单调函数与有界变差函数
- 格式:ppt
- 大小:447.50 KB
- 文档页数:16
实变函数试题库及参考答案 本科一、题1.设,A B 为集合,则()\A B B =A B (用描述集合间关系的符号填写)2.设A 是B 的子集,则A ≤B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是闭集 4.有限个开集的交是开集 5.设1E 、2E 是可测集,则()12m E E ≤12mE mE +(用描述集合间关系的符号填写)6.设nE ⊂是可数集,则*m E =07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是可测集,则称()f x 在E 上可测8.可测函数列的上极限也是可测函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒()()f x g x + 10.设()f x 在E 上L 可积,则()f x 在E 上可积 11.设,A B 为集合,则()\B A A ⊃A (用描述集合间关系的符号填写)12.设{}211,2,A k k =-=,则A =a (其中a 表示自然数集N 的基数)13.设nE ⊂,如果E 中没有不属于E ,则称E 是闭集14.任意个开集的并是开集15.设1E 、2E 是可测集,且12E E ⊂,则1mE ≤2mE 16.设E 中只有孤立点,则*m E =017.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤<⎣⎦是可测,则称()f x 在E 上可测18.可测函数列的下极限也是可测函数19.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x ⇒()()f x g x 20.设()n x ϕ是E 上的单调增收敛于()f x 的非负简单函数列,则()Ef x dx =⎰()lim nEn x dx ϕ→∞⎰21.设,A B 为集合,则()\A B B ⊃B22.设A 为有理数集,则A =a (其中a 表示自然数集N 的基数) 23.设nE ⊂,如果E 中的每个点都是内点,则称E 是开集24.有限个闭集的交是闭集25.设nE ⊂,则*m E ≥026.设E 是n中的区间,则*m E =E 的体积27.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≤⎣⎦是可测集,则称()f x 在E 上可测28.可测函数列的极限也是可测函数29.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()n f x ⇒()g x30.设()n f x 是E 上的非负可测函数列,且单调增收敛于()f x ,由勒维定理,有()Ef x dx =⎰()lim n En f x dx →∞⎰31.设,A B 为集合,则()\B A B A =A B32.设A 为无理数集,则A =c (其中c 表示自然数集[]0,1的基数) 33.设nE ⊂,如果E 中没有不是内点的点,则称E 是开集34.任意个闭集的交是闭集 35.设nE ⊂,称E 是可测集,如果nT ∀⊂,()**m T m TE =+()*c m T E36.设E 是外测度为零的集合,且F E ⊂,则*m F =037.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x a f xb ⎡⎤≤<⎣⎦是可测,(a b ≤)则称()f x 在E 上可测38.可测函数列的上确界也是可测函数39.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()()n n f x g x ⇒()()f x g x40.设()()n f x f x ⇒,那么由黎斯定理,(){}n f x 有子列()k n f x ,使()()k n f x f x →..a e 于E 41.设,A B 为两个集合,则__c A B AB -.(等于)42.设nE R ⊂,如果E 满足E E '⊆(其中E '表示E 的导集),则E 是闭.43.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i)(a,b)G ⊆ (ii),a G b G ∉∉ 44.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 答案:≥ 45.设12,E E 为可测集, 2mE <+∞,则1212(\)__m E E mE mE -. 答案:≥ 46.设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E x f x a >是可测集E 上的可测函数.47.设0x 是E (R ⊆)的内点,则*__0m E . 答案>48.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ⇒∈,则由____黎斯__定理可知得,存在{}()n f x 的子列{}()kn fx ,使得.()()()k a en f x f x x E →∈.49.设()f x 为可测集E (nR ⊆)上的可测函数,则()f x 在E 上的L 积分值不一定存在且|()|f x 在E 上不一定L 可积. 50.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有界变差函数. 51.设,A B 为集合,则___(\)AB B A A 答案=52.设nE R ⊂,如果E 满足0E E =(其中0E 表示E 的内部),则E 是开集53.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ⊆且,a G b G ∉∉,则(,)a b 必为G 的构成区间 54.设{|2,}A x x n n ==为自然数,则A 的基数=a (其中a 表示自然数集N 的基数) 55.设,A B 为可测集,B A ⊆且mB <+∞,则__(\)mA mB m A B - 答案 =56.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是可测集 57.若()E R ⊆是可数集,则__0mE 答案=58.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()()()a en f x f x x E →∈,则()()n f x f x ⇒ x E ∈不一定成立 59. 设()f x 为可测集()nE R ⊆上的非负可测函数,则()f x 在E 上的L 积分值一定存在60.若()f x 是[,]a b 上的有界变差函数,则()f x 必可表示成两个递增函数的差(或递减函数的差) 多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( AB )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则(ABD )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则(ABC )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数5.设nE ⊂,如果E 至少有一个内点,则( BD )A *m E 可以等于0B *0m E >C E 可能是可数集DE 不可能是可数集6.设nE ⊂是无限集,则( AB )A E 含有可数子集B E 不一定有聚点C E 含有内点DE 是无界的7.设()f x 是E 上的可测函数,则( BD )A 函数()f x 在E 上可测B ()f x 是非负简单函数列的极限C ()f x 是有界的D ()f x 在E 的可测子集上可测8.设()f x 是[],a b 上的连续函数,则( ABD )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积,且()()()()[],ba ab R f x dx L f x dx =⎰⎰C ()f x 在[],a b 上L 可积,但()()()()[],baa b R f x dx L f x dx ≠⎰⎰D ()f x 在[],a b 上有界9.设()D x 是狄利克莱函数,即()[][]10,100,1x D x x ⎧⎪=⎨⎪⎩为中有理数为中无理数,则( BCD )A ()D x 几乎处处等于1B ()D x 几乎处处等于0C ()D x 是非负可测函数 D ()D x 是L 可积函数10.设nE ⊂,*0m E =,则( ABD )A E 是可测集B E 的任何子集是可测集C E 是可数集DE 不一定是可数集11.设nE ⊂,()10E cx Ex x Eχ∈⎧=⎨∈⎩,则( AB ) A 当E 是可测集时,()E x χ是可测函数 B 当()E x χ是可测函数时,E 是可测集C 当E 是不可测集时,()E x χ可以是可测函数D 当()E x χ是不是可测函数时,E 不一定是可测集12.设()f x 是(),a b 上的连续函数,则(BD )A ()f x 在(),a b 上有界B ()f x 在(),a b 上可测C ()f x 在(),a b 上L 可积D ()f x 在(),a b 上不一定L 可积13.设()f x 在可测集E 上L 可积,则(AC )A ()f x +,()f x -都是E 上的非负可积函数B ()f x +和()f x -有一个在E 上的非负可积C ()f x 在E 上L 可积D ()f x 在E 上不一定L 可积14.设nE ⊂是可测集,则( AD )A c E 是可测集B mE <+∞C E 的子集是可测集DE 的可数子集是可测集15.设()()n f x f x ⇒,则( CD )A ()n f x 几乎处处收敛于()f xB ()n f x 一致收敛于()f xC ()n f x 有子列()n f x ,使()()n f x f x →..a e 于ED ()n f x 可能几乎处处收敛于()f x16.设()f x 是[],a b 上有界函数,且L 可积,则(BD )A ()f x 在[],a b 上黎曼可积B ()f x 在[],a b 上可测C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上不一定连续17. 设{[0,1]}E =中的无理点,则(CD)(A )E 是可数集 (B )E 是闭集 (C )E 中的每个点均是聚点 (D )0mE > 18. 若E (R ⊆)至少有一个内点,则(BD )(A )*m E 可以等于0 (B )*0m E = (C )E 可能是可数集 (D )E 不可能是可数集 19.设[,]E a b ⊆是可测集,则E 的特征函数()E x χ是(ABC ) (A )[,]a b 上的符号函数 (C )E 上的连续函数(B )[,]a b 上的可测函数 (D )[,]a b 上的连续函数 20. 设()f x 是[,]a b 上的单调函数,则(ACD )(A )()f x 是[,]a b 上的有界变差函数 (B )()f x 是[,]a b 上的绝对连续函数 (C )()f x 在[,]a b 上几乎处处收敛 (D )()f x 在[,]a b 上几乎处处可导 21.设{[0,1]}E =中的有理点,则( AC )(A )E 是可数集 (B )E 是闭集(C )0mE = (D )E 中的每一点均为E 的内点 22.若()E R ⊆的外测度为0,则( AB )(A )E 是可测集 (B )0mE =(C )E 一定是可数集 (D )E 一定不是可数集23.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()n f x f x x E ⇒∈,则下列哪些结果不一定成立( ABCD )(A )()Ef x dx ⎰存在 (B )()f x 在E 上L -可积(C ).()()()a en f x f x x E →∈ (D )lim ()()n EEn f x dx f x dx →∞=⎰⎰24.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( AD ) (A )()()f x L E +∈与()()f x L E -∈至少有一个成立 (B )()()f x L E +∈且()()f x L E -∈ (C )|()|f x 在E 上也有L -积分值 (D )|()|()f x L E ∈三、单项选择1.下列集合关系成立的是( A )A ()\B A A =∅ B ()\A B A =∅C ()\A B B A = D ()\B A A B =2.若nR E ⊂是开集,则( B )A E E '⊂B 0E E =C E E =DE E '=4.设(){}n f x 是E 上一列非负可测函数,则( B )A ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰B ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰C ()()lim lim n n E En n f x dx f x dx →∞→∞≤⎰⎰D ()()lim lim n n EE n n f x dx f x →∞→∞≤⎰⎰5.下列集合关系成立的是( A )A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭B cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭C cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ D ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭6.若n R E ⊂是闭集,则( C )A E E '=B E E '⊂C E E '⊂D 0E E =7.设E 为无理数集,则( C )A E 为闭集B E 是不可测集C mE =+∞D 0mE =9.下列集合关系成立的是(B )A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭B cc A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭C ccA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ D cc c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭ 10.设n R E ⊂,则( A )A E E ⊃B E E '⊂C E E '⊂DE E =11.设P 为康托集,则( B )A P 是可数集B 0mP =C P 是不可数集D P 是开集 13.下列集合关系成立的是( A )A 若AB ⊂则c c B A ⊂ B 若A B ⊂则c c A B ⊂C 若A B ⊂则AB B = D 若A B ⊂则A B B =14.设nR E ⊂,则( A )A ()E E = B 0E E ⊃ C E E '⊂ D E E '⊂15.设(){},001E x x =≤≤,则( B )A 1mE =B 0mE =C E 是2R 中闭集DE 是2R 中完备集16.设()f x ,()g x 是E 上的可测函数,则( B )A ()()E x f x g x ⎡⎤≥⎣⎦不一定是可测集B ()()E x f x g x ⎡⎤≠⎣⎦是可测集C ()()E x f x g x ⎡⎤≤⎣⎦是不可测集D ()()E x f x g x ⎡⎤=⎣⎦不一定是可测集17.下列集合关系成立的是(A )(A )(\)A B B A B = (B )(\)A B B A =(C )(\)B A A A ⊆ (D )\B A A ⊆18. 若()nE R ⊆是开集,则 ( B )(A )E 的导集E ⊆ (B )E 的开核E = (C )E E = (D )E 的导集E =19. 设P 的康托集,则(C)(A )P 为可数集 (B )P 为开集 (C )0mP = (D )1mP =20、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则 ( D )(A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数 (C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数 21.下列集合关系成立的是( A ) (A )()()()AB C A B A C = (B )(\)A B A =∅(C )(\)B A A =∅ (D )A B A B ⊆22. 若()nE R ⊆是闭集,则 ( B )(A )0E E = (B )E E = (C )E E '⊆ (D )E E '= 23. 设Q 的有理数集,则( C )(A )0mQ > (B )Q 为闭集 (C )0mQ = (D )Q 为不可测集24.设E 是nR 中的可测集,()f x 为E 上的可测函数,若()0Ef x dx =⎰,则 ( A )(A )在E 上,()f x 不一定恒为零 (B )在E 上,()0f x ≥ (C )在E 上,()0f x ≡ (D )在E 上,()0f x ≠ 四、判断题1. 可数个闭集的并是闭集. ( × )2. 可数个可测集的并是可测集. ( √ )3. 相等的集合是对等的. ( √ )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( √ )5. 可数个F σ集的交是F σ集. ( × )6. 可数个可测函数的和使可测函数. ( √ )7. 对等的集合是相等的. (× )8. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x =的x 全体是零测集. ( × ) 9. 可数个G σ集的并是G σ集. ( √ )10. 零测集上的函数是可测函数. ( √ )11. 对等的集合不一定相等. ( √ ) 12. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是零测集.( √ ) 13. 可数个开集的交是开集 ( × ) 14. 可测函数不一定是连续函数. ( √ ) 15. 对等的集合有相同的基数. ( √ )16. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体的测度大于0 ( × ) 17. 可列个闭集的并集仍为闭集 ( × ) 18. 任何无限集均含有一个可列子集 ( √ ) 19. 设E 为可测集,则一定存在G σ集G ,使E G ⊆,且()\0m G E =. ( √ ) 20. 设E 为零测集,()f x 为E 上的实函数,则()f x 不一定是E 上的可测函数( × ) 21. 设()f x 为可测集E 上的非负可测函数,则()()f x L E ∈ ( × ) 22. 可列个开集的交集仍为开集 (× ) 23. 任何无限集均是可列集 ( × ) 24. 设E 为可测集,则一定存在F σ集F ,使F E ⊆,且()\0m E F =. ( √ ) 25. 设E 为零测集,则()f x 为E 上的可测函数的充要条件是:∀实数a 都有()E x f x a ⎡≥⎤⎣⎦是可测集( √ )26. 设()f x 为可测集E 上的可测函数,则()Ef x dx ⎰一定存在. ( × )五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A的基数大于A 的基数.2. 简述点集的边界点,聚点和内点的关系.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点. 3. 简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限 4. [],a b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 5. 简述集合对等的基本性质.答:A A ;若A B ,则B A ;若A B ,且B C ,则A C . 6. 简述点集的内点、聚点、边界点和孤立点之间关系.答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成. 7. 可测集与开集、G σ集有什么关系?答:设E 是可测集,则0ε∀>,∃开集G ,使G E ⊃,使()\m G E ε<,或∃ G σ集G ,使G E ⊃,且()\0m G E =.8. [],a b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数. 9. 简述证明集合对等的伯恩斯坦定理. 答:若AB B *⊂,又B A A *⊂,则AB10. 简述1R 中开集的结构.答: 设G 为1R 中开集,则G 可表示成1R 中至多可数个互不相交的开区间的并. 11. 可测集与闭集、F σ集有什么关系?答:设E 是可测集,则0ε∀>,∃闭集F E ⊂,使()\m E F ε<或∃ F σ集F E ⊂,使()\0m E F =.12. 为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微.13. 简述连续集的基数大于可数集的基数的理由.答:连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数. 14. 简述nR 中开集的结构.答:nR 中开集可表示成可数个互不相交的半开半闭区间的并 15. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系? 答:设()(),n f x f x 是可测集E 上的一列可测函数,那当mE <+∞时,()(),.n f x f x a e →于E ,必有()()n f x f x ⇒.反之不成立,但不论mE <+∞还是mE =+∞,(){}n f x 存在子列(){}k n f x ,使()(),.k n f x f x a e →于E .当mE <+∞时,()(),.n f x f x a e →于E ,由Egoroff 定理可得()n f x 近一致收敛于()f x ,反之,无需条件mE <+∞,结论也成立.16. 为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微.17. 简述无穷多个开集的交集是否必为开集? 答:不一定,如[]1111,11,1n n n +∞=⎛⎫---+=- ⎪⎝⎭18. 可测集E 上的可测函数与简单函数有什么关系?答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式. 19. [],a b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差. 20. 简述无穷多个闭集的并集是否必为闭集?答:不一定 如()1111,11,1n n n +∞=⎡⎤---+=-⎢⎥⎣⎦ 21. 可测集E 上的可测函数与连续函数有什么关系?答:E 上连续函数必为可测函数但E 上的可测函数不一定时连续函数,E 上可测函数在E 上是“基本上”连续的函数 22. [],a b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰.3. 设()[]2sin 0,1\xx P f x x x P ∈⎧=⎨∈⎩,P 为康托集,求()[]0,1f x dx ⎰.解:因为0mP =,所以()2,.f x x a e =于[]0,1于是()[][]20,10,1f x dx x dx =⎰⎰而2x 在[]0,1上连续,所以[]()31221000,11|33x x dx R x dx ===⎰⎰ 因此()[]0,113f x dx =⎰.4. 设()()[]22sin ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222sin 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰5. 设()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰. 解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而cos x 在0,2π⎡⎤⎢⎥⎣⎦上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰6. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰7. 设()[]3sin 0,1\xx P f x xx P⎧∈⎪=⎨∈⎪⎩,P 为康托集,求()[]0,1f x dx ⎰.解:因为0mP =,所以(),.f x x a e =于[]0,1 于是()[][]0,10,1f x dx xdx =⎰⎰而x 在[]0,1上连续,所以[]()2121000,11|22x xdx R x dx ===⎰⎰ 因此()[]0,112f x dx =⎰. 8. 求()()0,ln limcos xn n x n e xdx n -→∞+⎰.解:令()()()()0,ln cos xn n x n f x x e x nχ-+= 显然()n f x 在()0,+∞上可测,且()()()()0,0,ln cos xn n x n e xdx f x dx n -+∞+=⎰⎰ 因为()()()()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n-++≤≤∀∈+∞=不难验证()()ln n x n g x n+=,当n 足够大时,是单调递减非负函数,且 ()lim 0n n g x →∞=,所以()()()()()()0,0,0,ln limlim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==⎰⎰⎰()0,00dx +∞==⎰由勒贝格控制收敛定理()()0,lim0n n f x dx →∞+∞=⎰故()()0,ln lim cos 0xn n x n e xdx n -→∞+=⎰. 9. 设()[][]101001x D x x ⎧⎪=⎨⎪⎩为,上的有理点为,上的无理点,求()[]01D x dx ⎰,.证明 记1E 是[]0,1中有理数集,2E 是[]0,1中无理数集,则[]12120,1,E E E E ==∅,120,1mE mE ==,且()1210E E D x χχ=+,所以()[]120,1100D x dx mE mE=+=⎰.10 求()0ln limcos xn x n e xdx n+∞-→∞+⎰. 证明 易知()ln limcos 0xn x n e x n-→∞+=对任意0,1x n ≥≥,()()ln ln cos x x n x n e x n n-++≤设()ln ()x y f y y+=,0y >,则()2ln ()yx y x yf y y -++'=,当3y ≥时,()1ln yx y x y<<++,()0f y '<. 则()ln ()x n f n n+=是单调减函数且非负(3n ≥);又()ln 1limlim 0n n x n n x n→∞→∞+==+,由Levi 单调收敛定理得()()000ln ln lim lim 00n n x n x n dx dx dx n n +∞+∞+∞→∞→∞++===⎰⎰⎰,即()ln ()x n L E n+∈,再由Lebsgue 控制收敛定理得()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===⎰⎰⎰11. 设()[]230,1xx P f x xx P⎧∈⎪=⎨∈-⎪⎩,其中P 为康托集,求()[]01f x dx ⎰,.解:因为P 为康托集,故0mP =,[]()0,1\1m P = 所以()[]320,1P P f x x x χχ-=+ 所以()[][]()2330,10,1f x dx x mP x m P x =+-=⎰12. 求()[]22,0,11n nxf x E n x ==+,求()lim n n Ef x dx →∞⎰.解:易知:[]()22lim00,11n nxx n x →∞=∈+令()()2221,1n nx f x g x n x x ==+, 则()()()22232222222221110111n nx n x nx n x nx g x f x nx nx x n x x x n x n x+-+--=-==≥+++ 所以()()[]()00,1,1n f x g x x n ≤≤∈≥ 又因为()g x 在[]0,1上Lebesgue 可积, 所以由控制收敛定理,得 22lim 001n E Enxdx dx n x →∞==+⎰⎰七、证明题1.证明集合等式:(\)A B B A B =证明(\)()c A B B A B B =()()()c c A B A B B A B B B A B ===2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m E F mE mF mF ===+=+,故1mF =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰6.证明集合等式:\(\)A A B A B =证明 \(\)()(())(cc c c c cA AB A AB A A B AA B=== ()()c AA AB A B ==7.设12,A A 是[0,1]的可测子集,且121mA mA +>,则12()0m A A >证明 因为12[0,1],[0,1]A A ⊂⊂,所以12[0,1]A A ⊂,于是12()[0,1]1m A A m ≤=另一方面,121122[\()]A A A A A A =,所以()12112211221122()[\()][\()]()m A A m A A A A m A A A mA mA m A A mA ==+=-+ 于是1212()()0m AAmA m A m AA=+->8.设()f x 是定义在可测集nE R ⊂上的实函数,n E 为E 的可测子集(1,2,n =),且1n n E E ∞==,则()f x 在E 上可测的充要条件是()f x 在每个n E 上可测 证明 对任何实数a ,因为11[|()][|()]([|()])n nn n E x f x a E x f x a E E x f x a ∞∞==>=>=>所以()f x 在E 上可测的充要条件是对每个1,2,n =,()f x 在每个n E 上可测9.设()f x 是E 上的可测函数,则对任何常数0a >,有()[|()]af x EmE x f x a ee dx -≥≤⎰证明 因为()f x 在E 上可测,所以()f x e 是非负可测函数,于是由非负可测函数积分性质,()()[|()][|()]a f x f x E x f x a E x f x a Ee dx e dx e dx ≥≥≤≤⎰⎰⎰而[|()][|()]a a E x f x a e dx e mE x f x a ≥=⋅≥⎰,所以 ()[|()]af x EmE x f x a ee dx -≥≤⎰10.设()f x 是E 上的可积函数,{}n E 为E 的一列可测子集,mE <+∞,如果lim n n mE mE →∞= 则lim()()nE En f x dx f x dx →∞=⎰⎰证明 因()f x 在E 上L -可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|Af x dx ε<⎰,由于lim n n mE mE →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是|()()||()|nnEE E E f x dx f x dx f x dx ε--=<⎰⎰⎰,即 lim()()nE En f x dx f x dx →∞=⎰⎰11.证明集合等式:()\(\)(\)A B C A C B C =证明 ()\()()()(\)(cccAB C A B C AC BC A C B C=== 12.设nE R ⊂是零测集,则E 的任何子集F 是可测集,且0mF =证明 设F E ⊂,*0m E =,由外测度的单调性和非负性,*00m F mE ≤≤=,所以*0m F =,于是由卡氏条件易知F 是可测集13.设(),(),(),(n n f x g x f x g x 是E 上几乎处处有限的可测函数,且()()n f x f x ⇒,()()n g x g x ⇒,则()()()()n n f x g x f x g x +⇒+ .证明 对任何正数0σ>,由于|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+- 所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥ [|()()|][|()()|]22n n E x f x f x E x g x g x σσ⊂-≥-≥于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥ [|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞故()()()()n n f x g x f x g x +⇒+ 14.设(),()f x g x 是E 上L -可积函数,则22()()f x g x +在E 上也是L -可积的证明 因(),()f x g x 是E 上L -可积,所以|()|,|()|f x g x 在E 上L -可积,从而 |()||()|f x g x +L -可积,又222()()(|()||()|)|()||()|f x g x f x g x f x g x +≤+=+ 故22()()f x g x +在E 上L -可积15.设()f x 是可测集E 上的非负可测函数,如果()0Ef x dx =⎰,则()0.f x a e =于E证明 反证,令[|()0]A E x f x =>,则由()f x 的可测性知,A 是可测集.下证0mA =,若不然,则0mA >由于11[|()0][|()]n A E x f x E x f x n ∞==>=≥,所以存在1N ≥,使1[|()]0mE x f x d N≥=> 于是11[|()][|()]111()()[|()]0EE x f x E x f x NNd f x dx f x dx dx mE x f x N N N N ≥≥≥≥=≥=>⎰⎰⎰因此()0Ef x dx >⎰,矛盾,故()0.f x a e =于E16.证明等式:\()(\)(\)A B C A B A C =证明 \()()()()()(\)(cc cc c A BC A BC A BC A B A C A B A C==== 17.设nE R ⊂是有界集,则*m E <+∞.证明 因为E 是有界集,所以存在开区间I ,使E I ⊂由外测度的单调性,**m E m I ≤,而*||m I I =<+∞(其中||I 表示区间I 的体积),所以*m E <+∞18.1R 上的实值连续函数()f x 是可测函数证明 因为()f x 连续,所以对任何实数a ,{|()}x f x a >是开集,而开集为可测集,因此()f x 是可测函数19.设mE <+∞,函数()f x 在E 上有界可测,则()f x 在E 上L -可积,从而[,]a b 上的连续函数是L -可积的证明 因为()f x 在E 上有界可测,所以存在0M >,使|()|f x M <,x E ∈,|()|f x 是非负可测函数,由非负可测函数的积分单调性,|()|E E f x dx Mdx M mE <=⋅<+∞⎰⎰故|()|f x 在E 上L -可积,从而()f x 在E 上L -可积因为[,]a b 上的连续函数是有界可测函数,所以L -可积的20.设()n f x (1,2,n =)是E 上的L -可积函数,如果lim |()|0n n E n f x dx →∞=⎰,则()0n f x ⇒证明 对任何常数0σ>,[|()|][|()|]|()|n n n E x f x mE x f x f x dx σσσ≥⋅≥≤⎰ 所以 [|()|]1[|()|]|()|n n n E x f x mE x f x f x dx σσσ≥≥≤⎰ 1|()|0()n E f x dx n σ≤→→∞⎰ 因此 ()0n f x ⇒21. 证明集合等式 :()()()\\\AB C A C B C =. 证明 ()()()()()()\\\c c c AB C A B C A C BC A C B C === 22. 设[]{}00,1E =中的有理点,则0E 为可测集且00mE =. 证明 因为0E 为可数集,记为{}012,,,n E r r r =,0ε∀>,取()11,1,2,22n n n n n I r r n εε++⎛⎫=--= ⎪⎝⎭ 显然 01n n E I +∞=⊂,所以0011102n n n n n n E I m E I εε+∞+∞+∞*===⊂≤≤==∑∑,让0ε→,得00m E *=.n T R ∀∈,由于()()00c T TE T E = 所以()()00c m T m T E m T E ***≤+.又00,0c T E T m E *⊆=,所以()()()000c c m T m TE m T E m T E ****≥=+. 故()()00c m T m TE m T E ***=+ 故0E 为可测集,且00mE =23. 证明:1R 上的实值连续函数()f x 必为1R 上的可测函数 证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的连续函数,故()f x 是[],a b 上的连续函数,记[],F a b =,由()f x 在F 上连续,则(),M m m M ∃<,使()m f x M ≤≤,则显然易证,()1,R F f αα∀∈≥是闭集,即()f x 为[],a b 上的可测函数,由,a b 的任意性可知,()f x 是1R 上的可测函数. 24. 设()()f x L E ∈,{}n E 为E 的一列可测子集,mE <+∞ ,如果lim n n mE mE →∞=,则()()l i m n n E Ef x dx f x dx →∞=⎰⎰. 证明 因()f x 在E 上L 可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|A f x dx ε<⎰,由于l i m n n m E m E →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是\|()()||()|nn E E E E f x dx f x dx f x dx ε-=<⎰⎰⎰,即 lim ()()n E En f x dx f x dx →∞=⎰⎰ 25. 证明集合等式 :()()()\\\A BC A B A C =.证明 ()()()()()()()\\\c c c c cA B C AB C A B C A B A C A B A C ==== 26. 设1E R ⊆,且0m E *=,则E 为可测集. 证明 n T R ∀∈,由于()()n c T R T TE T E ∀∈= 所以()()c m T m T E m T E ***≤+.又,0c T E T m E *⊆=,所以()()()c c m T m TE m T E m T E ****≥=+.故()()c m T m T E m T E ***=+所以E 为可测集27. 证明:1R 上的单调函数()f x 必为可测函数. 证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的单调函数,不妨设()f x 为单调增函数,故()f x 是[],a b 上的单调增函数,即()()121212,,,x x E x x f x f x ∀∈<≤,则1R α∀∈,有1) 当()sup x E f x α∈≤时,();E xf x α⎡>⎤=∅⎣⎦2) 当()inf x E f x α∈>时,();E x f x E α⎡>⎤=⎣⎦3) 当()()inf sup x E x E f x f x α∈∈≤<时,必有10x E R ∈,使()()000,f x f x αα+>≤或()()000,0f x f x αα+≥-<.由()f x 的单调增知,()0(),E xf x E x α⎡>⎤=+∞⎣⎦或[)0,E x +∞. 在所有情况下,()E x f x α⎡>⎤⎣⎦都可测.即()f x 是[],a b 上的可测函数.由由,a b 的任意性可知,()f x 是1R 上的可测函数. 28. 设()f x 为可测集n E R ⊆上的可测函数,则()()f x L E ∈的充要条件()()f x L E ∈.证明 必要性 若()()f x L E ∈,因为()()()f x f x f x +-=+,且()()f x L E ∈所以()(),E Ef x dx f x dx +-⎰⎰中至少有一个是有限值, 故()()()E E E f x dx f x dx f x dx +-=+⎰⎰⎰即()()f x L E ∈充分性 若()()f x L E ∈因为()()()f x fx f x +-=-,且()()f x L E ∈ 所以()(),EE f x dx f x dx +-⎰⎰中至少有一个是有限值,故()()()E E E f x dx f x dx f x dx +-=-⎰⎰⎰, 即()()f x L E ∈.。
实变函数试题库及参考答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】实变函数试题库及参考答案(1) 本科一、填空题1.设,A B 为集合,则()\A B B A B (用描述集合间关系的符号填写) 2.设A 是B 的子集,则A B (用描述集合间关系的符号填写) 3.如果E 中聚点都属于E ,则称E 是 4.有限个开集的交是 5.设1E 、2E 是可测集,则()12m E E 12mE mE +(用描述集合间关系的符号填写) 6.设nE ⊂是可数集,则*m E 07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是 ,则称()f x 在E 上可测8.可测函数列的上极限也是 函数9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒ 10.设()f x 在E 上L 可积,则()f x 在E 上 二、选择题1.下列集合关系成立的是( ) 2.若n R E ⊂是开集,则( )3.设(){}n f x 是E 上一列非负可测函数,则( ) 三、多项选择题(每题至少有两个以上的正确答案) 1.设[]{}0,1E =中无理数,则( )A E 是不可数集B E 是闭集C E 中没有内点D 1mE =2.设nE ⊂是无限集,则( )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)3.设()f x 是E 上的可测函数,则( )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限 4.设()f x 是[],a b 上的有界函数,且黎曼可积,则( )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数 四、判断题1. 可数个闭集的并是闭集. ( )2. 可数个可测集的并是可测集. ( )3. 相等的集合是对等的. ( )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( ) 五、定义题1. 简述无限集中有基数最小的集合,但没有最大的集合.2. 简述点集的边界点,聚点和内点的关系.3. 简单函数、可测函数与连续函数有什么关系?4. [],a b 上单调函数与有界变差函数有什么关系? 六、计算题1. 设()[]230,1\x x E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.七、证明题1.证明集合等式:(\)A B B A B =2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE = 3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则实变函数试题库及参考答案(1) 本科一、填空题1.=2.≤3.闭集4.开集5.≤6.=7.可测集8.可测9.()()f x g x + 10.可积 二、单选题 ABB 三、多选题ACD AB ABD ABC 四、判断题 × √√√ 五、定义题1.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A 的基数大于A 的基数.2.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3.答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4.答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差. 六、解答题1.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系, 因此()[]0,114f x dx =⎰. 2.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰七、证明题 1.证明2.证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而c F 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m EF mE mF mF ===+=+,故1mF =3.证明 设{}n r 为全体有理数所成之集,则因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以5.证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰。
七个常见的有界函数有界函数是指函数在一些范围内有上下界的函数。
以下是七个常见的有界函数,每个函数都会进行详细说明。
1. 正弦函数(sin)正弦函数是一个周期函数,其在任意给定周期内的最大值和最小值是有界的。
正弦函数的最大值为1,最小值为-1、因此,sin函数是有界的。
2. 余弦函数(cos)与正弦函数类似,余弦函数也是周期函数。
余弦函数的最大值和最小值也都是有界的,最大值是1,最小值是-13. 正切函数(tan)正切函数在一些点上可能无界,但在给定的范围内是有界的。
例如,在区间[-π/2, π/2]内,正切函数的最大值为正无穷,最小值为负无穷;但在该区间之外,正切函数会无界。
因此,tan函数是一个有界函数。
4.平方根函数(√x)平方根函数是从0到正无穷的单调递增函数,它在0到正无穷范围内是有界的。
最小值为0(当x=0时),最大值则并没有。
然而如果我们限定平方根函数的定义域,例如在[0,1]范围内,则它的最大值为15. 反正弦函数(arcsin)反正弦函数的定义域是[-1,1],因此它在这个范围内是有界的。
最大值为π/2,最小值为-π/26. 反余弦函数(arccos)与反正弦函数类似,反余弦函数在定义域[-1,1]内是有界的。
最大值为π,最小值为0。
7. 反正切函数(arctan)反正切函数也是一个有界函数,它在整个实数范围内的最大值为π/2,最小值为-π/2以上七个函数都是常见的有界函数。
它们在特定的定义域或范围内有上下界,可以在不同数学和科学领域中使用。
专题05期末解答压轴题新定义题型1.(2023上·上海徐汇·高一统考期末)已知函数()y f x =,x D ∈,若存在常数k (0k >),使得对定义域D 内的任意12,x x (12x x ≠),都有()()1212f x f x k x x -≤-成立,则称函数()y f x =在其定义域D 上是“k -利普希兹条件函数”(1)判断函数①y x =,②3y x =是否是“1-利普希兹条件函数”,若是,请给出证明;若不是,请说明理由;(2)若函数y x =(14x ≤≤)是“k -利普希兹条件函数”,求常数k 的最小值;(3)若()y f x =是定义在闭区间[]0,1上的“2-利普希兹条件函数”,且(0)(1)f f =,求证:对任意的[]12,0,1x x ∈都有()()121f x f x -≤.【答案】(1)y x =是,3y x =不是(2)12(3)证明见解析【分析】(1)证明()()1212f x f x x x -≤-即可判断y x =,举出反例即可判断3y x =;(2)分离参数,将不等式变为关于12,x x 的不等式,结合定义域即可求得常数k 的最小值;(3)对任意的[]12,0,1x x ∈都有()()12f x f x m -≤,只需要()()12max f x f x m -≤即可,根据新定义求出()()12max f x f x -即可得出答案.【解析】(1)对于函数()y f x x ==,不妨设12x x >,则()()1212f x f x x x -=-,符合题意,所以函数y x =是“1-利普希兹条件函数”,对于函数()3y f x x ==,因为()()21721f f -=>-,所以函数3y x =不是“1-利普希兹条件函数”;(2)若函数()f x x =(14x ≤≤)是“k -利普希兹条件函数”,则对定义域[]1,4内任意12,x x (12x x ≠),均有()()1212f x f x k x x -≤-,即1212x x k x x -≤-,设12x x >,则1212x x k x x -≤-,即121k x x ≤+,因为2114x x ≤<≤,所以1211142x x <<+,所以12k ≥所以k 的最小值为12;(3)设12x x ≥,当1212x x -≤时,因为()y f x =是定义在闭区间[]0,1上的“2-利普希兹条件函数”,所以()()121212212f x f x x x -≤-≤⨯=,当1212x x ->时,由[]12,0,1x x ∈,得12112x x <-≤,故()()()()()()121212(1)(0)(1)(0)f x f x f x f f f x f x f f f x -=-+-≤-+-()()1212212221x x x x ≤-+=--≤恒成立,综上所述,()()121f x f x -≤,【点睛】关键点点睛:本题考查了函数新定义问题,解决本题的关键在于理解“k -利普希兹条件函数”.2.(2023上·上海杨浦·高一复旦附中校考期末)若定义在区间[],a b 上的函数()y f x =满足:存在常数M ,使得对任意的12n a x x x b =≤≤⋅⋅⋅≤=,都有()()()()()()12231n n f x f x f x f x f x f x M --+-+⋅⋅⋅+-≤成立,则称()y f x =为一个有界变差函数,并将满足条件的M 的最小值称为()y f x =的全变差.(1)判断函数()()311f x x x =--≤≤,和()[][]R 0,0,1Q 1,0,1Q x D x x ⎧∈⋂⎪=⎨∈⋂⎪⎩ð(Q 为有理数集)是否为有界变差函数;(无需说明理由)(2)求函数()()414g x x x x=+≤≤的全变差;(3)证明:函数()2log 4xh x x x=+是[]1,4上的有界变差函数.【答案】(1)3()f x x =-是有界变差函数,()D x 不是有界变差函数;(2)2;(3)证明见解析.【分析】(1)根据已知定义判断即可;(2)根据全变差定义结合单调性,把差的绝对值去掉求解可得;(3)根据有界变差函数定义结合单调性,把差的绝对值去掉求解可得;【解析】(1)由3()f x x =-在[1,1]-上递减,令121...1n x x x -=≤≤≤=,则23121()()()()...()()n n f x f x f x f x f x f x --+-++-=121231()()()()...()()()()(1)(1)2n n n f x f x f x f x f x f x f x f x f f --+-++-=-=--=,显然,存在2M ≥,使任意的12n a x x x b =≤≤⋅⋅⋅≤=,都有()()()()()()12231n n f x f x f x f x f x f x M --+-+⋅⋅⋅+-≤成立,所以3()f x x =-为一个有界变差函数;对于()D x ,令120...1n x x x =≤≤≤=,所得i x *(1,N )i n n ≤≤∈中有理数、无理数都有可能为无限个,若12,,...,n x x x 以无理数、有理数成对依次出现时12312()()()()...()()n n f x f x f x f x f x f x --+-++-随n 的变大趋向于正无穷大,所以()D x 不是一个有界变差函数.(2)对任意的11221.....4.n m m x x x x x +=≤≤≤≤≤≤==,()g x 在[]1,2上单调递减,所以()()()()121...m m g x g x g x g x -≥≥≥≥,即()()()()()()12231...mm g x g x g x g x g x g x --+-++-()()()()()()()()122311...m m m g x g x g x g x g x g x g x g x -=-+-++-=-,()g x 在[]2,4上单调递增,所以()()()()11n n m m g x g x g x g x -+≥≥≥≥ ,即()()()()()()1112...m n n n n m g x g x g x g x g x g x --+--+-++-()()()()()()()()2111...n n n n m n m m g x g x g x g x g x g x g x g x --+-=-+-++-=-,所以()()()()()()12231...n n g x g x g x g x g x g x --+-++-()()()()()()1222214n m g x g x g x g g g =+-=+-=,所以,存在2M ≥使()()()()()()12231n n g x g x g x g x g x g x M --+-+⋅⋅⋅+-≤成立,则称()y g x =为一个有界变差函数,M 的最小值2称为()y g x =的全变差.(3)由(2)知:()g x 在[]1,4上是一个有界变差函数,令1()()p x g x =,则111()()|()()|||()()i i i i i i g x g x p x p x g x g x -----=,而在[]1,4上()54g x ≥≥,所以111|()()||()()|16i i i i p x p x g x g x ---≤-,即11221|()()||()()|1616nn i i i i i i M p x p x g x g x --==-≤-=∑∑,故()p x 是有界变差函数;又2()log q x x =在[]1,4上递增且值域为[0,2],任意1214n x x x =≤≤≤= ,则()()()12...n q x q x q x ≤≤≤,所以12|()()|n i i i q x q x -=-∑()()()()1412n q x q x q q =-=-=,故存在2M ≥使12|()()|ni i i q x M q x -=-≤∑,则()q x 是有界变差函数,令()()()h x q x p x =⋅,则11122|()()||()()()()|nn ii i i i i i i h x h xq x p x q x p x ---==-=-∑∑1112|()[()()]()[()()]|ni i i i i i i q x p x p x p x q x q x ---==-+-∑,由上可设1|()|,|()|i i q x N p x L -≤≤且,N L 均为常数,故111222|()()||()()||()()|nn nii i i i i i i i h x h xN p x p x L q x q x ---===-≤-+-∑∑∑,而()p x 、()q x 均为有界变差函数,所以()()()h x q x p x =⋅2log 4xx x=+为有界变差函数.【点睛】关键点点睛:根据有界变差函数的定义,结合相关函数的单调性判断无限细分后区间端点函数值差的绝对值小于某一常数是否恒成立.3.(2023上·上海浦东新·高一上海南汇中学校考期末)设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[],a b D ⊆,使()f x 在[],a b 上的值域为[],ma mb (其中(]0,1)m ∈,则称()f x 为区间[],a b 上的“m 倍缩函数”.(1)证明:函数()3f x x =为区间11,22⎡⎤-⎢⎥⎣⎦上的“14倍缩函数”;(2)若存在[],R a b ⊆,使函数()()2log 2xf x t =+为[],a b 上的“12倍缩函数”,求实数t 的取值范围;(3)给定常数0k >,以及关于x 的函数()1kf x x=-,是否存在实数,()a b a b <,使()f x 为区间[],a b 上的“1倍缩函数”.若存在,请求出,a b 的值;若不存在,请说明理由.【答案】(1)证明见解析;(2)1(0,)4;(3)答案见解析.【分析】(1)利用函数()f x 的单调性,求出()f x 的值域,再结合定义判断作答.(2)利用函数()f x 的单调性,求出()f x 的值域,结合定义构造方程,再利用方程有两个不等的正根求解作答.(3)根据给定条件,可得0a >,再分类去绝对值符号,结合单调性求出值域即可求解作答.【解析】(1)函数3()f x x =在R 上单调递增,则3()f x x =在区间11[,]22-上的值域为11[,]88-,显然有111111(),842842-=⨯-=⨯,所以函数()3f x x =为区间11[,]22-上的“14倍缩函数”.(2)因为函数2x u t =+在R 上单调递增,当0u >时,函数2log y u =在(0,)+∞上单调递增,因此函数2()log (2)xf x t =+是定义域上的增函数,因为函数2()log (2)xf x t =+为[],a b 上的“12倍缩函数”,则函数()f x 在[],a b 上的值域为11[,]22a b ,于是得1()21()2f a a f b b⎧=⎪⎪⎨⎪=⎪⎩,即,()a b a b <是方程1()2f x x =的两个不等实根,则方程12221log (2)22(2)(2)02x xxx x t x t t +=⇔+=⇔-+=有两个不等实根,令(2)0x z =>,则关于z 的一元二次方程20z z t -+=有两个不等的正实根,因此Δ140100t t =->⎧⎪>⎨⎪>⎩,解得104t <<,当104t <<时,函数()f x 恒有意义,所以实数t 的取值范围是1(0,)4.(3)常数0k >,函数()1kf x x=-的定义域为(,0)(0,)-∞+∞ ,并且()0f x ≥,假定存在实数,()a b a b <,使()f x 为区间[],a b 上的“1倍缩函数”,则函数()f x 在区间[],a b 上的值域为[],a b ,由[,](,0)(0,)a b ⊆-∞+∞ ,及[,][0,)a b ⊆+∞知0a b <<,因为函数1k y x =-在[],a b 上单调递增,即111k k k a x b-≤-≤-,若101k ka b -<<-,即0a k b <<<,则函数()f x 在区间[],a b 上的值域中有数0,矛盾,若10k b -≤,即0a b k <<≤,当[,]x a b ∈时,()1kf x x=-在[,]a b 上单调递减,有()()f a b f b a =⎧⎨=⎩,即11ka bk ba⎧-=⎪⎪⎨⎪-=⎪⎩,整理得k b ab k a ab -=⎧⎨-=⎩,显然无解,若10k a -≥,即k a b ≤<,当[,]x a b ∈时,()1kf x x=-在[,]a b 上单调递增,有()()f a a f b b =⎧⎨=⎩,即,()a b a b <是方程()f x x =的两个不等实根且a k ≥,而方程210kx x x k x-=⇔-+=,于是得方程2()0g x x x k =-+=在[,)k +∞上有两个不等实根,从而2Δ140()012k g k k k=->⎧⎪⎪=≥⎨⎪>⎪⎩,解得14k <,而0k >,即有104k <<,解方程20x x k -+=得:12114114,22k kx x --+-==,所以当104k <<时,存在实数,()a b a b <,使()f x 为区间[],a b 上的“1倍缩函数”,114114,22k ka b --+-==,当14k ≥时,不存在实数,()a b a b <,使()f x 为区间[],a b 上的“1倍缩函数”.【点睛】思路点睛:涉及函数新定义问题,理解新定义,找出数量关系,联想与题意有关的数学知识和方法,再转化、抽象为相应的数学问题作答.4.(2023上·上海徐汇·高一位育中学校考期末)若函数()f x 的定义域为R ,且对12,x x ∀∈R ,都有()()()1212f x x f x f x +≤⋅,则称()f x 为“J 形函数”(1)当()1f x x =+时,判断()f x 是否为“J 形函数”,并说明理由;(2)当()22f x x =+时,证明:()f x 是“J 形函数”;(3)如果函数()2x f x a =+为“J 形函数”,求实数a 的取值范围.【答案】(1)否,理由见解析;(2)证明见解析;(3)1a ≥或0a =.【分析】(1)作差可得()()()121212f x x f x f x x x +-⋅=-,根据12,x x 的任意性,无法判断该式符号,即可说明;(2)作差可得()()()1212f x x f x f x +-⋅()22212122x x x x =----,即可证明得出结论;(3)代入化简可得()12122x x f x x a ++=+,()()1212212222x x x x f x x a a ++++=+.由“J 形函数”的概念整理化简可得,()12122x xa -+≥,进而即可得出实数a 的取值范围.【解析】(1)解:()f x 不是“J 形函数”,理由如下:当()1f x x =+时,有()111f x x =+,()221f x x =+,()12121f x x x x +=++,则()()()1212f x x f x f x +-⋅()()1212111x x x x ++-++=12x x =-.因为12,x x ∈R ,所以12x x -与0的关系不确定,不能得出()()()12120f x x f x f x +-⋅≤,所以()f x 不是“J 形函数”.(2)证明:当()22f x x =+时,有()2112f x x =+,()2222f x x =+,()()22212121212222f x x x x x x x x +=++=+++,则()()()()2222221212121222224f x f x x x x x x x ⋅=++=+++,所以()()()1212f x x f x f x +-⋅212222121222x x x x x x =----()22212122x x x x =----,显然有()()()121220f x x f x f x +-⋅≤-≤对12,x x ∀∈R 恒成立,所以有()()()1212f x x f x f x +≤⋅对12,x x ∀∈R 恒成立,所以()f x 是“J 形函数”.(3)解:由已知可得()112x f x a =+,()222x f x a =+,()12122x x f x x a ++=+,所以()()121222x x f x f x a a ⋅=+⋅+()12122222x x x x a a +=+++.因为函数()2x f x a =+为“J 形函数”,所以有()12121222222x x x x x x a a a +++≤+++,即()121212202222x x x x x x a a a ++++≤+≤+.由1220x x a ++≥,可得0a ≥;由()12121222222x x x x x x a a a +++≤+++可得,()12222x x a a a ≤++.当0a =时,该式恒成立,满足;当0a >时,有()12122x xa -+≥恒成立.因为12220x x +>,所以1a ≥.综上可得,1a ≥或0a =.【点睛】关键点点睛:本题考查函数中的新定义问题,解题关键是能够充分理解“J 形函数”的本质是函数值的大小关系的比较问题,从而利用作差法,整理化简()()()1212f x x f x f x +-⋅.只要得出()()()12120f x x f x f x +-⋅≤恒成立,即可说明()f x 是“J 形函数”.5.(2023上·上海徐汇·高一上海市西南位育中学校考期末)已知()f x 定义域为R 的函数,S ⊆R ,若对任意1212,,x x x x S ∈-∈R ,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断函数()()12112f x xg x x =-=-、是否是[)1,+∞关联,并说明理由:(2)若()f x 是{}2关联,当[)0,2x ∈时,()2f x x x =-,解不等式:()02f x ≤≤;(3)判断“()f x 是{}2关联”是“()f x 是[]1,2关联”的什么条件?试证明你的结论.【答案】(1)函数()21f x x =-是[)1,+∞关联,函数1()12g x x =-不是[)1,+∞关联,理由见解析(2){|13x x ≤≤或}0x =(3)必要不充分条件,证明见解析【分析】(1)根据给定的定义为[)1,+∞时,求12()()f x f x -的取值区间即可判断作答.(2)根据给定条件,可得(2)()2f x f x +-=,再结合已知函数分段解不等式并求并集作答.(3)利用给定的定义,利用推理证明命题的充分性和必要性作答.【解析】(1)函数()21f x x =-是[)1,+∞关联,证明如下:任取12,x x ∈R ,若12[1,)-∈+∞x x ,则()()()[)121222,[1,)f x f x x x -=-∈+∞⊂+∞,()()()12122[1,)f x f x x x ∴-=-∈+∞所以函数()21f x x =-是[)1,+∞关联;函数1()12g x x =-不是[)1,+∞关联,证明如下::若12[1,)-∈+∞x x ,则121211()()(),22⎡⎫-=-∈+∞⎪⎢⎣⎭f x f x x x ,所以函数1()12g x x =-不是[)1,+∞关联;(2)因()f x 是{}2关联,则122x x -=,有12()()2f x f x -=,即(2)()2f x f x +-=,当[)0,2x ∈时,22111(),2244⎛⎫⎡⎫=-=--∈- ⎪⎪⎢⎝⎭⎣⎭f x x x x ,而()02f x ≤≤,即202≤-≤x x ,解得12x ≤≤或10x -≤≤,所以不等式的解集为{|12x x ≤<或}0x =,当[2,22),,0x n n n Z n ∈+∈≠时,()2112224f x x n n ⎛⎫=---+ ⎪⎝⎭,所以当[2,4)x ∈时,2577()(2)2,4244⎛⎫⎡⎫=-+=-+∈ ⎪⎪⎢⎝⎭⎣⎭f x f x x ,而0()2f x ≤≤,得2570224⎛⎫≤-+≤ ⎪⎝⎭x ,解得23x ≤≤,所以不等式的解集为{}|23x x ≤≤,当0n <时,()0f x <或当2n ≥时,()2f x >,此时不等式0()2f x ≤≤无解;综上得13x ≤≤或0x =,所以不等式2()3f x ≤≤的解集为{|13x x ≤≤或}0x =,.(3)“()f x 是{}2关联”是“()f x 是[]1,2关联”的必要不充分条件,证明如下,易得函数,()1,x x Zf x x x Z ∈⎧=⎨-∉⎩是{}2关联,但1 2.112≤-≤时2)(2.1()0f f <-,所以函数()f x 不是[1,2]关联;所以充分性不成立;当函数()f x 是[1,2]关联时,即2112x x ≤-≤,21)1(()2f x f x -≤≤,则有1(2)(1)2f x f x -≤++≤,)1(1()2f x f x -≤+≤,即有)2(2()4f x f x -≤+≤,又1(2)2x x ≤+-≤,则有)1(2()2f x f x -≤+≤,于是得(2)()2f x f x +-=,从而得()()21212,=2x x f x f x -=-,即函数()f x 是{2}关联;所以“()f x 是{}2关联”是“()f x 是[]1,2关联”的必要不充分条件.【点睛】思路点睛:涉及函数新定义问题,理解新定义,找出数量关系,联想与题意有关的数学知识和方法,再转化、抽象为相应的数学问题作答.抽象函数6.(2023上·上海浦东新·高一上海市建平中学校考期末)已知函数()f x 在定义域D 上是严格增函数.(1)若()221f x x x =+--,求()f x 的值域;(2)若()[]12241log ,,(04)214x x x f x D t t t x+-=++=-<<++的值域为[],m n ,求m n +的值;(3)若()0,D =+∞,且对定义域D 内任意自变量x 均有()()11f x f f x x ⎛⎫⋅+= ⎪⎝⎭成立,试求()f x 的解析式.【答案】(1)[2,2]-;(2)4;(3)()152f x x-=.【分析】(1)先求出函数的定义域,然后根据函数的单调性可求出函数的最值,从而可求出函数的值域;(2)根据函数在D 上是严格增函数,可得()12241log 214t t t m f t t --++=-=+++-,()12241log 214t t tn f t t +-==++++,然后相加化简可得答案;(3)由已知可得111()()11()f f x f f f x x x f x x ⎛⎫ ⎪⎛⎫⎛⎫+⋅++=⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪+⎝⎭,则有()11()1()f f f x f x x f x x ⎛⎫ ⎪⎛⎫++= ⎪ ⎪⎝⎭ ⎪+⎝⎭,再根据其单调性和已知条件可得()111()x f x f x x+=+,从而可求出()f x 的解析式.【解析】(1)由22010x x +≥⎧⎨-≥⎩,解得11x -≤≤,因为22y x =+和1y x =--在[1,1]-上均为增函数,所以()221f x x x =+--在[1,1]-上为增函数,所以min ()(1)221(1)2f x f =-=-+---=-,max ()(1)222f x f ==+=,所以()f x 的值域为[2,2]-;(2)因为()[]12241log ,,(04)214x x xf x D t t t x+-=++=-<<++的值域为[],m n ,且()f x 在定义域D 上是严格增函数,所以()12241log 214t t t m f t t --++=-=+++-,()12241log 214t t tn f t t+-==++++,所以()()m n f t f t +=-+112224241log 1log 214214t t t t t tt t -++-+-=++++++-++1222442log 212144t t t t t t t ++-⎛⎫=+++⋅ ⎪++-+⎝⎭22(21)2log 211t t +=+++224=+=;(3)因为对定义域D 内任意自变量x 均有()()11f x f f x x ⎛⎫⋅+= ⎪⎝⎭成立,所以111()()11()f f x f f f x x x f x x ⎛⎫ ⎪⎛⎫⎛⎫+⋅++=⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪+⎝⎭,所以()()111()()1()f x f fx f f f x f x x x f x x ⎛⎫ ⎪⎛⎫⎛⎫⋅+⋅++= ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪+⎝⎭,所以()11()1()f f f x f x x f x x ⎛⎫ ⎪⎛⎫++= ⎪ ⎪⎝⎭ ⎪+⎝⎭,因为函数()f x 在定义域D 上是严格增函数,所以11()1()f f x x x f x x⎛⎫++= ⎪⎝⎭+,所以()111()xf x f x x+=+,所以()()()()()()211f x f x xf x f x xf x f x x x ⎡⎤++=+=+⎢⎥⎣⎦,所以()()210xf x f x x --=,解得()152f x x±=,因为函数()f x 在定义域D 上是严格增函数,所以()152f x x-=.7.(2023上·上海松江·高一上海市松江二中校考期末)若函数f (x )满足:对于任意正数s ,t ,都有()0f s >,()0f t >,且()()()f s f t f s t +<+,则称函数f (x )为“L 函数”.(1)试判断函数()2h x x =是否是“L 函数”,并说明理由;(2)若函数()()3131x xg x a -=-+-为“L 函数”,求实数a 的取值范围;(3)若函数f (x )为“L 函数”,且()11f =,求证:对任意()()1*2,2N k k x k -∈∈,都有()2x f x >.【答案】(1)是“L 函数”,理由见解析;(2)[1,1]-;(3)证明见解析.【分析】(1)根据“L 函数”的定义分析判断即可;(2)由()g x 为“L 函数”,可得()0g t >,则3t a <,得1a ≤,()()()g s g t g s t +<+可得30s t a ++>,得10a +≥,从而可求出实数a 的取值范围;(3)由函数f (x )为“L 函数”,可得(2)2()f s f s >,即(2)2()f s f s >,则112(2)(2)(2)(2)2()(2)(2)()k k k k k k f s f s f s f s f s f s f s f s ---=⋅⋅⋅⋅⋅⋅>,再结合111()(2)(2)(2)k k k f x f x f f --->-+>可证得结论.【解析】(1)对于()2h x x =,当0,0t s >>时,()20h t t =>,()20h s s =>,因为()()()222()20h s h t h s t s t s t st +-+=+-+=<,所以()()()h s h t h s t +<+,所以()2h x x =是“L 函数”;(2)当0,0t s >>时,由()()3131x xg x a -=-+-是“L 函数”,得()()31310t t g t a -=-+->,即(31)(3)0t t a -->对一切正数t 恒成立,因为310t ->,所以3t a <对一切正数t 恒成立,所以1a ≤,由()()()g s g t g s t +<+,得3331(3331)0s t s t s t s t a +------++--+>,所以(31)(31)(3)0s t s t a +--+>,因为(31)(31)0s t -->,所以30s t a ++>,由30s t a ++>对一切正数,s t 恒成立,所以10a +≥,即1a ≥-,综上可知,实数a 的取值范围为[1,1]-;(3)因为函数f (x )为“L 函数”,所以对于任意正数,s t 都有()0f s >,()0f t >,且()()()f s f t f s t +<+,令s t =,可知(2)2()f s f s >,即(2)2()f s f s >,所以对于正整数k 与正数s 都有112(2)(2)(2)(2)2()(2)(2)()k k k k k k f s f s f s f s f s f s f s f s ---=⋅⋅⋅⋅⋅⋅>,对任意()()1*2,2N k k x k -∈∈,可得()()1*12,2N k k k x--∈∈,因为(1)1f =,所以11112()(2)(2)(2)2(1)22k k k k k x f x f x f f f ---->-+>≥=>.【点睛】关键点点睛:此题考查函数的新定义,解题的关键是对函数新定义的正确理解,然后结合已知条件求解即可,考查理解能力和运算能力,属于较难题.8.(2023上·上海闵行·高一统考期末)已知函数()y F x =的定义域为D ,t 为大于0的常数,对任意x D ∈,都满足()()()2F x t F x t F x ++->,则称函数()y F x =在D 上具有“性质A ”.(1)试判断函数2x y =和函数2y x =-是否具有“性质A ”(无需证明);(2)若函数()y f x =具有“性质A ”,且()102f f ⎛⎫> ⎪⎝⎭,求证:对任意n ∈N ,都有()()1f n f n >+;(3)若函数()y g x =的定义域为R ,且具有“性质A ”,试判断下列命题的真假,并说明理由,①若()y g x =在区间(),0∞-上是严格增函数,则此函数在R 上也是严格增函数;②若()y g x =在区间(),0∞-上是严格减函数,则此函数在R 上也是严格减函数.【答案】(1)函数2x y =不具有“性质A ”,函数2y x =-具有“性质A ”(2)证明见解析(3)命题①为假命题,命题②为真命题,理由见解析【分析】(1)利用作差法结合“性质A ”的定义判断可得出结论;(2)利用“性质A ”的定义结合不等式()102f f ⎛⎫> ⎪⎝⎭可推导出()1102f n f n ⎛⎫+-+< ⎪⎝⎭,()102f n f n ⎛⎫+-< ⎪⎝⎭,利用不等式的基本性质可证得结论成立;(3)取()2g x x =-可判断命题①为假命题,对命题②,对任意的1t 、2t ∈R 且12x x <,取210t x x =->,根据“性质A ”的定义结合基本不等式的性质、单调性的定义证得()()12g x g x >,即可证得结论成立.【解析】(1)解:函数2x y =不具有“性质A ”,函数2y x =-具有“性质A ”,理由如下:设()2xp x =,()2q x x =-,对任意的0t >,()()()()222222222x t x t x x t tp x t p x t p x +--++--=+-⋅=+-()222220x t t ->⨯⋅-=,所以,()()()2p x t p x t p x ++-<,所以,函数2x y =不具有“性质A ”,对任意的0t >,()()()()()22222220q x t q x t q x x x t x t t ++--=-+--=<,所以,()()()2q x t q x t q x ++->,所以,函数2y x =-具有“性质A ”.(2)证明:因为函数()y f x =具有“性质A ”,对任意的0t >,()()()2f x t f x t f x ++->,所以,()()()()f x f x t f x t f x -->+-,又因为()102f f ⎛⎫> ⎪⎝⎭,所以,()()()1130011222f f f f f f ⎛⎫⎛⎫⎛⎫>->->-> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()1111222f n f n f n f n f n f n ⎛⎫⎛⎫⎛⎫>-->+->+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,()()1021102f n f n f n f n ⎧⎛⎫+-< ⎪⎪⎪⎝⎭⎨⎛⎫⎪+-+< ⎪⎪⎝⎭⎩,由不等式的可加性可得()()10f n f n +-<,故对任意的N n ∈,()()1f n f n +<.(3)解:命题①是假命题,命题②是真命题,理由如下:对于命题①,取函数()2g x x =-,由(1)可知,函数()g x 具有“性质A ”,函数()2g x x =-在区间(),0∞-上是严格增函数,但该函数在R 上不单调;对于命题②,对任意的0t >,对任意的x ∈R ,()()()2g x t g x t g x ++->,所以,()()()()g x t g x g x g x t -->-+,对任意的1t 、2t ∈R 且12x x <,取210t x x =->,必存在1k ≥且N k ∈,满足()2201x kt x k t >->-+,因为函数()y g x =在区间(),0∞-上是严格减函数,所以,()()()221g x kt g x k t -<-+,即()()()2210g x kt g x k t ---+<,所以,()()()()()()()()222222011g x k t g x kt g x kt g x k t g x t g x <-+--<----<<-- ,故()()()()22120g x t g x g x g x <--=-,即()()12g x g x >,故函数()y g x =在R 上是严格减函数.所以,命题②为真命题.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.9.(2022上·上海宝山·高一上海市吴淞中学校考期末)若函数()f x 满足:对于任意正数,s t ,都有()()0,0f s f t >>,且()()()f s f t f s t +<+,则称函数()f x 为“L 函数”.(1)试判断函数()21f x x =与()122f x x =是否是“L 函数”;(2)若函数()()3131x xg x a -=-+-为“L 函数”,求实数a 的取值范围;(3)若函数()f x 为“L 函数”,且()11f =,求证:对任意()()12,2N *k kx k -∈∈,都有()122x f x f x x⎛⎫->- ⎪⎝⎭.【答案】(1)21()f x x =是“L 函数”.2()f x x =不是“L 函数”.(2)[11]-,(3)见解析【解析】试题分析:利用“L 函数”的定义判断函数21()f x x =符合要求,而2()f x x =不符合要求(只需举一个反例说明);函数()()3131x xg x a -=-+-为“L 函数”,则()g x 满足“L 函数”的定义,当0,0t s >>时,()0,()0,()()()g s g t g s g t g s t >>+<+成立;根据要求可以求出a 的范围;令s t =得(2)2()f s f s >,即(2)2()f s f s >,故对于正整数k 与正数s ,都有()()()()()()()()1122222222k k k kk k f sf s f sf s f s f s f s f s ---=⋅⋅⋅> ,()()12,2N *k kx k -∈∈,则()112,2kk x--∈,利用(1)1f =,借助()()()1122k k f x f x f -->-+及()111122kk f f f x x --⎛⎫⎛⎫<-- ⎪ ⎪⎝⎭⎝⎭借助不等关系证明.试题解析:(1)对于函数()21f x x =,当0,0t s >>时,()()22110,0f t t f s s =>=>,又()()()()22211120f t f s f t s t s t s ts +-+=+-+=-<,所以()()()111f s f t f s t +<+,故()21f x x =是“L 函数”.对于函数()2f x x =,当1t s ==时,()()()22222f t f s f t s +=>=+,故()2f x x =不是“L 函数”.(2)当0,0t s >>时,由()()3131x xg x a -=-+-是“L 函数”,可知()()31310t t g t a -=-+->,即()()3130t ta -->对一切正数t 恒成立,又310t ->,可得3t a <对一切正数t 恒成立,所以1a ≤.由()()()g t g s g t s +<+,可得()+333133310s ts t s t s t a ------++--+>,故()()()31313+0s t s t a +-->,又()()31310t s-->,故3+0s t a +>,由3+0s t a +>对一切正数,s t 恒成立,可得10a +≥,即1a ≥-.综上可知,a 的取值范围是[]11-,.(3)由函数()f x 为“L 函数”,可知对于任意正数,s t ,都有()()0,0f s f t >>,且()()()f s f t f s t +<+,令s t =,可知()()22f s f s >,即()()22f s f s >,故对于正整数k 与正数s ,都有()()()()()()()()1122222222k k k k k k f sf s f sf s f s f s f s f s ---=⋅⋅⋅> ,对任意()()12,2N *k kx k -∈∈,可得()112,2kk x--∈,又()11f =,所以()()()()()111122222122k k k k k xf x f x f f f ---->-+>≥=>,同理()()()11111112222212k k k k kf f f f f x x x -----⎛⎫⎛⎫<--<≤=< ⎪ ⎪⎝⎭⎝⎭,故()1f x f x ⎛⎫->⎪⎝⎭22x x -.【点睛】本题为自定义信息题,根据题目所提供的信息,要严格遵循“L 函数”的定义解题,首先判断两个函数是否符合“L 函数”的定义,说明是“L 函数”,需要按定义严格证明,说明不是只需举一反例;第二步函数()g x 是“L 函数”,则满足定义,利用满足的条件,借助恒成立条件和最值原理求出参数的范围.零点问题10.(2022上·上海浦东新·高一上海市进才中学校考期末)已知函数()f x 的定义域为()0,∞+,若存在常数0T >,使得对任意()0,x ∈+∞,都有()()f Tx f x T =+,则称函数()f x 具有性质()P T .(1)若函数()f x 具有性质()2P ,求()122f f ⎛⎫- ⎪⎝⎭的值(2)设()log a f x x =,若01a <<,求证:存在常数0T >,使得()f x 具有性质()P T (3)若函数()f x 具有性质()P T ,且()f x 的图像是一条连续不断的曲线,求证:函数()f x 在()0,∞+上存在零点.【答案】(1)()1242f f ⎛⎫-= ⎪⎝⎭(2)证明见解析(3)证明见解析【分析】(1)对任意()0,x ∈+∞,都有()()22f x f x =+,代入2x =和12x =即可得出答案;(2)设()log a g x x x =-,利用零点存在性定理即可证得结论;(3)先转化为()()nf T x f x nT =+,然后令1x =得,()()1nf T f nT =+,分情况利用零点存在性定理证得结论.【解析】(1)函数()f x 具有性质()2P ,所以对任意()0,x ∈+∞,都有()()22f x f x =+,令2x =,得()()212f f =+,令12x =,得()1122f f ⎛⎫=+ ⎪⎝⎭,所以()1242f f ⎛⎫-= ⎪⎝⎭.(2)证明:函数()f x 具有性质()P T 的充要条件为存在0T >,使得()log log a a Tx x T =+,即log a T T =,设()log a g x x x =-,因为()110g =-<,()10g a a =->,所以在区间(),1a 上函数()g x 存在零点0x ,取0T x =,则log a T T =,得函数()f x 具有性质()P T .(3)设n N *∈,因为()()f Tx f x T =+,所以()()nf T x f x nT =+,令1x =得,()()1nf T f nT =+,①若()10f =,则函数()f x 存在零点若()10f <,当()01f n T>-时,()00nf T >,所以此时函数()f x 在区间()0,+∞上存在零点②因为()n x f x f nTT ⎛⎫=+ ⎪⎝⎭所以()()1nf T f nT-=-若()10f >,当()01f n T>时,()00nf T -<,所以此时函数()f x 在区间()0,+∞上存在零点.综上,函数()f x 在()0,∞+上存在零点.11.(2023上·上海浦东新·高一校考期末)已知函数21()4f x x ax =++,()ln g x x =-.(1)若函数[()]g f x 的定义域为R ,求实数a 的取值范围;(2)若函数[()]g f x 在(1,)+∞上单调递减,求实数a 的取值范围;(3)用min{,}m n 表示m ,n 中的最小值,设函数()min{(),()}(0)h x f x g x x =>,讨论()h x 零点的个数.【答案】(1)()1,1-;(2)5[,)4-+∞;(3)答案见解析.【解析】(1)由对数函数的性质及函数的定义域为R ,利用判别式,列出不等式,即可求解;(2)由函数21[()]ln()4=-++g f x x ax ,结合对数函数的性质和复合函数的单调性的判定方法,列出不等式组,即可求解;(3)根据函数()min{(),()}(0)h x f x g x x =>,先分1x >,1x =和01x <<三种情况讨论,再结合二次函数的性质,分∆<0,0∆=和0∆>三种情况讨论,即可求解.【解析】(1)由题意,函数21[()]ln()4=-++g f x x ax ,因为该函数的定义域为R ,则2104x ax ++>对任意x R ∈恒成立,可得210a ∆=-<,解得11a -<<,即实数a 的取值范围()1,1-.(2)由函数21[()]ln()4=-++g f x x ax ,若[()]g f x 在(1,)+∞上单调递减,则问题等价于()0f x >在(1,)+∞上恒成立,且()f x 在(1,)+∞上单调递增,即5(1)0412f a a ⎧=+≥⎪⎪⎨⎪-≤⎪⎩,解得54a ≥-,所以实数a 的取值范围是5[,)4-+∞.(3)当1x >时,()ln 0g x x =-<,所以当1x >时,min{(),()}()0≤<f x g x g x ,所以()h x 在(1,)+∞上没有零点;当1x =时,(1)0g =,5(1)4f a =+,若504a +≥即54a ≥-时,(1)min{(1),(1)}(1)0h f g g ===,此时1x =是函数()h x 的一个零点;若504+<a 即54a <-时,(1)min{(1),(1)}(1)0h f g f ==<,此时1x =不是函数()h x 的一个零点;当01x <<时,因为()ln 0g x x =->,则函数()h x 的零点个数等价于函数()f x 的零点个数,①当210a ∆=-<,即11a -<<时,()0f x >,则()min{(),()}0=>h x f x g x ,函数()h x 在(0,1)上没有零点;②当0∆=即1a =±时,函数()f x 有且只有一个零点,若1a =,由()0f x =可得1(0,1)2=-∉x ,则函数()h x 在(0,1)上没有零点;若1a =-,由()0f x =可得12x =,则函数()h x 在(0,1)上有1个零点;③当0∆>,即1a <-或1a >时,函数()f x 有两个零点,不妨设为12,x x 且12x x <,当1a >时,120x x a +=-<,12104=>x x ,所以120x x <<,则()f x 在(0,1)上没有零点;当1a <-时,120x x a +=->,12104=>x x ,所以120x x <<,当5(1)04=+≤f a 即54a ≤-时,1(0)04=>f ,所以(0)(1)0f f <,则101x <<,21x ≥,所以此时()f x 在(0,1)上有且只有一个零点;当(1)0f >,即514a -<<-时,对称轴15(,)228=-∈a x ,且(0)0f >,(1)0f >所以1201x x <<<,()f x 在(0,1)上有两个零点,综上所述:当54a <-或1a >-时,()h x 有一个零点;当54a =-或1a =-时,()h x 有两个零点;当514a -<<-时,()h x 有三个零点.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解12.(2023上·上海徐汇·高一南洋中学校考期末)设k ∈R ,函数()y f x =的表达式为()243f x x x =-+,函数()y g x =的表达式为()1g x kx =+,()()y f x g x =-有四个零点,设为()12341234,,,x x x x x x x x <<<.(1)求实数k 的取值范围;(2)求22221234x x x x k+++的取值范围.【答案】(1)1,03⎛⎫- ⎪⎝⎭(2)182,3⎛⎫-∞- ⎪⎝⎭【分析】(1)根据题意,做出图像,结合图像即可得到k 的取值范围;(2)根据题意,利用韦达定理,求得2214x x +,2223x x +和k 的关系,将目标式转化为关于k 的函数,借助对勾函数的单调性,即可求得结果.【解析】(1)根据题意,令2430x x -+=,解得1x =或3x =,不妨设()()()1,03,0,0,,1A B C 做图如下:又直线BC 的斜率为13-,数形结合可知,要满足题意,1,03k ⎛⎫∈- ⎪⎝⎭;(2)由题意可知,14,x x 为方程2431x x kx -+=+,即()2420x k x -++=的两根,当1,03k ⎛⎫∈- ⎪⎝⎭时,()2480k ∆=+->,则41414,2x x k x x +=+=,故()()2422244111244x x x x x x k +=+-=+-;23,x x 为方程2431x x kx -+-=+,即()2440x k x +-+=的两根,当1,03k ⎛⎫∈- ⎪⎝⎭时,()24160k ∆=-->,则23234,4x x k x x +=-=,故()()2222232323248x x x x x x k +=+-=--;则22221234x x x x k +++22201012,,03k k k k k +⎛⎫⎛⎫==+∈- ⎪ ⎪⎝⎭⎝⎭,令()1012,,03f x x x x ⎛⎫⎛⎫=+∈- ⎪ ⎪⎝⎭⎝⎭,由对勾函数单调性可知()f x 在1,03⎛⎫- ⎪⎝⎭上单调递减,又118233f ⎛⎫-=- ⎪⎝⎭,故()f x ∈182,3⎛⎫-∞- ⎪⎝⎭,即22221234x x x x k+++的取值范围为182,3⎛⎫-∞- ⎪⎝⎭.13.(2023上·上海松江·高一校考期末)已知函数()()22,0f x ax ax b a b =-+≥在[]1,3x ∈时有最大值4和最小值0,设()()f xg x x=.(1)求实数a ,b 的值;(2)若不等式()22log log 0g x k x -≤在[]4,8x ∈上恒成立,求实数k 的取值范围;(3)若关于x 的方程()22131021xxmg m -+-+=-有三个不同的实数解,求实数m 的取值范围.【答案】(1)1a =,1b =(2)4,9⎡⎫+∞⎪⎢⎣⎭(3)()1,+∞【分析】(1)根据题意得0a >,再根据二次函数单调性列方程求解即可;(2)由题知2221log 2log 0log x k x x+--≤在[]4,8x ∈上恒成立,设2log t x =,进而得2212111k t t t ⎛⎫≥+-=- ⎪⎝⎭,在[]2,3t ∈上恒成立,再求最值即可得答案;(3)用换元法化简方程()22131021xx mg m -+-+=-为一元二次方程的形式,结合指数型函数的图象、一元二次方程根的分布的知识求得m 的取值范围.【解析】(1)解:()()2221f x ax ax b a x b a =-+=-+-,(),0a b ≥因为,当0a =时,()f x b =,为常函数,不满足题意;所以,0a >,()()21f x a x b a =-+-在[]1,3x ∈上单调递增,因为函数()()22,0f x ax ax b a b =-+≥在[]1,3x ∈时有最大值4和最小值0,所以()()10334f b a f a b ⎧=-=⎪⎨=+=⎪⎩,解得1a b ==,所以1a =,1b =.(2)解:由(1)知()221f x x x =-+,()()12f x g x x x x==+-,因为不等式()22log log 0g x k x -≤在[]4,8x ∈上恒成立,所以2221log 2log 0log x k x x+--≤在[]4,8x ∈上恒成立,设2log t x =,则[]2,3t ∈,所以,120t kt t +--≤,在[]2,3t ∈上恒成立,所以2212111k t t t ⎛⎫≥+-=- ⎪⎝⎭,在[]2,3t ∈上恒成立,因为[]2,3t ∈,所以111,32t ⎡⎤∈⎢⎥⎣⎦,所以,当113t =时,211t ⎛⎫- ⎪⎝⎭取得最大值,最大值为211394⎛⎫-= ⎪⎝⎭,所以,2212111k t t t ⎛⎫≥+-=- ⎪⎝⎭,在[]2,3t ∈上恒成立,则49k ≥,所以k 的取值范围是4,9⎡⎫+∞⎪⎢⎣⎭.(3)解:方程()22131021xx m g m -+-+=-等价于122123102121xx x m m -+-+-+=--,即()()2211321120x x m m --+-++=,210x-≠,令21xt -=,则方程化为()()213120t m t m -+++=,()0t ≠,因为方程()22131021xxmg m -+-+=-有三个不同的实数解,所以,画出21xt =-的图像如下图所示,所以()()213120t m t m -+++=,()0t ≠,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =.记()()()21312h t t m t m =-+++,所以,()()0120110h m h m ⎧=+>⎪⎨=-<⎪⎩,即121m m ⎧>-⎪⎨⎪>⎩,此时1m >或()()()012011013012h m h m m ⎧⎪=+>⎪⎪=-=⎨⎪-+⎪<-<⎪⎩得1211133m m m ⎧>-⎪⎪=⎨⎪⎪-<<⎩,此时m 无解,综上,1m >,即实数m 的取值范围()1,+∞【点睛】本题第三问解题的关键在于令21xt -=,进而结合题意,数形结合得()()213120t m t m -+++=,()0t ≠,有两个根1t 、2t ,且1201t t <<<或101t <<,21t =,再根据零点存在性定理求解即可.二次函数(包括含绝对值)、对勾函数14.(2022上·上海徐汇·高一上海市第二中学校考期末)对于定义域为D 的函数y=f (x ),如果存在区间[m ,n]⊆D ,同时满足:①f (x )在[m ,n]内是单调函数;②当定义域是[m ,n]时,f (x )的值域也是[m ,n].则称[m ,n]是该函数的“和谐区间”.(1)证明:[0,1]是函数y=f (x )=x 2的一个“和谐区间”.(2)求证:函数()53y g x x ==-不存在“和谐区间”.(3)已知:函数()()221aa x y h x a x+-==(a ∈R ,a≠0)有“和谐区间”[m ,n],当a 变化时,求出n﹣m 的最大值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1)根据二次函数的性质,在区间[]0,1上单调递增,且值域也为[]0,1满足“和谐区间”的定义,即可得到结论;(2)该问题是一个确定性问题,从正面证明有一定的难度,故可采用反证法来进行证明;(3)设[],m n 是已知函数定义域的子集,我们可以用a 表示出n m -的取值,转化为二次函数的最值问题后,根据二次函数的性质,可以得到答案.试题解析:(1)y=x 2在区间[0,1]上单调递增.又f (0)=0,f (1)=1,值域为[0,1],区间[0,1]是y=f (x )=x 2的一个“和谐区间”.(2)设[m ,n]是已知函数定义域的子集.故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m 、n 是方程的同号的相异实数根.x 2﹣3x+5=0无实数根,函数不存在“和谐区间”.(3)设[m ,n]是已知函数定义域的子集.x≠0,故函数在[m ,n]上单调递增.若[m ,n]是已知函数的“和谐区间”,则故m 、n 是方程,即222()10a x a a x -++=的同号的相异实数根.,m ,n 同号,只须,即a >1或a <﹣3时,已知函数有“和谐区间”[m ,n],当a=3时,n ﹣m 取最大值考点:1.函数的单调性的性质;2.集合的关系;3.二次函数的图象和性质.【方法点晴】(1)根据二次函数的性质,我们可以得出区间上单调递增,且值域也为满足“和谐区间”的定义,即可得到结论.(2)该问题是一个确定性问题,从正面证明有一定的难度,故可采用反证法来进行证明,即先假设区间为函数的“和谐区间”,然后根据函数的性质得到矛盾,进而得到假设不成立,原命题成立.(3)设是已知函数定义域的子集,我们可以用a 表示出的取值,转化为二次函数的最值问题后,根据二次函数的性质,可以得到答案.15.(2023上·上海徐汇·高一上海中学校考期末)设S ,T 是R 的两个非空子集,如果函数()y f x =满足:①(){}T f x x S =∈;②对任意1x ,2x S ∈,当12x x <时,恒有()()12f x f x <,那么称函数()y f x =为集合S 到集合T 的“保序同构函数”.(1)写出集合A =R 到集合{R ,B x x =∈且}0x >的一个保序同构函数(不需要证明);(2)求证:不存在从整数集Z 的到有理数集Q 的保序同构函数;(3)已知存在正实数s 和t 使得函数()21xf x x m =+-是集合[]0,s 到集合[]0,t 的保序同构函数,求实数m 的取值范围和s 的最大值(用m 表示).【答案】(1)()2xf x =(2)见解析。