变差函数
- 格式:ppt
- 大小:330.00 KB
- 文档页数:45
精细变差函数分析及应用变差函数作为一个分析区域化变量随机性和结构性特征的有效工具,自引入到地质学中以来,一直受到人们的重视。
在很多领域,它甚至可以独立于地质统计学方法之外,单独供人们进行分析研究时使用。
本文将系统介绍变差函数的原理、研究方法及应用现状。
定义变差函数较为普遍的定义是:变差函数为区域化变量的增量平方的数学期望,也就是区域化变量的增量的方差。
我们将区域化变量的增量的方差的一半称之为半变差函数,但由于我们通常要用到的都是半变差函数,而不是变差函数,所以,出于方便的考虑,很多学者直接将半变差函数称之为变差函数。
首先,研究对象时区域化变量。
区域化变量是地质统计学研究的对象,它是一种在空间上具有数值的实函数(G Matheron),也就是说,它在空间的每一个点取一个确定的数值,即当由一个点移到下一个点时,函数值是变化的。
在地质、采矿领域中许多变量都可看成是区域化变量:资源储量、储层厚度、地形标高、矿石内有害组分含量、岩石破碎程度、孔隙度、渗透率、泥质含量等。
有的是二维的,有的是三维的。
区域化变量正是地质统计学研究的对象,而可以作为区域化变量的上述变量都可以利用变差函数进行研究。
其次,数学方法是增量的方差。
变差函数是在任一方向α,相距|h|的两个区域化变量值Z(x)及Z(x+h)的增量的方差(Z(x+h) -Z(x)的一阶矩和二阶矩仅依赖于点x+h和点x 之差h,即Z(x)为二阶平稳或满足内蕴假设),它是h 和α的函数,其通式为: })]()({[21)}()({21),(2h x Z x Z E h x Z x Z Var h +-=+-=αγ 从公式所示的公式我们可以看到,变差函数的实际意义是,它反映了区域化变量在某个方向上某一距离范围内的变化程度。
正因为它的这一性质,我们可以利用实验变差函数帮助我们解决实际研究应用过程中的问题。
原理在实际应用中,样品的数目总是有限的。
把由有限实验样品值构成的变差函数称之为实验变差函数,记为γ*(h)2)(1)]()([)(21)(*h x Z x Z h N h i i h N i +-=∑=γ 通过对有限实验样品分析所得的实验变差函数进行分析从而研究区域化变量的分布特征和预测某位置的变量值。
变差函数的概念与计算分析变差函数是数学分析中常见的一个概念。
它主要用于描述一个函数在一些区间上的变化情况,从而可以对函数的性质进行更加深入的分析。
本文将介绍变差函数的概念、相关定义和性质,并讨论如何计算变差函数。
一、概念:变差函数是指一个实数域上的函数,它在给定区间上的变化程度的度量。
通俗地说,变差函数可以理解为一个函数在一些区间上取值的波动程度。
如果一个函数在一个区间上的变化程度很小,那么它的变差函数就会比较小;相反,如果函数的波动较大,那么它的变差函数就会较大。
二、定义和性质:1.定义:设f(x)是定义在区间[a,b]上的一个函数,变差函数V(f,x)表示f(x)在区间[a,x]上的总体变化量。
其中,V(f,x)可以定义为:V(f,x) = sup{∑(f(x_i) - f(x_{i-1}))}其中,sup表示上确界,x_i是[a,x]上的一个子区间,∑(f(x_i) -f(x_{i-1}))表示这个子区间上f(x)的变化量的总和。
2.性质:(1)非负性:变差函数V(f,x)是非负的。
(2)可加性:对于任意的[a,c]和[c,b],有V(f,b)=V(f,c)+V(f,b)。
(3)上有界:变差函数V(f,x)在[a,b]上是有上界的。
(4)可分割性:对于边界上的两个点x_1和x_2,若x_1<x_2,则有V(f,x_2)-V(f,x_1)=V(f,[x_1,x_2])。
(5)作为测度的应用:如果一个函数的变差函数V(f,x)有界,那么该函数是有界变差函数。
三、计算分析:变差函数V(f,x)的计算是通过求解上述定义中的上确界来实现的。
换言之,我们需要找到最适合的子区间,使得其上的f(x)的变化尽可能大。
为了计算方便,我们可以选取一些特殊的区间进行计算,如等距划分、平方划分等。
1.等距划分计算变差函数:设[a,b]上的等距划分为x_0=a,x_1=a+h,...,x_n=b,其中h=(b-a)/n。
变差函数的编程名词解释在编程中,我们常常使用变差函数(Variadic Function)来解决需要对数量不定的参数进行操作的问题。
它是一种特殊的函数,能够接受任意数量的参数,并对这些参数进行处理。
一、什么是变差函数(Variadic Function)?变差函数是一种可以接受不定数量参数的函数。
它的参数个数可以是任意的,这使得程序员能够更加灵活地处理不同数量的输入。
在许多编程语言中,如C、C++、JavaScript和Python等,都支持变差函数的使用。
二、如何定义变差函数?定义变差函数的方式是在函数参数列表中使用省略符号(...)来表示参数的个数不定。
以C语言为例,函数原型可以写为:```cint sum(int count, ...);```在这个例子中,count表示参数的数量,...表示接受任意数量的参数。
三、如何在函数中处理变差函数的参数?为了在函数中处理变差函数的参数,我们需要使用特定的技术。
在C语言中,我们使用stdarg.h头文件提供的宏来实现。
具体步骤如下:1. 使用va_list声明一个变量,该变量将在函数中存储参数信息。
2. 使用va_start宏初始化该变量。
3. 使用va_arg宏依次获取参数的值。
需要注意的是,这些参数的类型必须是在函数声明中指定的类型。
4. 使用va_end宏结束对参数的处理。
以下是一个简单的例子,演示了如何使用变差函数计算不定数量整数的和:```c#include <stdarg.h>int sum(int count, ...) {va_list args;int total = 0;va_start(args, count);for (int i = 0; i < count; i++) {total += va_arg(args, int);}va_end(args);return total;}```通过这个例子,我们可以看到变差函数的灵活性,它允许我们在不同的调用中传递不同数量的参数,并根据需求进行处理和计算。
1变差函数(Variogram)基础变差函数是用来描述油藏属性空间变化的一种方法,可以定量的描述区域化变量的空间相关项。
变差函数的原理是空间上相近的样品之间的相关性强,而相距较远的样品之间的相关性较小,当超过一个最小相关性时,距离的影响就不大了。
这种空间上的相关性是各向异性的,因此需要从不同方向上描述某个属性的变差函数。
通过从输入数据中得到变差函数,在属性模型中利用变差函数建模,从而可以在最终模型中体现出实验数据的空间相关性。
1.1变差函数原理与数据分析1.1.1变差函数的原理变差函数图即变差函数与滞后距(空间的距离)的关系图。
计算方法是:对一组滞后距相近的数据,计算这组数据的变差,最后做出不同滞后距的变差曲线。
Sample variogram从一组实验样本数据中计算结果。
Variogram model根据理论变差函数模型拟合的结果。
Transition曲线类型。
常用的变差函数类型有指数型、球状模型、高斯模型。
Plateau在变差函数曲线上,随着横坐标距离的增加,纵坐标变差值不再增加,即为Plateau。
Range变程:当曲线达到高台水平段(Plateau)时的距离。
变程范围之内,数据具有相关性,变程范围之外,数据之间互不相关,即变程之外的观测值不对估计结果产生影响。
Sill基台值:当横坐标大于变程时的纵坐标变差值。
描述了两个不相干的样本间的差异性。
当数据的基台值为1或者比1偏差0.3时,表明数据间有空间趋势性。
Nugget块金值:横坐标为0处的变差值,描述了数据在微观上的变异性。
由于在垂向上数据间的距离较小,所以块金值可以从这些垂向数据中精确的得到。
1.1.2变差函数的数据分析在计算数据样本的变差时,程序会根据指定的距离和方向搜索数据。
搜索半径除以步长间隔即为步长的数目。
由于数据点在空间上的分布具有或多或少的随机性,所以在搜索方向和距离上允许存在一定的容差(tolerance)。
1.1.2.1变差函数的方向由于各向异性,变差函数需要从不同的方向上进行计算。
变差函数的概念与计算谷跃民编写在地质统计学随机模拟工作中,统计归纳区域变量的分布和变差函数,是用好随机模拟技术最关键的两项工作,其中区域变量分布统计比较容易理解,变差函数计算过程相对复杂,影响了解释人员对它的直观理解,为了使解释生产人员快速了解变差函数,准确使用相关工具软件,并能依据现有的资料和对工区地质情况的先验信息,统计归纳出合乎实际的变差函数,作者在学习相关知识的基础上,对学习材料进行了初步总结,试图用通俗的方式,对变差函数的概念和统计归纳方法与大家共同进行探讨。
一、变差函数的基本概念在地质统计学中,变差函数是最基本与最重要的模拟工具,它用于描述数据值的空间互相关,数据点在空间上相距越远,相关性就变得越小,变差函数就是模拟这种现象的数学函数,通常用一张图来展示,用X轴表示滞后距离,用Y轴表示方差,可以从区域变量抽取的样本值中计算归纳出来,见图1,它通过变程来反映变量的影响范围,V(h)为变差函数值,Lag(h)为滞后距。
变差函数可以用四个参数来描述:1、变差函数类型:决定了随着滞图1 变差函数图示后距的增加变差(方差)变化的快慢,在JASON STATMOD MC中,使用GAUSSIAN和EXPONENTIAL曲线类型;2、变程a:指的是在超过这个距离后,数据点之间就不再有明显的相关性,也称作影响距离;3、块金效应C0:表示在距离为0时的方差值,用来表示相距很近的两点的样品变化情况;4、先验方差:Sill=C+C0也叫基台值,它反映变量的变化幅度。
二、变差函数的估算与拟合1、变差函数的计算公式与估算变差函数的定义是:区域化变量Z(x)和Z(x+h)两点之差的方差之半,定义为Z(x)的变差函数,数学定义如下:h为滞后距。
如果有了区域化变量Z(x)的一部分采样,就可以估算该区域化变量的Z(x)变差函数,具体计算公式如下:i为样本序号。
2、变差函数的估算示例为了能更直观、更深刻地体会它的具体意义,下面举两个计算实例,各具体计算两个变差函数值,通过具体计算过程,就会知道什么样的资料可以满足变差函数估算的要求,具体在资料条件会出现怎样的异常,这两个实例分别为两种区域变量类型,一个是垂向区域变量类型,可以理解为井曲线等,一个是平面区域变量类型,可以理解为孔隙度平面变化等。
有界变差函数空间
一、引言
在实分析中,有界变差函数空间是一个非常重要的概念。
它是由有界
变差函数构成的空间,具有很多重要的性质和应用。
本文将详细介绍
有界变差函数空间的定义、性质、范数等相关内容。
二、定义
1. 有界变差函数
有界变差函数指的是定义在实数轴上的一类函数,具有以下两个特征:(1)函数值在任意点都存在;
(2)函数在每个区间上都是有界变差的,即其总变差存在且有限。
2. 有界变差函数空间
有界变差函数空间BV指的是所有实数轴上的有界变差函数构成的集合。
其中,BV[a,b]表示[a,b]区间上所有有界变差函数构成的集合。
三、性质
1. BV是一个线性空间。
2. BV中每个元素都可以表示为一个连续递增或递减的分段线性函数与一个跳跃式函数之和。
3. BV中每个元素都可以表示为正部分与负部分之和。
4. BV中每个元素都可以表示为单调递增或递减的连续可微分函数与一个跳跃式函数之和。
四、范数
BV空间中常用的范数是全变差范数,定义为:
||f||_BV = |f(a)| + TV(f),其中a为定义域上的任意一点,TV(f)表示函数f在定义域上的总变差。
五、应用
1. BV空间在偏微分方程中有广泛的应用。
2. BV空间在图像处理中也有重要的应用。
3. BV空间是测度论中测度与积分理论研究的一个重要对象。
六、结论
有界变差函数空间BV是一个非常重要的概念,具有很多重要的性质和应用。
本文详细介绍了BV空间的定义、性质、范数以及应用。
对于深入理解实分析和偏微分方程等领域有很大帮助。