机采系统效率测试与计算
- 格式:ppt
- 大小:9.09 MB
- 文档页数:68
抽油机井系统效率测试方法及其应用摘要:抽油井(也称机采井,其系统称为机采系统)是胜利油田孤岛采油厂主要耗能设备,也是采油厂的耗能大户。
2010年孤岛采油厂油井平均功率因数偏低,只有0.5--0.75。
介绍了抽油机井系统效率测试方法。
关键词:机采系统效率测试调平衡低冲次变频1前言机采井是中石化胜利油田第二大采油厂孤岛采油厂主要耗电设备,是采油厂的耗电大户。
2010年完成机采系统效率测试585井次,分别为常规测试、节能四新项目对比测试及技改项目对比测试等。
根据测试数据统计分析,采油厂平均机采系统效率为32.9%,最高52.65%,最低5.52%,10%以下井25口,效率为10%-20%井89口,效率为20%-30%井298口,效率为30%以上井149口。
前期采油厂经过永磁电机配套变压器改造、机采井优化设计及节能技术改造等项目,机采系统效率已达到胜利油田较高水平,但仍有部分区块由于产能不足,液量低等原因,导致系统效率较低,机采系统仍有很大节能潜力。
2抽油机井系统效率测试方法2.1现场测试目前机采井系统效率测试主要分为电参数测试及示功图测试,两种测试同时进行。
其目的主要是测试输入功率及光杆功率,计算地面效率、井下效率及系统效率。
2.2测试数据采集及分析测试电参数,测试时间3分钟,测试参数主要有输入功率、功率因数、功率平衡度、电参数曲线图等。
以KXK71-93井为例,见图1-图2。
图1 KXK71-93井电能参数曲线图2 KXK71-93电能参数表3机采系统评价指标及达标情况机采系统评价指标主要有功率因数、平衡度、系统效率、百米吨液耗电等四项指标,具体测试结果见表1,石油行业机采系统评价指标见表2。
表12010年孤岛采油厂机采系统测试数据表2石油行业机采系统评价指标由表1、表2可以看出,采油厂机采系统已达到或超过石油行业评价指标。
4抽油机井系统效率测试方法的现场应用4.1调平衡试验针对功率不平衡井进行了调平衡试验,选取了5口抽油机井进行功率平衡度调整,并在调整前后进行了测试(表3)。
机采系统效率试题及答案一、选择题1、在抽油机井能耗评价和考核方面,目前国内外普遍应用的经济指标是(A)A、系统效率B、吨液耗电C、泵效D、功率因数2、目前各油田低产低液井应用最广的抽油机配套电机是(A )A、永磁低速电机B、永磁电机C、超高转差电机D、直线电机3.游梁式抽油机的减速器一般采用(A)减速。
A 三轴两级B 两轴三级C 一轴两级D 两轴两级4.通过对比上下冲程电流强度的峰值来判断抽油机的平衡,下面说法正确的是( D ):A、I上≠I下时,抽油机平衡B、I上>I下时,说明平衡过重C、I上<I下时,说明平衡过轻D、I上<I下时,说明平衡过重5.一抽油井油稠,应选择的合理抽汲参数为( B )。
A、长冲程、小冲数、小泵径B、长冲程、小冲数、大泵径C、冲程、大冲数、大泵径D、小冲程、小冲数、小泵径6.油田上的生产井,按其生产方式的不同,可分为自喷采油和( A )。
A、机械采油B、抽油机井采油C、电动潜油泵采油D、电动螺杆泵采油7、普通电动机功率利用率是指(D)的利用程度。
A、输入功率B、输出功率C、有功功率D、额定功率8、抽油机井示功图是描绘抽油机井( D )曲线。
(A)驴头悬点载荷与减速箱扭矩的关系 (B)驴头悬点载荷与井口油压的关系(C)减速箱的扭矩与光杆位移的关系 (D)驴头悬点载荷与光杆位移的关系9、抽油机配置电机选择时选用的电机功率较大主要是因为抽油机需要(B)。
A较大的起动电流 B较大的启动转矩 C消耗较大的能量度 D较大的动转转矩10、游梁式抽油机按照结构主要分为普通式游梁抽油机和(C)游梁抽油机。
A普通式 B双驴头式 C异相式 D前置式二、判断题(√)1、机械采油系统主要包括抽油机采油系统、电动潜油离心泵采油系统和地面驱动螺杆泵采油系统等类型。
(√)2、安装有变频器控制的电动机,系统效率测试时应在变频器前端录取电参数。
(╳)3、抽油机系统效率测试时间不小于5min,测算数值的取值应具有代表性。
采油工艺技术指标计算方法一、机械采油指标的确定及计算方法1、指标的确定通过研究分析石油行业、集团公司、油田公司的相关标准、规范及要求,经论证优选,计划以石油行业标准《抽油机和电动潜油泵油井生产指标统计方法》(SY/T 6126-1995)为基础,参考其他相关标准及规范,确定出采油工艺指标12项:油井利用率、采油时率、泵效、检泵周期、抽油机井系统效率、平衡度、冲程、冲次、抽油泵径、泵挂深度、动液面、沉没度、动态控制图上图率,具体见下表。
机械采油指标论证确定结果表2、指标的计算方法(1)油井利用率油井利用率指油井实际开井数与油井应开井数的比值。
%100⨯-=yz x c n n n K …………………………(1) 式中:K c ——油井利用率,%;n x ——开井数,口;n z ——总井数,口;n y ——计划关井数,口。
注:① 开井数指当月累积产油达到1吨以上(含1吨)的油井(含在册捞油井),当月累积伴生气达到1千立方米以上(含1千立方米)的油井,为采油开井;② 计划关井包括测压或钻井关井,方案或试验关井,间开井恢复压力期间关井,油田内季节性关井或压产关井;③ 油井利用率按月度统计,季度油井利用率按季度最后一个月(即3月、6月、9月、12月)的油井利用率为准,半年油井利用率以6月的油井利用率为准,年度油井利用率以12月的油井利用率为准。
(2)采油时率采油时率指开井生产井统计期内生产时间之和与日历时间之和的比值。
%100⨯-=∑∑∑r w rr D D D f ……………………(2) 24∑∑=L w T D (3)式中:f r ——采油时率,%; ∑r D ——统计期内统计井的日历天数之和,d ;∑w D——统计期内统计井的无效生产天数之和,d ; ∑L T——开井生产井累计停产时间,h 。
注: ①采油时率统计基数为所有开井生产井,其中新投产井在投产第一个月不予统计。
②开井生产井累计停产时间包括停电、洗井、停抽、维修保养、测压停产等时间。
机采井系统效率在线监测技术应用与效果评价【摘要】抽油机系统效率是衡量抽油机井能耗的重要指标,不仅反映了油井的节能与经济效益,也综合反映了油田的技术装备、管理水平。
目前采油三厂主要以人工方式测试系统效率,随着数字化应用不断深入,在常规示功图、电参数据实时采集、控制的基础上,扩展功图计产软件功能,实现抽油机系统效率在线测试具有重大意义。
【关键词】系统效率实时监测资源共享1 机采系统效率测试现状机采系统效率是指地面电能传递给井下液体,将液体举升到地面的有效做功能量与输入能量之比,即抽油机有功功率与输入功率之比:系统效率:(式3)2.3 2012年主要工作2.3.1 设备升级针对型号e5318-i井口采集器不能实现抽油机光杆示功图、抽油机电流图、电流图等数据同步采集的问题(1) e5318-i设备进行硬件升级,现场增加电流变送器,采集现场模拟量电流信号,以此生成电流图监测功能;(2)e5318-i软件升级,在采集抽油机光杆示功图时同步采集抽油机电流图,电流图采集点数同光杆示功图由200点构成;(3)标准站控驱动升级,修改sqlserver数据库的dbat2070存储表,实现抽油机井光杆示功图和电流图同步采集、存储及运行。
2.3.2 设备升级针对型号yjk-2远程监控系统的设备,电机测控单元不能实现系统效率数据测量采集、上传等问题(1)扩大电参数据的存储空间,将数据存储芯片空间由原来1k 扩充到4k,满足电流、功率与功图同步实测数据缓存;(2)提高电能计量精度,采用高精度计量芯片att7022b,同时对三相电参及对应的有功功率进行标定,实现了电机输入功率在线测试;(3)升级井口采集器、井场采集器及rtu驱动程序,完成系统效率测试数据的测量、解析处理及通讯功能,实现示功图、电流图、功率图等数据同步采集打包上传。
3 现场应用效果评价3.1 杜绝人工测试误差通过人工测试和在线监测试数据对比分析:平均输入功率误差约0.38kw,系统效率误差约1.49%,而且在线监测能够实现实时采集,杜绝了油井间歇出液量而导致人工采集误差较大的现象。
机采井系统效率影响因素及提高系统效率方法提高系统效率是一项长期、基础、综合的工作,对节约能耗和提高经济效益有很大好处。
从以上分析可以看出,提高系统效率的主要工作是加强管理(技术管理、生产管理)。
技术管理包括机杆泵的选择、地面抽汲参数的调整、检泵作业、调平衡及各种节能设施的应用;各项生产管理工作的好坏直接影响系统效率的高低。
为此,要从加强基础的管理工作做起,努力提高管理水平及系统效率。
标签:机采井;系统效率;系统效率影响抽油机的系统效率因素很多,地层压力、含水、气油比、粘度、油水界面、砂、蜡、气、等的变化都会影响抽汲参数,地面设备相应参数也随之改变(悬点载荷、电流、平衡率、电机输入功率等)。
在保证生产情况下全面优化各参数,从而提高抽油机井的系统效率。
一、系统效率系统效率包括日产液量、动液面、油压、套压和耗电量(电流、电压、有功功率)等多项参数。
在抽油机井正常工作条件下,采用电参数分析仪,测试抽油机井的有功功率等数据,进而计算出抽油机的系统效率。
目前,统计A矿共有抽油机井781口,普测井系统效率测试井数为694口,除去液面在井口的井,平均系统效率为23.9%,系统效率在15%以下的井为223口,占测试井数的35.8%,要提高A矿系统效率的整体水平,重点要提高这部分“低效井”的系统效率,使其参数合理。
二、影响因素1原油物性原油组分中,如果重质(指胶质、沥青质和蜡质)含量越高,举升液体过程中需要克服的摩擦阻力越大,电机的耗量也就越大。
在各种条件相同的情况下,这种井的系统效率也就越低。
2泵况影响泵况好的井与泵况差的井(泵况差是指泵漏失井),在耗电量上尽管有差距,但耗电量的减小不与泵漏失量成比例关系,同时由于泵况变差,油井的产液量下降动液面上升,致使产液量与举升高度之积变小,系统效率下降,有时系统效率可能降至为零。
因而泵况好的井系统效率高于泵况差的井。
3电机本身从理论上讲,将一定量的液量从井底举升到地面,所消耗的能量将会是一定的,但是,在生产中电机实际消耗的功率将会远远大于这一能量。