=0,m=4. 10.20°连接OA,OB.设∠AOB=n°. ∵⏜AB的长为2π,∴(nπ×9)/180=2π.∴n=40,∴∠AOB=40°.∴∠ACB=1/2∠AOB=20°. 11.215在圆内接四边形ABCD中,∠B+∠ADC=180°,∠B=180°-∠ADC.在圆内接四边形ACDE中,∠E+∠ACD=180°,∠E=180°-∠ACD,故∠B+∠E=180°-∠ADC+180°-∠ACD=180°+(180°-∠ADC-∠ACD)=1 80°+∠CAD=180°+35°=215°. 12.38°如图,连接BE,则直径AB所对的圆周角∠AEB=90°.由BC是�O的切线得∠ABC=90°,∠BAC=90°-∠C=90°-38°=52°.因为∠BAC=∠BED=52°,所以∠AED=∠AEB-∠BED=90°-52°=38°.13.√13由垂径定理,得CD=2,由AB是�O的直径,得∠C=90°.由勾股定理,得BC=3,在Rt△BCD中,由勾股定理得BD=√13. 三、解答题14.解 (1)所画�P如图所示.由图可知,�P的半径为√5. 连接PD,∵PD=√(1^2+2^2 )=√5,∴点D在�P上. (2)直线l与�P相切.理由如下:连接PE.因为直线l过点D(-2,-2),E(0,-3), 所以PE2=12+32=10,PD2=5,DE2=5,所以PE2=PD2+DE2. 所以△PDE是直角三角形,且∠PDE=90°.所以PD⊥l.故直线l与�P相切. 15.(1)证明∵AB为�O的直径, ∴∠ACB=90°,即AC⊥BC. ∵DC=CB,∴AD=AB. ∴∠B=∠D. (2)解设BC=x,则AC=x-2. 在Rt△ABC中,AC2+BC2=AB2,∴(x-2)2+x2=42.解得x1=1+√7,x2=1-√7(舍去). ∵∠B=∠E,∠B=∠D, ∴∠D=∠E.∴CD=CE. ∵CD=CB,∴CE=CB=1+√7.16.解 (1)在Rt△ABF中,∠A=30°,则BF=1/2AB=2√3,于是AF=√("(" 4√3 ")" ^2 "-(" 2√3 ")" ^2 )=6. 在Rt△BOF中,OB2=OF2+BF2=(AF-OA)2+BF2, 又OB=OA,∴OA2=(6-OA)2+(2√3)2. ∴OA=4.∵∠BAO=30°, ∴∠BOF=2∠BAO=60°. 又OB=OD,OC⊥BD, ∴∠BOD=2∠BOF=120°. ∴S阴影=(120π×4^2)/360=16π/3. (2)设圆锥的底面圆的半径为r,则2πr=(120×4π)/180,解得r=4/3. 17.解 (1)AF是�O的切线.理由如下: 连接OC,∵AB是�O的直径,∴∠BCA=90°. ∵OF∥BC,∴∠AEO=90°, 即OF⊥AC.∵OC=OA, ∴∠COF=∠AOF, ∴△OCF≌△OAF. ∴∠OAF=∠OCF=90°, ∴FA⊥OA, 即AF是�O的切线. (2)∵�O的半径为4,AF=3,FA⊥OA,∴OF=√(AF^2+OA^2 )=√(3^2+4^2 )=5.∵FA⊥OA,OF⊥AC, ∴AF•OA=OF•EA, ∴3×4=5×EA, 解得AE=12/5,AC=2AE=24/5.。
第二十四章圆章末检测题(A)一、选择题(每小题3分,共30分)1.半径为5的圆的一条弦长不可能是()A.3 B.5 C.10 D.122.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°3.在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等).现计划修建一座以O 为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为()A.E,F,G B.F,G,H C.G,H,E D.H,E,F4.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B,CD切⊙O于点E,分别交PA,PB于点C,D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.105.如图,半径为1的⊙O与正六边形ABCDEF相切于点A,D,则的长为()A.π B.π C.π D.π6.如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD变形为以A 为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形DAB的面积为()A.12 B.14 C.16 D.367.如图,在半径为的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B. C.2 D.28.如图,⊙O 截△ABC 的三条边所得的弦长相等,则下列说法正确的是( ) A .点O 是△ABC 的内心B .点O 是△ABC 的外心C .△ABC 是正三角形D .△ABC 是等腰三角形9.如图,过⊙O 外一点P 引⊙O 的两条切线PA ,PB ,切点分别是A ,B ,OP 交⊙O 于点C ,点D 是上不与点A 、点C 重合的一个动点,连接AD ,CD ,若∠APB=80°,则∠ADC 的度数是( ) A .15° B .20° C .25° D .30°10.如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于点E ,连接AD ,则下列结论:①AD ⊥BC ;②∠EDA =∠B ;③OA =21AC ;④DE 是⊙O 的切线.其中正确的个数是( ) A. 1 B. 2 C. 3 D. 4二.填空题(每小题4分,共24分)11.如图,四边形ABCD 是⊙O 的内接四边形,若∠C=140°,则∠BOD= °. 12.一个扇形的圆心角为120°,弧长为6π,则此扇形的半径为 .13.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则14.如图,已知⊙P 的半径为2,圆心P 在抛物线y=x 2﹣1上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .15.如图,C为半圆内一点,O为圆心,直径AB长为2 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.16.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于三.解答题(共66分)17.(6分)如图,折扇完全打开后,OA,OB的夹角为120°,OA的长为20 cm,AC的长为10 cm,求图中阴影部分的面积S.18.(8分)如图所示,本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,请你帮他们求出该湖的半径.19.(8分)如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB..求证:AC BD20.(10分)如图,四边形ABCD是⊙O的内接四边形,AD的延长线与BC的延长线相交于点E,DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.21.(10分)已知:如图,在△ABC中,BC=AC=6,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)求点O到直线DE的距离.22.(12分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交BC 于点D ,点E 在AC 的延长线上,且∠CBE =21∠BAC .(1)求证:BE 是⊙O 的切线;(2)若∠ABC =65°,AB =6,求劣弧AD 的长.23.(12分)如图,△ABC 内接于⊙O ,AB 是直径,⊙O 的切线PC 交BA 的延长线于点P ,OF ∥BC 交AC 于点E ,交PC 于点F ,连接AF ;(1)判断AF 与⊙O 的位置关系并说明理由. (2)若⊙O 的半径为4,AF=3,求AC 的长. 附加题(20分,不计入总分)24.如图,在△ABC 中,AB=AC ,点D 在BC 上,BD=DC ,过点D 作DE ⊥AC ,垂足为E ,⊙O 经过A ,B ,D 三点. (1)求证:A B 是⊙O 的直径; (2)判断DE 与⊙O 的位置关系,并加以证明; (3)若⊙O 的半径为3,∠BAC=60°,求DE 的长.第二十四章圆章末检测题(A)参考答案一. 1.D 2.C 3.A 4.D 5.C 6.D 7.B 8.A 9.C 10.D二. 11.80 12.9 13. 14.(,2)或(﹣,2) 15.1π 16.13 17.解:阴影部分的面积18.解:如图,连接OB ,OA ,OA 交线段BC 于点D , ∵AB=AC ,∴=.∴OA ⊥BC , ∴BD=DC=BC=60. ∵DA=4,在Rt △BDO 中,OB 2=OD 2+BD 2,设OB=x 米,则x 2=(x ﹣4)2+602,解得x=452.∴人工湖的半径为452米.19. 证明:如图,连接OC,OD.∵AB是⊙O的直径,M,N分别是AO,BO的中点,∴OM=ON.∵CM⊥AB,DN⊥AB,∴∠OMC=∠OND=90°,又OC=OD,∴Rt△OMC≌Rt△OND. ∴∠COM=∠DON..∴AC BD20.证明:(1)∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°.又∠DCE+∠BCD=180°,∴∠A=∠DCE.∵DC=DE,∴∠DCE=∠DEC,∴∠A=∠AEB;(2)∵OE⊥CD,∴DF=CF.∴OE是CD的垂直平分线.∴ED=EC.又DE=DC,∴△DEC为等边三角形.∴∠AEB=60°.又∠A=∠AEB,∴△ABE是等边三角形.21.证明:(1)如图,连接CD,∵BC是⊙O的直径,∴∠BDC=90°.∴CD⊥AB,又∵AC=BC,∴AD=BD,即点D是AB的中点.(2)如图,连接OD,∵AD=BD,OB=OC,∴DO是△ABC的中位线.∴DO ∥AC ,OD=AC=3. 又∵DE ⊥AC , ∴DE ⊥DO.∴点O 到直线DE 的距离为3. 22. (1)证明:如图,连接AD . ∵AB 为直径,∴∠ADB =90°,即AD ⊥BC . ∵AB =AC , ∴∠BAD =∠CAD =21∠BAC . ∵∠CBE =21∠BAC , ∴∠CBE =∠BAD .∵∠BAD +∠ABD =90°, ∴∠ABE =∠ABD +∠CBE =90°. ∵AB 为⊙O 直径, ∴BE 是⊙O 的切线. (2)解:如图,连接OD .∵∠ABC =65°,∴∠AOD =2∠ABC =2×65°=130°. ∵AB =6,∴圆的半径为3. ∴劣弧AD 的长为1803130⨯π=π613. 23.解:(1)AF 是⊙O 的切线.理由如下: 如图,连接OC. ∵AB 是⊙O 直径, ∴∠BCA=90°. ∵OF ∥BC ,∴∠AEO=90°,∠1=∠2,∠B=∠3. ∴OF ⊥AC , ∵OC=OB ,∴∠B=∠1. ∴∠3=∠2,又OA=OC ,OF=OF ,∴△OAF ≌△OCF. ∴∠OAF=∠OCF , ∵PC 是⊙O 的切线, ∴∠OCF=90°.∴∠OAF=90°,即FA ⊥OA ,∴AF是⊙O的切线.(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5.∵OF⊥AC,∴AC=2AE.∵S△OAF=AF•OA=OF•AE,∴3×4=5×AE,解得AE=.∴AC=2AE=.24. (1)证明:连接AD,∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∴AB为圆O的直径.(2)DE与⊙O相切,理由为:证明:连接OD.∵O,D分别为AB,BC的中点,∴OD为△ABC的中位线.∴OD∥AC.∵DE⊥AC,∴DE⊥OD.∵OD为圆的半径,∴DE与⊙O相切.(3)解:∵AB=AC,∠BAC=60°,∴△ABC为等边三角形.∴AB=AC=BC=6.设AC与⊙O交于点F,连接BF,∵AB为⊙O的直径,∴∠AFB=∠DEC=90°.∴AF=CF=3,DE∥BF.∵D为BC中点,∴E为CF中点,即DE为△BCF中位线.在Rt △ABF 中,AB=6,AF=3,根据勾股定理得:∴DE=12.。
第二十四章 圆24.1 圆的有关性质24.1.1 圆01 基础题知识点1 圆的有关概念圆上各点到定点(圆心)的距离都等于定长(半径);到定点的距离等于定长的点都在同一个圆上.在同圆或等圆中,能够互相重合的弧叫做等弧.如图,在圆O 中,弦有AC ,AB ,半径有OA ,OB ,OC ,直径是AB ,ABC ︵,CAB ︵是优弧,劣弧有AC ︵,BC ︵,半圆是AB ︵,OA =OB =OC .1.下列条件中,能确定一个圆的是(C )A .以点O 为圆心B .以2 cm 长为半径C .以点O 为圆心,以5 cm 长为半径D .经过点A2.下列命题中正确的有(B )①弦是连接圆上任意两点的线段;②半径是弦;③直径是圆中最长的弦;④弧是半圆,半圆是弧. A .1个 B .2个 C .3个 D .4个 3.如图所示,在⊙O 中,弦有AC ,AB ,直径是AB ,优弧有ABC ︵,CAB ︵,劣弧有AC ︵,BC ︵.第3题图 第4题图4.如图,在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O 的半径长为5.知识点2 圆中的半径相等5.如图,AB 是⊙O 的直径,∠C=20°,则∠BOC 的度数是(A )A .40°B .30°C .20°D .10°第5题图 第6题图6.如图,已知AB ,CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD 等于(D )A .45°B .60°C .90°D .30°7.如图,在△ABC 中,BD ,CE 是两条高,点O 为BC 的中点,连接OD ,OE ,求证:B ,C ,D ,E 四个点在以点O 为圆心的同一个圆上.证明:∵BD,CE 是两条高, ∴∠BDC =∠BEC =90°.∵△BEC 为直角三角形,点O 为BC 的中点, ∴OE =OB =OC =12BC.同理:OD =OB =OC =12BC.∴OB =OC =OD =OE.∴B,C ,D ,E 在以O 为圆心的同一个圆上.8.如图,AB ,AC 为⊙O 的弦,连接CO ,BO 并延长,分别交弦AB ,AC 于点E ,F ,∠B=∠C.求证:CE =BF.证明:∵OB,OC 是⊙O 的半径, ∴OB =OC.又∵∠B =∠C,∠BOE =∠COF, ∴△EOB≌△FOC (ASA ). ∴OE =OF.∵CE =CO +OE ,BF =BO +OF , ∴CE =BF.02中档题9.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为(C)A.50°B.60°C.70°D.80°10.下列四边形:①平行四边形;②菱形;③矩形;④正方形.其中四个顶点在同一个圆上的有(B) A.1个B.2个C.3个D.4个11.如图,A,B是⊙O上两点,若四边形ACBO是菱形,⊙O的半径为r,则点A与点B之间的距离为(B)A.2rB.3rC.rD.2r12.已知A,B是半径为6 cm的圆上的两个不同的点,则弦长AB的取值范围是0<AB≤12cm.13.如图,CE是⊙O的直径,AD的延长线与CE的延长线交于点B,若BD=OD,∠AOC=114°,求∠A OD的度数.解:设∠B=x.∵BD=OD,∴∠DOB=∠B=x.∴∠ADO=∠DOB+∠B=2x.∵OA=OD,∴∠A=∠ADO=2x.∵∠AOC=∠A+∠B,∴2x+x=114°.解得x=38°.∴∠AOD=180°-∠A-∠ADO=180°-4x=180°-4×38°=28°.14.如图所示,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF,请你找出线段OE与OF的数量关系,并给予证明.解:OE=OF.证明:∵OA,OB是⊙O的半径,∴OA=OB.∴∠OBA=∠OAB.又∵AE=BF,∴△OAE≌△OBF(SAS).∴OE=OF.15.如图所示,AB为⊙O的直径,CD是⊙O的弦,AB,CD的延长线交于E点,已知AB=2DE,∠E=18°,求∠AOC 的度数.解:连接OD.∵AB为⊙O的直径,OC,OD为半径,AB=2DE,∴OC=OD=DE.∴∠DOE=∠E,∠OCE=∠ODC.又∵∠ODC=∠DOE+∠E,∴∠OCE=∠ODC=2∠E.∵∠E=18°,∴∠OCE=36°.∴∠AOC=∠OCE+∠E=36°+18°=54°.03综合题16.如图,AB,CD是⊙O的直径,且AB⊥CD,点P,Q为弧CB上的任意两点,作PE⊥CD,PF⊥AB,QM⊥CD,QN⊥AB,则线段EF,MN的大小关系为EF= MN.(填“<”“>”或“=”)24.1.2 垂直于弦的直径01 基础题知识点1 认识垂径定理(1)圆是轴对称图形,它的对称轴有无数条;(2)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.图1如图1,在⊙O 中,点A 是圆上一点,OA⊥弦CD 于点B ,则BC =BD ,AC ︵=AD ︵.1.(黔西南中考)如图,在⊙O 中,半径OC 与弦AB 垂直于点D ,且AB =8,OC =5,则CD 的长是(C )A .3B .2.5C .2D .1第1题图 第2题图2.(遵义仁怀市期末)如图,⊙O 的直径CD 垂直于弦AB 于点E ,且CE =2,OB =4,则AB 的长为(D ) A .2 3 B .4 C .6 D .4 33.如图,AB 是⊙O 的直径,弦CD⊥AB,垂足为M ,下列结论不一定成立的是(D )A .CM =DM B.CB ︵=DB ︵C .∠ACD =∠ADC D .OM =MB第3题图 第4题图4.(黔西南中考)如图,AB 是⊙O 的直径,CD 为⊙O 的一条弦,CD⊥AB 于点E ,已知CD =4,AE =1,则⊙O 的半径为52.知识点2 垂径定理的推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图1,在⊙O 中,点A 是圆上一点,OA 与弦CD 交于点B ,且BC =BD ,则∠OBD=90°,AC ︵=AD ︵. 5.如图,⊙O 的弦AB =8,M 是AB 的中点,且OM =3,则⊙O 的半径等于(D )A .8B .2C .10D .5第5题图第6题图6.如图,⊙O的弦AB=8,P是劣弧AB的中点,连接OP交AB于C,且PC=2,则⊙O的半径为5.知识点3垂径定理的应用7.(南宁中考)在直径为200 cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160 cm,则油的最大深度为(A)A.40 cmB.60 cmC.80 cmD.100 cm8.(茂名中考)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB 为3米,则秋千摆至最高位置时与其摆至最低位置时的高度之差(即CD)为0.5米.易错点忽略垂径定理的推论中的条件“不是直径”9.下列说法正确的是(D)A.过弦的中点的直径平分弦所对的两条弧B.弦的垂直平分线平分它所对的两条弧,但不一定过圆心C.过弦的中点的直径垂直于弦D.平分弦所对的两条弧的直径平分弦02 中档题10.(黔东南中考)如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD=6 cm,则AB 的长为(B)A.4 cm B.3 2 cmC.2 3 cm D.2 6 cm第10题图第11题图11.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16 cm,则球的半径为(B) A.10 3 cm B.10 cmC.10 2 cm D.8 3 cm12.如图,在⊙O中,AB,AC是互相垂直的两条弦,OD⊥AB于点D,OE⊥AC于点E,且AB=8 cm,AC=6 cm,那么⊙O 的半径OA 长为5__cm .第12题图 第13题图13.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A ,B 重合),过点O 作OC⊥AP 于点C ,OD⊥PB 于点D ,则CD 的长为4.14.(遵义中考)如图,AB 是⊙O 的直径,AB =4,点M 是OA 的中点,过点M 的直线与⊙O 交于C ,D 两点.若∠CMA=45°,则弦CD15.(佛山中考)如图,⊙O 的直径为10 cm ,弦AB =8 cm ,P 是弦AB 上的一个动点,求OP 的长度范围.解:作直径MN⊥弦AB ,交AB 于点D ,由垂径定理,得AD =DB =12AB =4 cm.又∵⊙O 的直径为10 cm ,连接OA ,则OA =5 cm.由勾股定理,得OD =OA 2-AD 2=3 cm. ∴OP 的长度范围是3 cm≤OP≤5 cm.03 综合题16.(湖州中考)已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D(如图所示).(1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.解:(1)证明:过点O 作OE⊥AB 于点E. 则CE =DE ,AE =BE. ∴AE -CE =BE -DE , 即AC =BD.(2)连接OA ,OC.由(1)可知,OE⊥AB 且OE⊥CD, ∴CE =OC 2-OE 2=82-62=27.AE =OA 2-OE 2=102-62=8. ∴AC =AE -CE =8-27.24.1.3 弧、弦、圆心角01 基础题知识点1 认识圆心角圆是中心对称图形,它的对称中心是圆心.顶点在圆心的角叫做圆心角. 如图,在⊙O 中,∠AOC 与∠ABC 中,是圆心角的是∠AOC .1.如图所示,图中的圆心角(小于平角的)有(B )A .1个B .2个C .3个D .4个2.已知圆O 的半径为5 cm ,弦AB 的长为5 cm ,则弦AB 所对的圆心角∠AOB=60°.知识点2 弧、弦、圆心角之间的关系在同圆或等圆中,相等的圆心角⇔所对的弧相等⇔所对的弦也相等. 如图,∠AOB=∠COD ⇔AB ︵=CD ︵⇔AB =CD.3.如图,已知AB 为⊙O 的直径,点D 为半圆周上的一点,且AD ︵所对圆心角的度数是BD ︵所对圆心角度数的两倍,则圆心角∠BOD 的度数为60°.第3题图 第4题图4.(兰州中考)如图,在⊙O 中,点C 是AB ︵的中点,∠A=50°,则∠BOC=(A )A .40°B .45°C .50°D .60°5.(贵港中考)如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD=34°,则∠AEO 的度数是(A )A .51°B .56°C .68°D .78°第5题图 第6题图6.如图所示,在⊙O 中,AB ︵=AC ︵,∠A=30°,则∠B=(B )A .150°B .75°C .60°D .15°7.如图,AB ,DE 是⊙O 的直径,点C 是⊙O 上的一点,且AD ︵=CE ︵,求证:BE =CE.证明:∵∠BOE =∠AOD, ∴BE ︵=AD ︵. 又∵AD ︵=CE ︵, ∴BE ︵=CE ︵. ∴BE =CE.易错点 对圆中的有关线段的关系运用不当而致错8.如图,A ,B ,C ,D 是⊙O 上的四点,且AD =BC ,则AB 与CD 的大小关系为(B )A .AB >CD B .AB =CDC .AB <CD D .不能确定02 中档题9.如图,在⊙O 中,已知弦AB =DE ,OC⊥AB,OF⊥DE,垂足分别为C ,F ,则下列说法中正确的个数为(D )①∠DOE =∠AOB ;②AB ︵=DE ︵;③OF =OC ;④AC =EF .A .1个B .2个C .3个D .4个10.已知⊙O 中,M 为AB ︵的中点,则下列结论正确的是(C )A .AB >2AM B .AB =2AMC .AB <2AMD .AB 与2AM 的大小不能确定11.如图,AB 是半圆O 的直径,E 是OA 的中点,F 是OB 的中点,ME⊥AB 于点E ,NF⊥AB 于点F.下列结论:①AM ︵=MN ︵=BN ︵;②ME=NF ;③AE=BF ;④ME=2AE.其中正确结论的序号是①②③.12.如图所示,以▱ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,延长BA 交⊙A 于G ,求证:GE ︵=EF ︵.证明:连接AF.∵四边形ABCD 为平行四边形, ∴AD∥BC.∴∠GAE =∠B, ∠EAF =∠AFB.又∵AB,AF 为⊙A 的半径,AB =AF , ∴∠B =∠AFB. ∴∠GAE =∠EAF. ∴GE ︵=EF ︵.13.(教材9上P84例3变式)如图,AB 是⊙O 的直径,AC ︵=CD ︵,∠COD =60°.(1)△AOC 是等边三角形吗?请说明理由; (2)求证:OC ∥BD .解:(1)△AOC 是等边三角形. ∵AC ︵=CD ︵,∴∠AOC =∠COD =60°. 又∵OA =OC ,∴△AOC 是等边三角形. (2)证明:∵AC ︵=CD ︵,∴OC⊥AD.∵∠AOC =∠COD =60°,∴∠BOD =180°-(∠AOC +∠COD )=60°. ∵OD =OB ,∴△ODB 为等边三角形. ∴∠ODB =60°.∴∠ODB =∠COD =60°. ∴OC∥BD.03 综合题14.如图,∠AOB=90°,C ,D 是AB ︵的三等分点,连接AB 分别交OC ,OD 于点E ,F ,求证:AE =BF =CD.证明:连接AC ,BD.∵AC ︵=CD ︵=DB ︵,∠AOB =90°,∴∠AOC =∠COD =∠DOB =13∠AOB =13×90°=30°,AC =CD =BD.∵OA =OB ,∴∠OAB =∠ABO =45°.∴∠AEC =∠AOC +∠OAB =75°. ∵在△AOC 中,OA =OC ,∴∠ACO =180°-∠AOC 2=180°-30°2=75°.∴∠AEC =∠ACO.∴AE =AC. 同理BF =BD. ∴AE =BF =CD.24.1.4 圆周角第1课时 圆周角定理及其推论01 基础题知识点1 圆周角定理(1)顶点在圆上,两边与圆相交的角叫做圆周角,图中是圆周角的是∠ABC ;(2)一条弧所对的圆周角等于它所对的圆心角的一半.如图,在⊙O 中,∠ABC=12∠AOC.1.(遵义桐梓县期末)如图,已知点A ,B ,C 在⊙O 上,∠ACB=50°,则∠AOB 的度数为(B )A .50°B .100°C .25°D .70°第1题图 第2题图2.如图,⊙O 是△ABC 的外接圆,连接OA ,OB ,∠OBA=50°,则∠C 的度数为(B )A .30°B .40°C .50°D .80°3.(柳州中考)如图,在⊙O 中与∠1一定相等的角是(A )A .∠2B .∠3C .∠4D .∠5第3题图 第4题图4.(娄底中考)如图,将直角三角板60°角的顶点放在圆心O 上,斜边和一直角边分别与⊙O 相交于A 、B 两点,P 是优弧AB 上任意一点(与A ,B 不重合),则∠APB=30°.知识点2 圆周角定理的推论同弧或等弧所对的圆周角相等;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.如图,在⊙O 中,若AB =CD ,则∠ACB=∠DAC ;若AD 是直径,则∠ACD=90°;若∠ACD=90°,则AD 是直径.5.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,∠A=35°,则∠B 的度数是(C )A .35°B .45°C .55°D .65°第5题图 第6题图6.(绍兴中考)如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB=60°,则∠BDC 的度数是(D )A .60°B .45°C .35°D .30°7.(黔西南中考)如图,在⊙O 中,AB ︵=AC ︵,∠BAC=50°,则∠AEC 的度数为(A )A .65°B .75°C .50°D .55°第7题图 第8题图8.如图,已知AB 是⊙O 的直径,∠D=40°,则∠CAB 的度数为50°.易错点 忽略弦所对的圆周角不唯一而致错9.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为30°或150°.02 中档题10.(广州中考)如图,在⊙O 中,AB 是直径,CD 是弦,AB⊥CD,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是(D )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD第10题图 第11题图11.(遵义仁怀市期末)如图,AB ︵是半圆,连接AB ,点O 为AB 的中点,点C ,D 在AB ︵上,连接AD ,CO ,BC ,BD ,OD.若∠COD=62°,且AD∥OC,则∠ABD 的大小是(B )A .26°B .28°C .30°D .32°12.(南昌中考)如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD=70°,AO∥DC,则∠B 的度数为(D )A .40°B .45°C .50°D .55°第12题图 第13题图13.(贵阳中考)如图,AB 是⊙O 的直径,点D 在⊙O 上,∠BOD=130°,AC∥OD 交⊙O 于点C ,连接BC ,则∠B=40度.14.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA=30°,点A 的坐标为(2,0),则点D 的第14题图 第15题图15.(遵义道真县月考改编)如图,△ABC 的三个顶点都在⊙O 上,AP⊥BC 于点P ,AM 为⊙O 的直径.若∠BAM=15°,则∠CAP=15°.16.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点.(1)求证:△ABC 为等边三角形; (2)求DE 的长.解:(1)证明:连接AD. ∵AB 是⊙O 的直径, ∴∠ADB =90°.∵点D 是BC 的中点,∴AD 是BC 的垂直平分线.∴AB =AC. 又∵AB =BC ,∴AB =AC =BC. ∴△ABC 为等边三角形. (2)连接BE.∵AB 是⊙O 的直径,∴∠AEB =90°.∴BE⊥AC. ∵△ABC 是等边三角形,∴AE =EC ,即E 为AC 的中点. 又∵D 是BC 的中点, ∴DE 是△ABC 的中位线.∴DE =12AB =12×2=1.03 综合题17.(东营中考)如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,CM +DM 的最小值为8__cm .第2课时圆内接四边形01 基础题知识点圆内接四边形的性质如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆,圆内接四边形的对角互补.如图,四边形ABCD内接于⊙O,则∠A+∠BCD=180°.1.如图所示,图中∠A+∠C=(B)A.90° B.180°C.270° D.360°第1题图第2题图2.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的大小是(B) A.115° B.105° C.100° D.95°3.圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是(D)A.1∶2∶3∶4 B.1∶3∶2∶4C.4∶2∶3∶1 D.4∶2∶1∶34.(娄底中考)如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是AB∥CD.第4题图第5题图5.如图,AB是半圆O的直径,∠BAC=30°,D是弧AC的中点,则∠DAC的度数是30度.6.圆内接四边形相邻三个内角度数的比为2∶1∶7,求这个四边形各内角的度数.解:根据圆内接四边形的对角互补可知,其对角和相等,所以四个内角的度数的比为2∶1∶7∶8.设这四个内角的度数分别为2x°,x°,7x°,8x°,则2x+x+7x+8x=360.解得x=20.2x=40,7x=140,8x=160.答:这个四边形各内角的度数分别为40°,20°,140°,160°.7.如图,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.证明:(1)∵四边形ABCD 内接于⊙O, ∴∠ADC =180°-∠B =130°. ∵∠ACD =25°,∴∠DAC =180°-∠ACD -∠D =180°-25°-130°=25°. ∴∠DAC =∠ACD. ∴AD =CD.(2)∵∠BAC =∠BAD -∠DAC =65°-25°=40°,∠B =50°, ∴∠ACB =180°-∠B -∠BAC =180°-50°-40°=90°. ∴AB 是⊙O 的直径.易错点 对圆内接四边形的概念理解不清导致错误8.(来宾中考)如图,在⊙O 中,点A 、B 、C 在⊙O 上,且∠ACB=110°,则∠α=140°.02 中档题9.(广东中考)如图,四边形ABCD 内接于⊙O,DA =DC ,∠CBE=50°,则∠DAC 的大小为(C )A .130°B .100°C .65°D .50°10.(聊城中考)如图,四边形ABCD 内接于⊙O,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC=105°,∠BAC=25°,则∠E 的度数为(B )A .45°B .50°C .55°D .60°第10题图 第11题图11.(南京中考)如图,在⊙O 的内接五边形ABCDE 中,∠CAD=35°,则∠B+∠E=215°.12.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO=120°.求⊙C 的半径.解:∵四边形ABMO内接于⊙C,∴∠BAO+∠BMO=180°.∵∠BMO=120°,∴∠BAO=60°.在Rt△ABO中,AO=4,∠BAO=60°,∴AB=8.∵∠AOB=90°,∴AB为⊙C的直径.∴⊙C的半径为4.13.(苏州中考)如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD.连接AC交圆O于点F,连接AE,DE,DF.(1)求证:∠E=∠C;(2)若∠E=55°,求∠BDF的度数.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°-∠E.又∵∠CFD=180°-∠AFD,∴∠CFD=∠E=55°.∵∠E=∠C=55°,∴∠BDF=∠C +∠CFD=110°.03 综合题14.(佛山中考)如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α,β的代数式表示∠A的大小.解:(1)证明:∵∠DCE =∠BCF,∠E =∠F, 又∵∠ADC =∠E +∠DCE,∠ABC =∠F +∠BCF, ∴∠ADC =∠ABC.(2)由(1)知∠ADC =∠ABC, ∵四边形ABCD 内接于⊙O, ∴∠ADC +∠ABC =180°. ∴∠ADC =90°.在Rt△ADF 中,∠A =90°-∠F =90°-42°=48°. (3)连接EF.∵四边形ABCD 为圆的内接四边形, ∴∠ECD =∠A.∵∠ECD =∠CEF +∠CFE, ∴∠A =∠CEF +∠CFE.∵∠A +∠CEF +∠CFE +∠DEC +∠BFC =180°, ∴2∠A +α+β=180°. ∴∠A =90°-α+β2.小专题7 圆周角定理——教材P90T14的变式与应用【教材母题】 如图,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB=60°.判断△ABC 的形状,并证明你的结论.解:△ABC 为等边三角形.证明:∵∠APC =∠ABC,∠CPB =∠BAC, 又∵∠APC =∠CPB =60°, ∴∠ABC =∠BAC =60°. ∴∠ACB =60°.∴△ABC 为等边三角形.【问题延伸1】 求证:PA +PB =PC.证明:在PC 上截取PD =AP ,连接AD ,如图, ∵∠APC =60°,∴△APD 是等边三角形.∴AD =AP =PD ,∠ADP =60°,∠ADC =120°. ∵∠APB =∠APC +∠BPC =120°, ∴∠ADC =∠APB.在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠ABP =∠ACD,∠APB =∠ADC,AP =AD ,∴△APB≌△ADC (AAS ).∴BP =CD.又∵PD =AP ,∴PA +PB =PC.证明线段的和、差、倍、分问题的常见做法是“截长补短”法,具体做法是:在某一条线段上截取一条线段与特定线段相等,或将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.【问题延伸2】 若BC =23,点P 是AB ︵上一动点(异于点A ,B),求PA +PB 的最大值.解:由上题知PA +PB =PC ,要使PA +PB 最大,则PC 为直径,作直径BG ,连接CG.∴∠G =∠BAC =60°,∠BCG =90°.∵BC =23,∴BG =4.即PA +PB 的最大值为4.直径是圆中最长的一条弦,在求最值的问题中经常用到这一结论.1.如图,四边形APBC 是圆内接四边形,延长BP 至E ,若∠EPA=∠CPA,判断△ABC 的形状,并证明你的结论.解:△ABC 是等腰三角形,理由: ∵四边形APBC 是圆内接四边形, ∴∠EPA =∠ACB.∵∠EPA =∠CPA,∠CPA =∠ABC, ∴∠ACB =∠ABC. ∴AB =AC.∴△ABC 是等腰三角形.2.如图,A ,P ,B ,C 是半径为8的⊙O 上的四点,且满足∠BAC=∠APC=60°.(1)求证:△ABC 是等边三角形; (2)求圆心O 到BC 的距离OD.解:(1)证明:∵∠ABC =∠APC =60°,∠BAC =∠APC =60°, ∴∠ABC =∠BAC =60°. ∴△ABC 是等边三角形. (2)连接OB ,OC.可得∠BOC =2∠BAC =2×60°=120°. ∵OB =OC ,∴∠OBD =∠OCD =12×(180°-120°)=30°.∵∠ODB =90°,∴OD =12OB =4.3.(广州中考改编)如图,点A ,B ,C ,D 在同一个圆上,且C 点为一动点(点C 不在BAD ︵上,且不与点B ,D 重合),∠ACB=∠ABD=45°.(1)求证:BD 是该圆的直径;(2)连接CD ,求证:2AC =BC +CD.证明:(1)∵AB ︵=AB ︵,∴∠ACB =∠ADB =45°. ∵∠ABD =45°,∴∠BAD =90°.∴BD 是该圆的直径.(2)在CD 的延长线上截取DE =BC ,连接EA , ∵∠ABD =∠ADB,∴AB =AD.∵∠ADE +∠ADC =180°,∠ABC +∠ADC =180°,∴∠ABC =∠ADE. 在△ABC 和△ADE 中, ⎩⎪⎨⎪⎧AB =AD ,∠ABC =∠ADE,BC =DE ,∴△ABC≌△ADE (SAS ). ∴∠BAC =∠DAE.∴∠BAC +∠CAD =∠DAE +∠CAD. ∴∠BAD =∠CAE =90°.∵AD ︵=AD ︵,∴∠ACD =∠ABD =45°. ∴△CAE 是等腰直角三角形. ∴2AC =CE.∴2AC =DE +CD =BC +CD.小专题8 与圆的性质有关的计算与证明类型1 求角度1.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,BA ,DC 的延长线交于点E ,AB =2CE ,∠E=25°,则∠BOD=75°.2.(南京中考)如图,A ,B 是⊙O 上的两个定点,P 是⊙O 上的动点(P 不与A ,B 重合),我们称∠APB 是⊙O 上关于点A ,B 的滑动角.已知∠APB 是⊙O 上关于点A ,B 的滑动角.(1)若AB 是⊙O 的直径,则∠APB 的度数是90°;(2)若⊙O 的半径是1,AB =2,则∠APB 的度数是45°或135°__.3.如图,AB 为⊙O 的直径,弦CD 与AB 相交于点E ,∠ACD=60°,∠ADC=50°,则∠CEB 的度数为100°.第3题图 第4题图4.(永州中考)如图,四边形ABCD 是⊙O 的内接四边形,点D 是AC ︵的中点,点E 是BC ︵上的一点.若∠CED=40°,则∠ADC=100度.5.(南京中考)如图,四边形ABCD 是菱形,⊙O 经过点A ,C ,D ,与BC 相交于点E ,连接AC ,AE.若∠D=78°,则∠EAC=27°.类型2 求长度6.(黔东南中考)如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,∠A=15°,半径为2,则弦CD 的长为(A )A .2B .-1C. 2D .4第6题图 第7题图7.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,CD=2,则EC的长为__.8.如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB第8题图第9题图9.如图,AB,AC,AD为⊙O的弦,∠BAC=60°,∠DAC=30°,AB=4,AD=6,则CD10.(十堰中考)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的平分线交⊙O于点D.若AC=6,BD=52,则BC 的长为8.24.2点和圆、直线和圆的位置关系24.2.1点和圆的位置关系01 基础题知识点1点与圆的位置关系设⊙O的半径为r,点P到圆心的距离OP=d,则有:(1)点P在圆外⇨d>r;(2)点P在圆上⇨d=r;(3)点P在圆内⇨d<r.1.若⊙O的半径为5 cm,点A到圆心O的距离为4 cm,那么点A与⊙O的位置关系是(C) A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定2.(遵义中考模拟)已知⊙O半径为6,点P在⊙O内,则OP长可能是(A)A.5 B.6 C.7 D.83.已知⊙O半径为3 cm,点P到圆心O的距离为3 cm,则点P与⊙O的位置关系是点P在⊙O上.4.已知⊙O的半径为6 cm,点P在圆外,则线段OP的长度的取值范围是OP>6__cm.5.已知⊙O的半径为7 cm,点A为线段OP的中点,当OP满足下列条件时,分别指出点A与⊙O的位置关系.(1)OP=8 cm;(2)OP=14 cm;(3)OP=16 cm.解:(1)在圆内.(2)在圆上.(3)在圆外.知识点2三角形的外接圆与外心不在同一条直线上的三个点确定一个圆,三角形外接圆的圆心叫外心,它是三角形三条边垂直平分线的交点;一个三角形的外接圆有1个,一个圆的内接三角形有无数个.6.下列关于三角形的外心的说法中,正确的是(C)A.三角形的外心在三角形外B.三角形的外心到三边的距离相等C.三角形的外心到三个顶点的距离相等D.等腰三角形的外心在三角形内7.如图,MN所在的直线垂直平分线段AB,利用这样的工具,最少使用2次就可以找到圆形工件的圆心.第7题图第8题图8.如图,△ABC的外接圆圆心的坐标是(-2,-1).知识点3反证法反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.9.用反证法证明“平行于同一条直线的两条直线互相平行”时,先假设平行于同一条直线的两条直线相交成立,然后经过推理与平行公理相矛盾.10.用反证法证明:若∠A,∠B,∠C是△ABC的三个内角,则其中至少有一个角不大于60°.证明:假设∠A,∠B,∠C都大于60°.则有∠A+∠B+∠C>180°,这与三角形的内角和等于180°相矛盾.因此假设不成立,即∠A,∠B,∠C中至少有一个角不大于60°.易错点概念不清11.下列说法:①三点确定一个圆;②三角形有且只有一个外接圆;③三角形的外心到三角形三边的距离相等;④圆有且只有一个内接三角形.其中正确的是②(填序号).02 中档题12.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2-2x+d=0有实数根,则点P(D) A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.在⊙O上或⊙O的内部13.用反证法证明“两条直线相交只有一个交点”应该先假设(A)A.两条直线相交至少有两个交点B.两条直线相交没有两个交点C.两条直线平行时也有一个交点D.两条直线平行没有交点14.如图,在△ABC中,BC=3 cm,∠BAC=60°,那么△ABC的圆形纸片所覆盖.15.若O为△ABC的外心,且∠BOC=60°,则∠BAC=30°或150°.16.已知,如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,斜边AB边上的高为CD,若以点C为圆心,分别以R1=2,R2=2.4,R3=3为半径作⊙C1,⊙C2,⊙C3,试判断点D与这三个圆的位置关系.解:由勾股定理,得AB=AC2+BC2=5,由面积公式,得CD=2.4,∴d=CD=2.4.∴d>R1,d=R2,d<R3.∴点D在⊙C1的外部,在⊙C2上,在⊙C3的内部.17.如图,已知,△ABC中,∠A=25°,∠B=40°.(1)求作:⊙O,使得⊙O是△ABC的外接圆;(要求尺规作图,保留作图痕迹,不必写作法)(2)综合应用:在你所作的圆中,求∠AOB的度数.解:(1)如图.作法:分别作边AB,AC的垂直平分线GH,EF,交于点O,以O为圆心,以OA为半径的圆就是△ABC的外接圆.(2)在优弧AB上取一点D,连接DA,DB.∵∠CAB=25°,∠CBA=40°,∴∠C=180°-∠CAB-∠CBA=115°.∵四边形CADB是圆的内接四边形,∴∠ADB=180°-∠C=180°-115°=65°.∴∠AOB=2∠ADB=130°.24.2.2 直线和圆的位置关系 第1课时 直线和圆的位置关系01 基础题知识点1 直线与圆的位置关系的判定如图,直线l 与⊙O 有三种位置关系:(1)图1中直线l 与⊙O 相交,有两个公共点,这条直线叫做圆的割线.图1 图2 图3(2)图2中直线l 与⊙O 相切,有1个公共点,这条直线叫做圆的切线. (3)图3中直线l 与⊙O 相离,无公共点.1.(梧州中考)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为(C )A .相离B .相切C .相交D .无法确定2.已知一条直线与圆有公共点,则这条直线与圆的位置关系是(D )A .相离B .相切C .相交D .相切或相交3.(张家界中考)如图,∠O=30°,C 为OB 上一点,且OC =6,以点C 为圆心,半径为3的圆与OA 的位置关系是(C )A .相离B .相交C .相切D .以上三种情况均有可能4.⊙O 的半径为6,一条弦长63,以3为半径的同心圆与这条弦的关系是(A )A .相切B .相交C .相离D .相切或相交 5.在Rt △ABC 中,∠C=90°,AB =4 cm ,BC =2 cm ,以C 为圆心,r 为半径的圆与AB 有何种位置关系?请你写出判断过程.(1)r =1.5 cm ;(2)r = 3 cm ;(3)r =2 cm . 解:过点C 作CD⊥AB,垂足为D. ∵AB =4,BC =2,∴AC =2 3.又∵S △ABC =12AB·CD =12BC·AC,∴CD =BC·ACAB = 3.(1)r =1.5 cm 时,相离. (2)r = 3 cm 时,相切. (3)r =2 cm 时,相交.知识点2 直线与圆的位置关系的性质已知⊙O 的半径为r ,圆心到直线l 的距离为d ,根据直线和圆相交,相切,相离的定义,可以得到: (1)直线l 与⊙O 相交⇔d <r ;(2)直线l 与⊙O 相切⇔d =r ;(3)直线l 与⊙O 相离⇔d >r.6.设⊙O 的半径为4,点O 到直线a 的距离为d ,若⊙O 与直线a 至多只有一个公共点,则d 的取值范围为(C )A .d ≤4B .d <4C .d ≥4D .d =47.(益阳中考)如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为(B )A .1B .1或5C .3D .58.(西宁中考)⊙O 的半径为R ,点O 到直线l 的距离为d ,R ,d 是方程x 2-4x +m =0的两根,当直线l 与⊙O 相切时,m 的值为4.9.如图,在Rt △ABC 中,∠A=90°,∠C=60°,BO =x ,⊙O 的半径为2,求当x 在什么范围内取值时,AB 所在的直线与⊙O 相交,相切,相离?解:过点O 作OD⊥AB,垂足为D.∵∠A =90°,∠C =60°,∴∠B =30°. ∴OD =12OB =12x.当AB 所在的直线与⊙O 相切时,OD =r =2.∴BO =4.∴0<x<4时,相交;x =4时,相切;x>4时,相离.易错点 题意理解不清10.已知⊙O 的半径为2,直线l 上有一点P 满足PO =2,则直线l 与⊙O 的位置关系是相切或相交.02 中档题11.(遵义汇川月考)如图,在Rt △ABC 中,∠B=90°,∠A=60°,BC =4 cm ,以B 为圆心,2 cm 长为半径作圆,则⊙B 与AC 的位置关系是(B )A .相离B .相切C .相交D.外切12.(百色中考)以坐标原点O为圆心,作半径为2的圆,若直线y=-x+b与⊙O相交,则b的取值范围是(D) A.0≤b<2 2 B.-22≤b≤2 2C.-23<b<2 3 D.-22<b<2 213.(铜仁模拟)已知如图,∠BOA=30°,M是OB上一点,以M为圆心、2 cm为半径作⊙M,点M在射线OB上运动,当OM=5 cm时,⊙M与直线OA的位置关系是相离.第13题图第14题图14.如图,在Rt△ABC中,∠C=90°,AC≠BC,点M是边AC上的动点.过点M作MN∥AB交BC于点N,现将△MNC 沿MN折叠,得到△MNP.若点P在AB上.则以MN为直径的圆与直线AB的位置关系是相交.15.如图所示,半径为2的⊙P的圆心在直线y=2x-1上运动.(1)当⊙P和x轴相切时,写出点P的坐标;并判断此时y轴与⊙P的位置关系;(2)当⊙P和y轴相切时,写出点P的坐标;并判断此时x轴与⊙P的位置关系;(3)⊙P是否能同时与x轴和y轴相切?若能,写出点P的坐标;若不能,说明理由.解:(1)∵⊙P的圆心在直线y=2x-1上,∴圆心坐标可设为(x,2x-1).当⊙P和x轴相切时,2x-1=2或2x-1=-2,解得x1=1.5,x2=-0.5.∴P1(1.5,2),P2(-0.5,-2).∵1.5<2,|-0.5|<2,∴y轴与⊙P相交.(2)当⊙P和y轴相切时,x=2或-2.得2x-1=3或2x-1=-5.∵|-5|>2,3>2,∴x轴与⊙P相离.(3)不能.∵当x=2时,y=3,当x=-2时,y=-5,|-5|≠2,3≠2,∴⊙P不能同时与x轴和y轴相切.03 综合题16.(永州中考)如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l 的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是1<d<3.第2课时切线的判定与性质01 基础题知识点1切线的判定经过半径的外端且垂直于这条半径的直线是圆的切线.如图,△ABC的一边AB是⊙O的直径,∵AB⊥BC,∴BC为⊙O的切线.1.下列说法中,正确的是(D)A.AB垂直于⊙O的半径,则AB是⊙O的切线B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线D.圆心到直线的距离等于半径,那么这条直线是圆的切线2.如图,AB是半圆的直径,O为圆心,AD,BD是半圆的弦,且∠PDA=∠PBD.判断直线PD是否为⊙O的切线,并说明理由.解:PD是⊙O的切线.理由如下:∵AB为直径,∴∠ADB=90°.∴∠ADO+∠ODB=90°.∵OD=OB,∴∠OBD=∠ODB.∵∠PDA=∠PBD,∴∠ADO+∠PDA=90°,即∠PDO=90°.又∵直线PD经过⊙O半径的外端,∴PD是⊙O的切线.知识点2切线的性质圆的切线垂直于过切点的半径.如图,直线AB是⊙O的切线,切点为A,则∠OAB=90°.3.如图,直线AB 与⊙O 相切于点A ,⊙O 的半径为2,若∠OBA=30°,则OB 的长为(B )A .4 3B .4C .2 3D .2第3题图 第4题图4.(黔南中考)如图,已知直线AD 是⊙O 的切线,点A 为切点,OD 交⊙O 于点B ,点C 在⊙O 上,且∠ODA=36°,则∠ACB 的度数为(D )A .54°B .36°C .30°D .27°5.如图,PA 切⊙O 于A ,PO 交⊙O 于B ,若PA =6,PB =3,则⊙O 的半径是(C )A .5B .4C .4.5D .3.5第5题图 第6题图6.如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心,若∠B=25°,则∠C 等于40°. 7.(济南中考)如图,AB 与⊙O 相切于点C ,∠A=∠B,⊙O 的半径为6,AB =16.求OA 的长.解:连接OC.∵AB 与⊙O 相切于点C , ∴OC⊥AB.∵∠A =∠B,∴OA =OB. ∴AC =BC =12AB =8.∵OC =6,∴OA =62+82=10.易错点 判断圆和各边相切时考虑不全面而漏解8.如图,在平面直角坐标系第一象限内有一矩形OABC ,B(4,2),现有一圆同时和这个矩形的三边都相切,则此圆的圆心P 的坐标为(1,1)或(3,1)或(2,0)或(2,2).02 中档题9.(教材9上P 101习题T 5变式)如图,两个同心圆的半径分别为4 cm 和5 cm ,大圆的一条弦AB 与小圆相切,则弦AB 的长为(C )A .3 cmB .4 cmC .6 cmD .8 cm。
第二十四章圆章末检测题一、选择题(每小题3分,共30分)1.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆.其中正确命题的个数为()A.1 B.2 C.3 D.42.⊙O的半径为5,同一平面内有一点P,且OP=7,则P与⊙O的位置关系是()A.P在圆内 B.P在圆上 C.P在圆外 D.无法确定3.如图,A,B,C在⊙O上,∠OAB=22.5°,则∠ACB的度数是()A.11.5° B.112.5° C.122.5° D.135°第3题图第5题图第7题图第8题图4.正多边形的一边所对的中心角与它的一个外角的关系是()A.相等 B.互余 C.互补 D.互余或互补5.如图所示,在一圆形展厅的圆形边缘上安装监视器,每台监视器的监控角度是35°,为了监视整个展厅,最少需要在圆形的边缘上安装几个这样的监视器()A.4台 B.5台 C.6台 D.7台6.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()A.相离 B.相交 C.相切 D.外切7.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于()A.r B..3r8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是EB的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,分别以AC,BC为直径画半圆,则图中阴影部分的面积为()A.10π-8 B.10π-16 C.10π D.5π第9题图第10题图10.如图,已知直线y=34x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连接PA,PB.则△PAB面积的最大值是()A.8 B.12 C.212D.172二、填空题(每小题3分,共24分)11.用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设__________________.12.如图,P是⊙O的直径BA延长线上一点,PD交⊙O于点C,且PC=OD,如果∠P=24°,则∠DOB=________.第12题图第13题图第14题图第15题图13.如图所示是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的直径为___________.14.如图同心圆,大⊙O的弦AB切小⊙O于P,且AB=6,则圆环的面积为____________.15.如图,正五边形ABCDE内接于⊙O,F是⊙O上一点,则∠CFD=____°.16.如图,PA,PB分别切⊙O于A,B,并与⊙O的切线,分别相交于C,D,已知△PCD的周长等于10cm,则PA=__________ cm.第16题图第17题图第18题图17.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为_______________.18.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为__________.三、解答题(共66分)19.(6分)如图,一块直角三角尺形状的木板余料,木工师傅要在此余料上锯出一块圆形的木板制作凳面,要想使锯出的凳面的面积最大.(1)请你试着用直尺和圆规画出此圆(要求尺规作图,保留作图痕迹,不写作法).(2)若此Rt△ABC的直角边分别为30cm和40cm,试求此圆凳面的面积.第19题图第20题图20.(6分)如图,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD,BC于F,G,延长BA交圆于E.求证:EF=FG.21.(8分)如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.第21题图第22题图第23题图22.(8分)如图,△ABC内接于⊙O,AB=8,AC=4,D是AB边上一点,P是优弧BAC的中点,连接PA,PB,PC,PD,当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?并加以证明.23.(8分)如图,半径为R的圆内,ABCDEF是正六边形,EFGH是正方形.(1)求正六边形与正方形的面积比;(2)连接OF,OG,求∠OGF.24.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.第24题图第25题图第26题图25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧AC的长.附加题(15分,不计入总分)26.(12分)如图,A是半径为12cm的⊙O上的定点,动点P从A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到点A立即停止运动.(1)如果∠POA=90°,求点P运动的时间;(2)如果点B是OA延长线上的一点,AB=OA,那么当点P运动的时间为2s时,判断直线BP与⊙O的位置关系,并说明理由.参考答案一、选择题1.C ;提示:①②③正确,不在同一直线上的三点才能确定一个圆,故④错误. 2.C ;提示:因为OP=7>5,所以点P 与⊙O 的位置关系是点在圆外. 3.B ;提示::∵OA=OB ,∴∠OAB=∠OBA=22.5°,∴∠AOB=135°,在优弧AB 上任取点E ,连接AE 、BE ,则∠AEB=12∠AOB=67.5°,又∵∠AEB+∠ACB=180°,∴∠ACB=112.5°,4.A ;提示:设正多边形是正n 边形,则它的一边所对的中心角是360n︒,正多边形的外角和是360°,则每个外角也是360n︒,所以正多边形的一边所对的中心角与它的一个外角相等.5.C ;提示:如图,连接BO ,CO ,∵∠BAC=35°,∴∠BOC=2∠BAC=70°.∵360÷70=517,∴最少需要在圆形的边缘上安装6个这样的监视器.6.C ;提示:∵⊙O 的直径是10,∴⊙O 的半径r=5.∵圆心O 到直线l 的距离d 是5,∴r=d ,∴直线l 和⊙O 的位置关系是相切,故选C .7.B ;提示:∵圆的半径为r ,扇形的弧长等于底面圆的周长得出2πr .设圆锥的母线长为R ,则120180Rπ=2πr ,解得:R=3r .根据勾股定理得圆锥的高为,故选B .8.D ;提示:A 、∵点C 是EB 的中点,∴OC ⊥BE.∵AB 为圆O 的直径,∴AE ⊥BE.∴OC ∥AE ,本选项正确; B 、∵BC =CE ,∴BC=CE ,本选项正确;C 、∵AD 为圆O 的切线,∴AD ⊥OA.∴∠DAE+∠EAB=90°. ∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA ,本选项正确; D 、由已知条件不能推出AC ⊥OE ,本选项错误.9.B ;提示:设各个部分的面积为:S 1、S 2、S 3、S 4、S 5,如图所示:∵两个半圆的面积和是:S 1+S 5+S 4+S 2+S 3+S 4,△ABC 的面积是S 3+S 4+S 5,阴影部分的面积是:S 1+S 2+S 4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积为12π×16+12π×4-12×8×4=10π-16. 10.C ;提示:∵直线y=34x-3与x 轴、y 轴分别交于A ,B 两点,∴A 点的坐标为(4,0),B 点的坐标为(0,-3). 即OA=4,OB=3,由勾股定理,得AB=5. 过C 作CM ⊥AB 于M ,连接AC , 则由三角形面积公式得:12×AB×CM=12×OA×OC+12×OA×OB ,∴5×CM=4×1+3×4,∴CM=165.∴⊙C 上点到直线y=34x-3的最大距离是1+165=215.∴△PAB 面积的最大值是12×5×215=212.二、填空题11.一个三角形中有两个角是直角;提示:用反证法证明命题“一个三角形中不能有两个角是直角”第一步应假设一个三角形中有两个角是直角.12.72°;提示:连接OC ,如图,∵PC=OD ,而OC=OD ,∴PC=CO ,∴∠1=∠P=24°,∴∠2=2∠P=48°,而OD=OC ,∴∠D=∠2=48°,∴∠DOB=∠P+∠D=72°.13.10cm ;提示:过点O 作OD ⊥AB 于点D ,连接OA ,则AD=12AB=12×8=4cm .设OA=r ,则OD=r-2,在Rt △AOD 中,OA 2=OD 2+AD 2,即r 2=(r-2)2+42,解得r=5cm .故该输水管的直径为10cm. 14.9π;提示:∵大⊙O 的弦AB 切小⊙O 于P ,∴OP ⊥AB.∴AP=BP=12AB=12×6=3. ∵在Rt △OAP 中,AP 2=OA 2-OP 2,∴OA 2-OP 2=9.∴圆环的面积为:πOA 2-πOP 2=π(OA 2-OP 2)=9π.15.36;提示:如图,连接OD 、OC ;∵正五边形ABCDE 内接于圆O ,∴DC =15×⊙O 的周长.∴∠DOC=15360×°=72°.∴∠CFD=12×72°=36°. 16.5;提示:如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ;∴PA=PB ;同理,可得:DE=DA ,CE=CB ;则△PCD 的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm );∴PA=PB=5cm. 17.1或5;提示:当⊙P 位于y 轴的左侧且与y 轴相切时,平移的距离为1; 当⊙P 位于y 轴的右侧且与y 轴相切时,平移的距离为5.18.2π-4;提示:由题意得,阴影部分面积=2(S 扇形AOB -S △A0B )=2(2902360π⨯-12×2×2)=2π-4.三、解答题 19.解:(1)如图所示:(2)设三角形内切圆半径为r ,则12•r•(50+40+30)=12×30×40,解得r=10(cm ). 故此圆凳面的面积为:π×102=100π(cm 2).第19题答图 第20题答图 20.证明:连接AG .∵A 为圆心,∴AB=AG.∴∠ABG=∠AGB.∵四边形ABCD 为平行四边形,∴AD ∥BC ,∠AGB=∠DAG ,∠EAD=∠ABG. ∴∠DAG=∠EAD ,∴EF =FG .21.解:(1)∵OA ⊥BC ,∴AC =AB .∴∠ADC =12∠AOB. ∵∠AOB=56°,∴∠ADC=28°; (2)∵OA ⊥BC ,∴CE=BE=12BC=3. 设⊙O 的半径为r ,则OE=r-1,OB=r ,在Rt △BOE 中,OE 2+BE 2=OB 2,则32+(r-1)2=r 2.解得r=5. 所以⊙O 的半径为5.22.解:当BD=4时,△PAD 是以AD 为底边的等腰三角形.理由如下: ∵P 是优弧BAC 的中点,∴PB =PC .∴PB=PC .在△PBD 与△PCA 中,4PB PC PBD PCA BD AC =⎧⎪∠=∠⎨⎪==⎩,∴△PBD ≌△PCA (SAS ).∴PD=PA.即BD=4时,△PAD 是以AD 为底边的等腰三角形.(2)∵OF=EF=FG ,∴∠OGF=2(180°-60°-90°)=15°. 24.解:(1)证明:连接OD , ∵OB=OD ,∴∠ABC=∠ODB.∵AB=AC ,∴∠ABC=∠ACB.∴∠ODB=∠ACB.∴OD ∥AC. ∵DF 是⊙O 的切线,∴DF ⊥OD.∴DF ⊥AC . (2)解:连接OE ,∵DF ⊥AC ,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°.∴∠BAC=45°. ∵OA=OE ,∴∠AOE=90°.∵⊙O 的半径为4,∴S 扇形AOE ==⋅⋅3604902π4π,S △AOE =12×4×4=8 ,∴S 阴影=4π-8. 25.解:(1)∵∠ABC 与∠D 都是弧AC 所对的圆周角,∴∠B=∠D=60°.(2)∵AB 是⊙O 的直径,∴∠ACB=90°.又∠B=60°∴∠BAC=30°. ∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA ⊥AE. ∴AE 是⊙O 的切线.(3)如图,连接OC ,∵∠ABC=60°,∴∠AOC=120°.∴劣弧AC 的长为1204180=83π.附加题26.解:(1)当∠PO A=90°时,根据弧长公式可知点P 运动的路程为⊙O 周长的14或34,设点P 运动的时间为ts.当点P 运动的路程为⊙O 周长的14时,2π•t=14•2π•12,解得t=3; 当点P 运动的路程为⊙O 周长的34时,2π•t=34•2π•12,解得t=9.∴当∠POA=90°时,点P 运动的时间为3s 或9s .(2)如图,当点P 运动的时间为2s 时,直线BP 与⊙O 相切.理由如下: 当点P 运动的时间为2s 时,点P 运动的路程为4πcm ,连接OP ,PA. ∵半径AO=12,∴⊙O 的周长为24π.∴AP 的长为⊙O 周长的16.∴∠POA=60°. ∵OP=OA ,∴△OAP 是等边三角形.∴OP=OA=AP ,∠OAP=60°. ∵AB=OA ,∴AP=AB.∵∠OAP=∠APB+∠B ,∴∠APB=∠B=30°.∴∠OPB=∠OPA+∠APB=90°.∴OP ⊥BP ,∴直线BP 与⊙O 相切.。