橡胶配合体系
- 格式:ppt
- 大小:4.29 MB
- 文档页数:80
【详细】橡胶的各种硫化体系讲解!(收藏)一.普通硫黄硫化体系(CV)普通硫黄硫化体系(Conventional Vulcanization简称CV),是指二烯类橡胶的通常硫黄用量范围的硫化体系。
对普通硫黄硫化体系(CV),对NR,一般促进剂的用量为0.5~0.6份,硫黄用量为2.5份。
普通硫黄硫化体系得到的硫化胶网络中70%以上是多硫交联键(—Sx—),具有较高的主链改性。
特点:硫化胶具有良好的初始疲劳性能,室温条件下具有优良的动静态性能,最大的缺点是不耐热氧老化,硫化胶不能在较高温度下长期使用。
二.有效硫化体系(EV)一般采取的配合方式有两种:1.高促、低硫配合:提高促进剂用量(3~5份),降低硫黄用量(0.3~0.5份)。
促进剂用量/硫黄用量=3~5/0.3~0.5≥6 2.无硫配合:即硫载体配合。
如采用TMTD或DTDM(1.5~2份)。
特点:1. 硫化胶网络中单S键和双S键的含量占90%以上;硫化胶具有较高的抗热氧老化性能;2. 起始动态性能差,用于高温静态制品如密封制品、厚制品、高温快速硫化体系。
三.半有效硫化体系(SEV)为了改善硫化胶的抗热氧老化和动态疲劳性能,发展了一种促进剂和硫黄的用量介于CV和EV之间的硫化体系,所得到的硫化胶既具有适量的多硫键,又有适量的单、双硫交联键,使其既具有较好的动态性能,又有中等程度的耐热氧老化性能,这样的硫化体系称为半有效硫化体系(SEV)。
用于有一定的使用温度要求的动静态制品。
一般采取的配合方式有两种:1.促进剂用量/硫用量=1.0/1.0=1(或稍大于1);2.硫与硫载体并用,促进剂用量与SEV中一致。
NR的三种硫化体系配合如下表所示:配方成分C V EV高促低硫无硫配合Semi—EV高促低硫硫\硫载体并用SNOB STMT DDMD T 2.50.60.53.0 1.10.6 1.11.11.5 1.51.5 0.60.6四.高温快速硫化体系随着橡胶工业生产的自动化、联动化,高温快速硫化体系被广泛采用,如注射硫化、电缆的硫化等。
∙橡胶的配合∙来源:橡胶人才网添加时间:2010-08-11浏览次数:59次进入论坛交流∙橡胶的配合任何一种橡胶只有通过配合和加工,才能满足不同的产品性能的要求。
橡胶的配合主要有硫化、补强和防老化三大体系:一、橡胶的硫化体系橡胶的硫化就是通过橡胶分子间的化学交联作用将基本上呈塑性的生胶转化成弹性的和尺寸稳定的产品,硫化后的橡胶的物性稳定,使用温度范围扩大。
“硫化过程(Curing)”一词在整个橡胶工业中普遍使用,在橡胶化学中占有重要地位。
橡胶分子链间的硫化(交联)反应能力取决于其结构。
不饱和的二烯类橡胶(如天然橡胶、丁苯橡胶和丁腈橡胶等)分子链中含有不饱和双键,可与硫黄、酚醛树脂、有机过氧化物等通过取代或加成反应形成分子间的交联。
饱和橡胶一般用具有一定能量的自由基(如有机过氧化物)和高能辐射等进行交联。
含有特别官能团的橡胶(如氯磺化聚乙烯等),则通过各种官能团与既定物质的特定反应形成交联,如橡胶中的亚磺酰胺基通过与金属氧化物、胺类反应而进行交联。
不同类型的橡胶与各种交联剂反应生成的交联键结构各不相同,硫化胶性能也各有不同。
第①种是使用硫黄或硫给予体作交联剂的情况,生成的可以是单硫键(x=1)、双硫键(x=2)和多硫键(x=3~8);第②种是使用树脂交联和肟交联的情况;第③种是使用过氧化物交联的过氧化物硫化和利用辐射交联的辐射硫化的情况,生成碳-碳键。
多数的通用橡胶采用硫黄或硫给予体硫化,即在生胶中加入硫黄或硫给予体以及缩短硫化时间的促进剂和保证硫黄交联效率的氧化锌和硬脂酸组成的活性剂。
在实际中通常按硫黄用量及其与促进剂的配比情况划分成以下几种典型的硫化体系:①普通硫磺硫化体系由常用硫黄量(>1.5份)和常用促进剂量配合组成。
使用这种硫化体系能使硫化胶形成较多的多硫键,和少量的低硫键(单硫键和双硫键)。
硫化胶的拉伸强度较高,耐疲劳性好。
缺点是耐热和耐老化性能较差。
②半有效硫化体系由硫黄量0.8~1.5份(或部分硫给予体)与常用促进剂量配合所组成。
三元乙丙(EPDM)橡胶配方的配合体系介绍三元乙丙橡胶可以采用二烯烃类橡胶用的普通硫化方法硫化,但由于硫化速度较慢,故近年发展了高不饱和度三元乙丙橡胶,其硫化速度不低于高不饱和橡胶的。
三元乙丙橡胶通常可用硫黄、过氧化物、醌肟和反应性树脂等多种硫化体系进行硫化。
不同的硫化体系对其混炼胶的门尼粘度、焦烧时间、硫化速度以及硫化胶的次联键型、物理机械性能(如应力-应变、滞后、压缩变形以及耐热等性能)亦有着直接的影响。
硫化体系的选择要根据所用乙丙橡胶的类型、产品物理机械性能、操作安全性、喷霜以及成等因素加以综合考虑。
一、硫化体系乙丙橡胶常见交联剂体系的适用性和特点1硫黄硫化体系硫黄硫化体系是三元乙丙橡胶使用最广泛最主要的硫化体系。
在硫黄硫化体系中,由于硫黄在乙丙橡胶中溶解度较小,容易喷霜,不宜多用。
一般硫黄用量应控制在1~2份范围内。
在一定硫黄用量范围内,随硫黄用量增加,胶料硫化速度加快,焦烧时间缩短,硫化胶拉伸强度、定伸应力和硬度增高,拉断伸长率下降。
硫黄用量超过2份时,耐热性有下降,高温下压缩永久变形增大。
为使胶料不喷霜,促进剂的用量亦必须保持在三元乙丙橡胶的喷霜极限溶解度以下。
实际上,在工业生产中,基于以下原因几乎都是采用二种或多种促进剂的并用体系。
(1)多种促进剂并用,容易达到硫化作用平衡。
(2)许多促进剂在较低浓度时,就会发生喷霜,因此用量不宜太高。
(3)促进剂这间的协同效应,有利于导致硫化时间的缩短和交联密度的提高。
硫黄硫化体系中,促进剂的用量还可以通过增加硬脂酸的用量来提高,当其它条件不变的情况下,硬脂酸用量增加会导致交联密度、单硫和双硫交联键增加。
氧化锌用量的增加亦有助于在交联时形成促进剂,从而提高胶料的交联密度及抗返原性,改善动态疲劳性能和耐热性能。
2硫黄给予体硫化采用硫黄给予体代替部分硫黄,可使其生成的硫化胶主要具有单硫键或双硫键,因而可以改善胶料的耐热和高温下的压缩变形性能,延长焦烧时间。
橡胶是一种材料,它在大的形变下能迅速而有力恢复其形变,能够改性;橡胶的弹性模量非常小,并具有相当好的耐气透性以及耐各种化学介质和电绝缘的性能,它可以和多种材料物质并用、共混、复合由此进行改性,以得到良好的综合性能。
橡胶的配合的主要包括五大体系,分别是生胶、硫化体系、防护体系、软化增塑体系和补强体系。
一、生胶生胶是高弹性高聚物材料,作为橡胶的母体材料或称为基体材料。
按制取来源与方法分可以分成天然橡胶和合成橡胶两大类;其中合成橡胶按照应用范围与用途分又可以分成通用橡胶、半通用橡胶、专用合成橡胶和特种橡胶。
1、天然橡胶主要应用与轮胎、胶带、胶管、电线电缆等多数橡胶制品,是应用最广的橡胶。
2、丁苯橡胶大部分的丁苯橡胶用于轮胎工业。
其他产品有汽车零件、工业制品、电线电缆包皮、胶管胶带和鞋类等。
3、氯丁橡胶氯丁橡胶可用来制造轮胎胎侧、耐热阻燃运输带、耐油及耐化学腐蚀的胶管、容器衬里、垫圈、胶辊、汽车和拖拉机配件、门窗密封胶条、止水带等。
4、丁腈橡胶丁腈橡胶有良好的耐油性有可以保持较好的橡胶特性,可以广泛的应用于耐油制品如油封、输油胶管、化工容器衬里、油箱、印刷胶辊、耐油手套、耐油减震器等;由于丁腈橡胶具有半导性,所以可用于余姚导出静电,以免引起火灾的地方,如纺织皮辊、皮圈、阻燃运输带等。
5、乙丙橡胶主要应用于要求耐老化、耐水、耐腐蚀、电气绝缘几个领域,如用于密封垫圈、屋顶单层防水卷材、桥梁减震器、高低压电缆绝缘层、汽车玻璃密封条、轮胎胎侧等。
6、丁基橡胶丁基胶具有突出的气密性和耐热性,主要用于充气轮胎的内侧和无内胎轮胎的气密层,有极好的耐化学药品腐蚀性能可用于化工耐腐蚀容器衬里等。
二、硫化体系硫化体系包括硫化剂、促进剂、活性剂、防焦剂;为橡胶大分子进行化学反应使橡胶油线性大分子交联成空间网状结构。
1、硫化体系一般有硫磺硫化体系、过氧化物硫化体系、硫载体硫化体系;2、促进剂是能缩短硫化时间,降低硫化温度,减少硫化剂用量,提高和改善硫化胶物理力学性能和化学稳定性的化学物质。
绪论橡胶配合加工内容●主要内容:原料及配合;加工工艺过程;性能测试。
●配合系统:生胶,硫化体系,补强填充体系,防老体系,增塑及操作体系,特种配合体系。
●加工过程:炼胶,压延,挤出,成型,硫化。
●塑炼:定义为降低分子量,增加塑性,改善加工性能,制成可塑性符合要求的塑料胶。
●混炼:定义为经过配合,将橡胶与配合剂均匀地混合和分散,制成混炼胶。
●门尼粘度:用门尼粘度计测量的是橡胶的本体黏度,原理是将胶料填充在粘度计的模腔和转子之间,合模,在一定温度下〔一般为100℃〕预热〔一般1min〕,令转子转动一定时间〔一般4min〕时测得的转矩值〔N·m〕。
该值越大,说明胶料的黏度越大,常用ML〔1+4〕100℃表示。
●门尼焦烧:这是个说明胶料焦烧时间的指标,通常是在120℃下测定〔加有硫化体系配合剂〕从最低点起,上升5个门尼值的时间。
这个时间越大说明胶料越不容易发生焦烧,加工越安全。
第一章生胶❖分类〔按来源〕:天然橡胶〔NR〕和合成橡胶。
合成橡胶又分为通用橡胶和特种橡胶。
❖通用橡胶:丁苯橡胶〔SBR〕、顺丁橡胶〔BR〕、异戊橡胶〔IR〕、丁腈橡胶〔NBR〕、氯丁橡胶〔CR〕、丁基橡胶〔IIR〕、乙丙橡胶〔EPM,EPDM〕.❖不饱和非极性橡胶:NR、SBR、BR、IR;不饱和极性橡胶:NBR、CR;饱和非极性橡胶:EPM、EPDM、IIR;❖天然橡胶〔NR〕主要由顺—1,4—聚异戊二烯构成,其综合性能好。
❖丁苯橡胶(SBR)是丁二烯和苯乙烯的共聚物,是产量最大的通用橡胶,70%用于轮胎业,根据聚合方法分为乳聚丁苯和溶聚丁苯。
❖苯乙烯含量对丁苯橡胶性能的影响:随着苯乙烯含量的增加,其SBR的性能向聚苯乙烯趋近。
表现为Tg、模量、硬度上升,耐热老化性变好,挤出收缩率变小,挤出物外表光滑,而耐磨性下降,弹性减小。
❖顺丁橡胶(BR)也称聚丁二烯橡胶,弹性最好的通用橡胶,滞后损失小,生热少。
❖乙丙橡胶(EPM,EPDM)属于碳链饱和非极性橡胶,耐臭氧老化性和耐热老化性是通用橡胶中最好的,被誉为不龟裂的橡胶。
第三章橡胶的特种配合体系随着高分子科学的不断开展,对橡胶材料也提出了更高、更新的要求。
为了适应高新技术开展的需要,橡胶材料也和其他高分子一样,其开展的要紧趋势是高性能化、高功能化、复合化、精细化和智能化。
所谓高性能,是指通过技术革新极大提高橡胶材料的原有性能,从而获得特定的性能,如耐高温、耐低温、耐化学腐蚀、耐辐射、高尽缘、高透明等。
所谓高功能性,是指橡胶材料本来没有的特性,但通过特别的配合加工而给予其新的功能,使其到达预期设定功能的指标。
例如导电、磁性、阻燃、吸水膨胀、水声橡胶等。
智能化是橡胶通过设计后具有某些生物功能,如经历、仿生等。
橡胶材料的开展趋势:高性能化、高功能化、复合化、精细化和智能化高性能:通过技术革新极大提高橡胶材料的原有性能,如耐高温、耐低温、耐化学腐蚀、耐辐射、高尽缘、高透明等。
高功能:橡胶材料本来没有的特性,但通过特别的配合加工而给予其新的功能。
例如导电、磁性、阻燃、吸水膨胀、水声橡胶等。
智能化:具有某些生物功能,如经历、仿生等。
特种配合体系:耐热、耐冷、耐介质、难燃、导电、发泡等,应用于特别的领域。
3.1耐热制品耐热性是指在一定的高温使用条件下,在较长的时刻内维持原有全然物理机械性能的能力。
耐热性决定制品的最高使用温度和寿命,一般物理机械性能在高温下维持稳定,即具有在高温下能够抵抗氧、臭氧、高能辐射、机械疲乏等因素的作用。
硫化橡胶的耐热性表现在橡胶分子、交联键及其配合剂〔要紧是填充剂和增塑剂〕有较高的粘流温度、热分解温度和化学稳定性。
橡胶的粘流温度取决于橡胶分子结构的极性和刚性、橡胶分子之间的作用力、填料与橡胶之间的相互作用和交联键的键能。
橡胶的热分解温度取决橡胶分子结构的化学键性质,化学键能越高,耐热性越好。
橡胶的化学稳定性也是碍事耐热性能的一个重要因素。
因为在高温条件下,橡胶与氧、臭氧、其它介质的接触,都会促进橡胶的老化与被腐蚀。
橡胶在高温即热氧作用下,橡胶大分子会发生落解、交联、环化、异构化,活性填料会与橡胶分子发生进一步的作用,交联键产生断裂、环化或重新交联,橡胶内低分子物质产生挥发、分解。
丁腈橡胶配合体系介绍丁腈橡胶(Nitrile Rubber,NBR)是一种合成橡胶,具有优异的耐油性、抗溶剂性、耐磨性和耐热性。
因此,广泛应用于汽车制造、工程机械、化工设备等领域。
丁腈橡胶的物理性能和化学性能可以通过配合不同的助剂来调整,构建相应的配合体系。
一般来说,丁腈橡胶的配合体系主要包括增塑剂、硫化剂、活性剂、抗老化剂、填料等。
这些助剂的作用是相辅相成的,通过相互作用来增强橡胶的性能。
1.增塑剂:增塑剂的作用是使丁腈橡胶变得柔软、易加工。
常用的增塑剂包括白炭黑、碳黑等。
其中,白炭黑能够增强橡胶的耐磨性和耐油性,碳黑则能提高橡胶的强度和耐磨性。
2.硫化剂:硫化剂是丁腈橡胶必不可少的配合剂,它能够促进橡胶的硫化反应,增加其耐热性和耐老化性能。
常用的硫化剂有硫磺、硫化三苯胺等。
3.活性剂:活性剂有助于提高丁腈橡胶的流动性和加工性能,常用的活性剂有锌酸、过氧化二苯甲酰等。
4. 抗老化剂:抗老化剂能够延缓丁腈橡胶的老化速度,增加其使用寿命。
常用的抗老化剂有2,5-二(tert-丁基)-4-甲基蒽醌、N-异丁基-1,4-苯二胺等。
5.填料:填料是丁腈橡胶中起填充、增强和改变物理性能的作用,常用的填料有沥青、聚合物颗粒等。
填料的加入可以增强橡胶的强度和硬度。
丁腈橡胶的配方案例如下:1.丁腈橡胶100份,岩棉填料50份,二硫化炭黑5份,活性硫1.5份,N-异丁基-1,4-苯二胺0.5份,白炭黑1份。
2. 丁腈橡胶100份,碳黑填料60份,二硫化硫2份,锌酸1份,硫磺5份,2,5-二(tert-丁基)-4-甲基蒽醌1份。
3.丁腈橡胶100份,沥青填料40份,活性硫2份,过氧化二苯甲酰1份,硫磺3份。
三元乙丙橡胶配方的配合体系介绍三元乙丙(EPDM)橡胶是一种具有优良综合性能的合成橡胶材料,广泛应用于汽车零部件、建筑密封材料、电线电缆绝缘等领域。
EPDM橡胶的性能取决于其配合体系,包括橡胶配方中的橡胶、填料、增塑剂、交联剂、防老剂等成分的选择和相互配比。
以下是EPDM橡胶配方的配合体系介绍。
一、橡胶EPDM橡胶是由乙烯、丙烯二元单体与不饱和二元单体或多元单体通过共聚合反应制得的高分子材料。
根据不饱和二元单体的种类和比例,可分为饱和型和非饱和型EPDM。
饱和型EPDM具有较高的硫化活性和抗老化性能,广泛应用于汽车零部件、建筑密封材料等领域。
非饱和型EPDM则适用于电线电缆绝缘等对硫化活性要求不高的领域。
二、填料填料是橡胶配方中的重要组成部分,可提高橡胶材料的体积强度和硬度,同时降低成本。
常用的填料有碳黑、白炭黑、纳米硅酸钛等。
碳黑是最常用的填料,可增加橡胶的硬度、耐磨性和耐老化性。
三、增塑剂增塑剂是一种可增加橡胶柔软性和可加工性的添加剂。
常用的增塑剂有液体石蜡、脂肪酸酯类等。
增塑剂的选择要考虑到与橡胶的相容性和耐热性。
四、交联剂交联剂是橡胶配方中必不可少的成分,它通过与橡胶中的不饱和键反应,形成交联网络结构,提高橡胶的强度和耐热性。
常用的交联剂有硫、过氧化物等。
硫是最常用的交联剂,可通过加热和硫化剂的反应形成硫化橡胶。
五、防老剂防老剂是橡胶配方中用于提高橡胶耐老化性能的添加剂。
常用的防老剂有抗氧剂、防臭剂等。
抗氧剂可防止橡胶在使用过程中因氧化而降解,延长其使用寿命。
防臭剂则可防止由于硫化过程中产生的硫化氢等气味物质对橡胶的影响。
EPDM橡胶配方的配合体系是根据特定使用要求设计的,不同应用领域的EPDM橡胶配方会有所不同。
通过合理选择和配比橡胶、填料、增塑剂、交联剂、防老剂等成分,可以得到满足特定应用要求的EPDM橡胶材料。
橡胶常用的六大硫化体系橡胶常用的硫化体系有:1.硫磺硫化体系。
2.金属氧化物硫化体系。
3.过氧化物硫化体系。
4.树脂硫化体系。
5.醌肟类硫化体系6.多元胺硫化体系。
1.硫磺硫化体系可分为:常规硫化体系:由硫磺和少量促进剂等配合剂组成,以多硫键交联为主。
耐高温性能较差,压缩永久变形大,过硫后易出现返原现象,但耐屈挠疲劳行较好、机械强度较高,胶料及制品不易喷霜。
有效、半有效硫化体系:硫磺用量一般在0.5份以下,常用量为0.35份,配合较大量的促进剂,需要较长的焦烧时间(超速促进剂与后效性并用),活性剂应使用足量的硬脂酸(1-8份)。
几乎没有硫化返原现象,,硫化均匀性好,耐热性好,压缩变形低,生热小。
缺点为抗屈挠疲劳性差,易发生喷霜现象。
采用高TMTD的有效硫化体系配方虽然使用广泛,但加工稳定性差,切喷霜严重。
2.金属氧化物硫化体系:优点是硫化胶硬度和拉伸强度较高,并用环氧树脂后,可提高硫化胶的耐热性和动态性能。
常用的有氧化锌、氧化镁、氧化钙、氢氧化钙等。
氧化锌容易焦烧,加SA后可稍缓和焦烧倾向。
氧化镁和氧化钙焦烧倾向较小,并以氢氧化钙最好。
氧化镁用量以稍多为宜,增加用量可提高胶料硫化速度,并提高硫化胶强度和硬度。
缺点是生热大,耐屈挠性能差。
3.过氧化物类硫化体系:优点是压缩永久变形低,耐热耐寒性良好,胶料硫化时间短,不污染金属,便于制得透明橡胶。
缺点是一般不能用于热空气硫化,撕裂性能较差。
可分为①简单型:硫化体系只有有机过氧化物,或包括防焦剂。
该体系优点为硫化胶的压缩变形小,缺点是硫化过程中焦烧可控程度低,几乎不存在硫化诱导期。
②后效性:该体系硫化组分由过氧化物、活性剂和防焦剂组成。
特点是为可控制焦烧时间,又不影响硫化效率。
硫化特性与后效性硫磺硫化体系相似,过氧化物硫化体系温度系数比硫磺硫化体系高。
温度每提高10度,硫化速度约提高两倍。
(硫磺硫化体系提高一倍)焦烧性能亦是如此。
4.树脂类硫化体系:特点是形成热稳定较高的C-C键和醚键交联。
橡胶配方主要满足以下三方面:1、硫化胶料的物理性能;2、混炼胶的加工工艺性能;3、满足以上要求的最低配料成本。
橡胶配方第一个步骤是选择主体橡胶,根据橡胶制品要求的性能不同,需要选用不同的橡胶,例如:耐磨选用顺丁橡胶、耐热选三元乙丙橡胶、耐油选用丁腈胶等。
橡胶配方按功用可分为五大体系,①主体生胶;②操作体系③硫化体系;④性能体系;⑤成本体系;主体生胶生胶、再生胶:为橡胶配合料中的主成分,是主体材料,决定橡胶的使用性能、工艺性能和产品成本、寿命的主要因素。
未硫化的橡胶无法满足使用要求,添加硫促体系使胶料产生化学反应而在橡胶分子之间产生架桥(交联反应),交联作用使胶料由柔软、带粘性的可塑体,变成强韧的热固体。
硫促体系分硫化剂、促进剂和活化剂。
促进剂可使胶料硫化速率加快,缩短硫化时间;活化剂是用来帮助促进剂增强其活性和效能。
操作体系增塑剂:增塑剂包括物理增塑剂—软化剂、化学增塑剂、塑解剂),有助于混合,改善加工性,增加弹性。
可以帮助胶料混炼,改变其粘度,增强胶料粘性,改善制品在低温下的柔韧性。
软化剂、塑解剂、增溶剂、均匀剂、润滑剂、分散剂、增粘剂、隔离剂、脱模剂硫化体系硫化剂:使橡胶交联成为网状结构,表现其因有特性,达到和满足使用要求(S、DCP)。
促进剂:有助于提高硫化剂对胶料交联(硫化)速度以及交联程度藉以改变硫化橡胶的物理性能(如:TT、CZ···)活性剂:促进剂活化剂:用于激活促进剂使其作用更为有效,以增加硫化速率(如:ZNO···)防焦剂:防止胶料早期硫化,如PVI性能体系补强剂:可补强(增加强度)或改变橡胶制品的物理性质。
补强填充体系主要可以增加制品的硬度、抗张强度、定伸强度、抗撕裂和耐磨性等,还可以降低配方成本。
硫化剂名称密度(g/cm3)1 硫黄粉1.96-2.072 VA-7 1.42-1.473 DCP 1.0824 MOCA 1.395 TDI 1.2246 TODI 1.1977 DMMDI 1.28 PAPI 1.29 DADI 1.2促进剂名称密度(g/cm3)1 SDC 1.30-1.372 TP 1.093 SPD 1.424 CDD 1.70-1.785 PZ(ZDMC)1.65-1.746 EZ(ZDC) 1.45-1.517 BZ 1.18-1.248 DBZ 1.149 ZPD 1.5510 ZMPD 1.55-1.6011 PX 1.4612 CED 1.36-1.4213 CPD 1.8214 LMD 2.4315 LPD 2.2916 E 1.2717 SIP 1.118 ZEX 1.5619 ZIP 1.10-1.5520 ZBX 1.421 CPB 1.1722 TMTM 1.37-1.4023 TBTS 0.9824 PMTM 1.3825 TMTD(TT)1.2926 TETD 1.17-1.3027 TBTD 1.0528 PTD 1.3929 M 1.4230 DM 1.531 MZ 1.63-1.6432 DBM 1.6133 NS 1.2934 AZ 1.17-1.1835 DIBS 1.21-1.2336 CZ 1.31-1.3437 DZ 1.238 NOBS 1.34-1.4039 H 1.340 AA 1.641 D 1.13-1.1942 TPG 1.143 DOTG 1.10-1.2244 NA-22 1.4345 DETU 1.146 DBTU 1.06147 CA 1.26-1.3248 U 1.2549 F 1.31活性剂名称密度(g/cm3)1 氧化锌5.62 碳酸锌4.423 氧化镁3.20-3.234 碳酸镁2.195 氢氧化钙2.246 一氧化铅9.1-9.77 四氧化三铅8.3-9.28 碱式碳酸铅 6.5-6.89 碱式硅酸铅 5.810 硬脂酸0.911 油酸0.89-0.9012 硬脂酸锌1.05-1.1013 油酸铅1.34防老剂名称密度(g/cm3)1 AH 1.15-1.162 AP 0.983 AA 1.154 BA 1.00-1.045 RD 1.056 124 1.01-1.087 AW 1.029-1.0318 DD 0.90-0.969 BLE 1.0910 APN 1.1611 BXA 1.112 甲(A)1.16-1.1713 丁(D)1.1814 OD 0.98-1.1215 DNP 1.2616 4010NA(IPPD)1.1417 BPPD 1.04918 HPPD 1.01519 4020(DMBPPD)0.98620 688(OPPD)1.00321 4010(CPPD) 1.2922 TPPD 1.3223 DED 1.14-1.2125 DPD 1.05-1.0726 DDM(NA-11) 1.11-1.1427 MB 1.40-1.4428 MBZ 1.63-1.6429 NBC 1.2630 TNP 0.97-0.99增塑剂名称密度(g/cm3)1 机械油0.91-0.932 工业凡士林0.88-0.893 石蜡0.94 微晶石蜡0.89-0.945 石油沥青1.0-1.156 固体古马隆 1.05-1.107 松焦油1.01-1.068 松香1.19 DBP 1.04510 DOP 0.986名称密度(g/cm3)1 烟片、白皱片0.982 硬脂酸0.843 白蜡0.95 沥青1.16 精制沥青1.047 松焦油1.048 黑油膏1.089 白油膏1.0110 凡士林0.8811 碳酸钙2.6212 碳酸镁213 陶土2.614 石棉粉2.515 锌钡白4.1516 硫酸钡4.3517 云母粉318 滑石粉2.9819 白艳华220 硬质碳黑1.821 硫磺2.0722 促进剂M 1.4923 促进剂D 1.1924 防老剂A 1.1725 防老剂D 1.1726 氧化锌5.5727 氧化镁3.228 氧化铅9.3529 氧化铁4.730 棉帘线1.5。
百科:橡胶的配合在橡胶(生胶)中添加各种橡胶助剂(又称配合剂、配合材料),均匀混合,配成适用胶料,以便进一步加工。
是橡胶制品生产过程中一项关键工艺技术,目的是:①提高橡胶物理性能;②改善橡胶加工性,以利操作;③配入填料以降成本。
招生过后文章更加精彩报名加微信长按下面识别加好友:为此,须寻找适当配合材料,选择最宜的组合配比、混炼条件、硫化条件,并按经济合理的原则,获取最佳的综合性能。
长期以来,橡胶配合工艺近于一种从实际经验总结出来的技艺。
随着高分子材料科学及其测试方法的进步,橡胶配方工作者运用现代仪器、统计分析方法和电子计算机,已能高效准确地设计出各种胶料配方。
橡胶配合技术的发展1839年,美国C.固特异发明橡胶硫化法,使橡胶有了优良的使用性能。
随着硫化促进剂和防焦剂等的发明,硫化时间缩短,橡胶性能进一步提高。
从橡胶的最初配方(表中的配方Ⅰ)发展到现代基础配方(表中的配方Ⅳ和Ⅴ),其橡胶性能(以抗张强度为代表)显著改善(见图)。
配方Ⅰ虽然可以硫化,但硫化的时间需要几个小时,橡胶性能很差;若以配方Ⅳ和Ⅴ为基础,按橡胶制品性能和生产工艺要求,再添加辅助操作材料、增进胶料性能材料、降低成本的材料等,就成为品类繁多的现代生产上的实用配方。
按制品使用性能和结构的要求,选择适当的配合剂及其用量。
同时,还要拟订适宜的混炼工艺和硫化条件。
为了提高胶料的物理机械性能,有以下规律可循,这也是设计实用胶料配方和工艺条件的依据。
①为提高硬度和定伸强度,宜采用天然橡胶、氯丁橡胶和丁腈橡胶等胶种。
加入补强填充剂可提高胶料硬度,其粒径越小,胶料硬度越大。
适量增加硫化剂用量,延长硫化时间,增加交联密度,也可提高制品的定伸强度。
②为提高抗张强度,宜采用天然橡胶或氯丁橡胶等结晶性胶种。
补强填充剂的品种是关键,对每种橡胶有其最佳用量。
胶料的硫化程度对于物理性能也有一个最佳区域。
③为提高撕裂强度,宜选用自粘强度大的胶种(如天然橡胶),粒子小且各向同性的补强填充剂,中等活性并具有平坦硫化效果的硫化促进剂。
天然橡胶主要的配合体系有哪些天然橡胶主要的配合体系包括:硫化体系、促进剂体系、防护体系、补强填充体系等。
硫化体系天然橡胶适用的硫化剂有:a.硫、硒、碲;b.硫磺给予体;c.有机过氧化物;d.酯类;e. 醌类等。
一般要根据不同的性能要求采用不同的硫化体系。
1 、硫黄硫化体系采用硫磺硫化是天然橡胶加工中最传统的方法,根据硫化体系中硫磺和促进剂配比的不同,硫磺硫化体系可分为普通硫化体系、半有效硫化体系和有效硫化体系三种。
普通硫化体系又称传统硫化体系,是采用高量硫磺和少量促进剂配合的硫化体系。
硫磺的标准用量为 2.75 份 (每 100 份 NR) 。
这种硫化胶的单硫键较少,而多硫键则高达70%以上,由于多硫键的键能低、稳定性不好,所以硫化胶的耐热和耐老化性能较差,即使加入大量防老剂也无济于事,但是这种硫化胶的综合物理机械性能较好2 、硫磺给予体硫化体系天然橡胶常用的硫磺给予体有秋兰姆类和二硫代吗啡啉(DTDM) 。
秋兰姆类(如二硫化四甲基秋兰姆TMTD 、二硫化四乙基秋兰姆TETD 、四硫化四甲基秋兰姆TMTT 等)在硫化温度下能释放出活性硫,故可作为硫化剂,使胶料不加硫磺即可硫化(所谓的“无硫硫化”)。
其中TMTD 使用较多。
但是,使用秋兰姆的胶料有易喷霜和焦烧时间短的缺点。
二硫化二吗啡啉 DTDM 常用于半有效和有效硫化体系。
在硫化中,DTDM 完全取代硫磺时,就形成有效硫化体系;若取代部分硫磺,则形成半有效硫化体系。
配合 DTDM 的天然橡胶胶料的焦烧时间长,不喷霜,不污染,硫化胶物理机械性能良好。
3 、其它硫化体系酯类硫化体系是指氨基甲酸酯交联体系,它是二异氰酸酯(TDI、MDI )和对亚硝基苯酚的加成物(对醌单肟氨基甲酸酯),能赋予天然橡胶良好的抗返原性、耐热性和耐老化性。
可改善天然橡胶与帘线、织物、钢丝和其他材料的黏合性能。
酰亚胺硫化体系属于高温硫化体系,硫化胶的抗返原性和热稳定性好,并且压缩永久变形小,与玻璃纤维的黏合性好,可作为硫化剂的马来酰亚胺主要有 N,N`- 间亚苯基双马来酰亚胺、4,4`-亚甲基双马来酰亚胺、2,6-二叔丁基-4-(马来酰亚胺甲基)苯酚以及4,4`-二硫代双苯基马来酰亚胺等。