开关电源可靠性
- 格式:xls
- 大小:50.50 KB
- 文档页数:29
开关电源可靠性检验项目
包括:产品设计、型式试验、小批试制、量产
参考标准:精诚电子,企业标准,(精诚电子:专业开关电源厂家)
序号标准检测项目标准条款
产品
设计
型式
试验
小批
试制量产
1 基本参数试
验
负载稳定度
静态功耗
效率
电网调整率
纹波系数Y(%)
效率
2 保护机制冲击电流√过流保护√过压保护√输出欠压保护√过热保护√
3 电磁干扰试
验
电源端子骚扰电压限值√
浪涌试验√
辐射骚扰√
磁场敏感度√
静电放电敏感度√
电源瞬态敏感度
辐射敏感度
传导干扰
辐射干扰
4 电气安全试
验
绝缘电阻
介质强度
泄漏电流√
爬电距离和电气间隙√
高低压工作特性√
温升试验√
盐雾试验
5 环境实验低温
高温
恒定湿热
交变湿热
冲撞(冲击和碰撞)振动
恒加速
贮存
可燃性
辐射(太阳或核)锡焊
接端强度。
开关电源的测试方法开关电源是一种将交流电转换为直流电的电源装置,广泛应用于各种电子设备中。
为了确保开关电源的安全性和可靠性,在生产过程中需要进行各种测试。
下面是一些常用的开关电源测试方法的介绍。
1.输入电压范围测试:开关电源的输入电压范围通常在规格书中给出,测试时需使用恒流源或者电阻负载,逐渐调整输入电压,记录开关电源正常工作的最低和最高输入电压。
2.静态负载测试:静态负载测试用于测试开关电源在不同负载条件下的输出电压和电流稳定性。
首先,将开关电源连接到标准负载上,然后改变负载电阻(或电流),记录输出电压和电流的变化。
通过与规格书中的要求进行比较,评估开关电源的输出稳定性。
3.动态响应测试:动态响应测试用于测试开关电源在负载变化时的响应速度和稳定性。
测试时首先将开关电源加载到一个稳定的状态,然后进行负载变化,如从无负载到满负载,或者从满负载到无负载,记录输出电压和电流的变化。
通过与规格书中的要求进行比较,评估开关电源的动态响应能力。
4.效率测试:效率测试用于评估开关电源的能量转换效率。
测试时,将开关电源连接到一个恒定的负载上,然后测量输入功率和输出功率,计算开关电源的转换效率。
通常,测试点包括整个负载范围和不同输入电压下的效率。
5.温度测试:温度测试用于评估开关电源在不同负载和温度条件下的工作可靠性。
测试时,将开关电源加载到一个特定的负载上,然后在不同的温度环境中进行测试,记录开关电源的温度、负载和时间。
通过与规格书中的要求进行比较,评估开关电源的工作可靠性。
6.电磁兼容性测试:电磁兼容性测试用于评估开关电源在电磁环境中的抗干扰能力和干扰产生能力。
测试时,将开关电源连接到一个标准负载上,然后引入不同的电磁场(如辐射场和传导场)进行测试,记录开关电源的输出噪声和接受到的外部干扰。
通过与规格书中的要求进行比较,评估开关电源的电磁兼容性。
除了上述测试方法,还可以进行其他测试,如输入和输出电流纹波测试、过压保护测试、短路保护测试等。
电力电子技术中的开关电源稳定性问题解决在电力电子技术领域中,开关电源的稳定性问题一直是一个关注的焦点。
开关电源的稳定性直接影响着整个电力系统的可靠性和效果。
本文将探讨电力电子技术中开关电源稳定性问题的解决方法。
一、开关电源的稳定性问题概述开关电源作为一种常用的电力电子设备,具有高能效、小体积和可调性强等特点,被广泛应用于各个领域。
然而,由于其整流环节存在的开关行为和功率因素调节等原因,导致开关电源在工作过程中容易产生一些稳定性问题。
例如输出电压波动大、远离设定值、负载响应能力差等。
二、稳定性问题的原因分析1. 开关动作不精确:开关电源的稳定性问题往往与开关件的精度有关。
开关电源在开关过程中既要迅速切换又要保持较高的精度,若开关动作不准确,就会导致输出电压波动。
2. 电路参数变化:开关电源的电路参数可能会随着温度变化、元器件老化等因素而发生变化。
这些参数的变化可能导致开关电源的输出电压产生波动或偏离设定值。
3. 输入电源的干扰:开关电源在工作时,输入电源可能会受到外界干扰,如电磁辐射、电压波动等。
这些干扰可能会传导到开关电源输出端,引起输出电压的不稳定性。
三、解决开关电源稳定性问题的方法1. 优化开关设计:通过改进开关电源的设计,提高开关件的精度和动作准确性,减小开关动作带来的波动。
可以采用高精度的开关元器件,优化控制算法,提升开关电源的稳定性。
2. 对电路参数进行补偿调节:通过对开关电源的电路参数进行实时监测和测量,利用反馈控制算法对电路参数进行补偿调节,使得开关电源在工作过程中能够自动适应参数变化,提高稳定性。
3. 增加滤波电路:在开关电源输出端加入滤波电路,能够有效地滤除输入电源的干扰信号和谐波成分。
滤波电路的设计应考虑到频域特性和干扰的消除效果,以提高开关电源的稳定性。
4. 提高工作温度范围和负载适应能力:开关电源在设计中考虑到工作温度范围和负载变化的适应能力,使其在不同工况下能够保持较好的稳定性。
开关电源ul标准开关电源是电子设备中常用的一种电源类型,其具有高效率、小体积、可靠性高等优点,因此被广泛应用于各种电子设备中。
在国际上,关于开关电源的安全标准和规范由国际电工委员会(IEC)制定,其中UL标准是美国开关电源的安全认证标准之一。
UL标准是美国安全实验室(Underwriters Laboratories Inc.)制定的一系列标准,UL标准对开关电源的安全性能进行了严格的规定和测试,以确保其在使用过程中不会给用户和设备带来安全隐患。
UL标准对开关电源的电气安全性进行了要求。
开关电源在工作时会产生高压电流,因此其电气安全性特别重要。
UL标准要求开关电源必须具有过载保护、短路保护、过压保护等功能,以保证在异常情况下能够及时切断电源,避免对设备和用户造成危害。
UL标准还对开关电源的热性能进行了规定。
开关电源在工作时会产生一定的热量,如果散热不好,可能会导致温度过高,从而引发火灾等安全事故。
UL标准要求开关电源必须具有良好的散热设计,以确保在长时间工作时能够保持稳定的温度,不会超过安全范围。
UL标准还对开关电源的绝缘性能进行了规定。
开关电源中的电路元件之间通常存在高压差,如果绝缘不好,可能会导致电击等安全事故。
UL标准要求开关电源必须具有良好的绝缘设计,以保证各个电路之间的绝缘性能符合要求。
UL标准还对开关电源的可靠性进行了要求。
开关电源作为电子设备的重要组成部分,其可靠性直接关系到整个设备的稳定性和寿命。
UL标准要求开关电源必须具有良好的可靠性设计,包括采用高质量的元件、严格的工艺要求等,以确保其在长时间工作时能够保持稳定的性能。
UL标准还对开关电源的环境适应性进行了规定。
开关电源通常会在各种不同的环境条件下使用,包括温度、湿度、震动等。
UL标准要求开关电源必须具有良好的环境适应性,能够在各种恶劣的环境条件下正常工作,不会受到外界环境的影响。
UL标准是美国开关电源的安全认证标准之一,其对开关电源的安全性能进行了严格的规定和测试。
如何选择合适的开关电源开关电源是一种将交流电转换为直流电供电设备的电源装置。
它广泛应用于各种电子设备中,如计算机、通讯设备、工业控制系统等。
选择合适的开关电源对于设备的正常运行至关重要。
本文将从功率需求、输出特性、可靠性等多个方面介绍如何选择合适的开关电源。
一、功率需求首先,需要明确需要供电的设备的功率需求。
开关电源的功率通常以瓦特(W)为单位进行标示。
在选购开关电源时,需要确保所选电源的额定功率比设备的功率需求要高一些,以提供足够的供电能力。
过小的功率可能导致设备无法正常工作,过大的功率则可能浪费电能或导致电源的不稳定性。
二、输出特性开关电源的输出特性是一个关键考虑因素。
首先,需要确定设备所需的输出电压和输出电流。
一般来说,开关电源应该提供稳定的输出电压,以确保设备的正常运行。
另外,也要注意开关电源的输出电流是否能够满足设备的需求,过小的输出电流可能导致设备无法正常工作。
此外,还需要关注开关电源的纹波和噪声水平。
纹波是指输出电压的波动,噪声是指在电源输出上引入的杂散信号。
过高的纹波和噪声会对设备的正常运行产生不利影响,因此,选择开关电源时应该尽量选择纹波和噪声较低的产品。
三、效率和能效标准开关电源的效率是指它将输入电能转换为输出电能的比例。
高效率的开关电源可以减少能源浪费,并且在工作时产生较少的热量,有助于提高设备的可靠性。
因此,在选购时应尽量选择高效率的开关电源。
能效标准用于评估开关电源的能源利用效率。
一些国家和地区制定了能效标准,要求生产和销售的开关电源符合一定的能效要求。
在选择开关电源时,可以参考当地的能效标准,并选择符合要求的产品。
四、可靠性和安全性可靠性是选择开关电源时需要考虑的重要因素之一。
可靠性取决于电源的设计和制造质量。
一些可靠性指标包括寿命、故障率和温度等。
寿命越长,故障率越低的开关电源一般更可靠。
此外,开关电源的安全性也是一个重要的考虑因素。
应该选择符合相关安全标准的产品,如过压保护、过流保护、短路保护等功能可以提高设备的安全性。
开关电源知识点总结开关电源是一种将交流电转换为直流电的电源设备。
它由输入端、输出端和控制电路组成。
开关电源具有体积小、效率高、稳定性好等优点,在现代电子设备中得到广泛应用。
本文将从开关电源的工作原理、分类、特点以及应用等方面进行总结。
一、开关电源的工作原理开关电源的工作原理是利用开关管的导通和截止来实现电流的开关控制。
其基本电路由输入整流滤波电路、功率变换电路和输出稳压电路组成。
当输入交流电经过整流滤波电路后转换为直流电,然后经过功率变换电路进行直流电压的变换和调整,最后经过输出稳压电路得到稳定的直流电输出。
二、开关电源的分类根据输入电源的不同,开关电源可以分为交流输入型和直流输入型。
交流输入型开关电源主要用于家用电器等领域,直流输入型开关电源主要用于电子设备和通信设备等领域。
根据输出电压的性质,开关电源可以分为恒压型和恒流型。
恒压型开关电源输出电压恒定,适用于大多数电子设备;恒流型开关电源输出电流恒定,适用于LED照明等需求电流稳定的设备。
三、开关电源的特点1.效率高:开关电源的效率通常在80%以上,远高于传统的线性电源。
2.体积小:由于开关电源使用高频开关元件,可以大大减小变压器的体积,使整个电源的体积更加紧凑。
3.稳定性好:开关电源采用反馈控制,能够实现输出电压的稳定性和负载调整性能较好。
4.可靠性高:开关电源具有过载、过压、过流、短路保护等功能,能够有效保护电源和负载设备的安全。
5.工作频率高:开关电源采用高频开关元件,工作频率通常在20kHz以上,避免了传统电源的60Hz低频干扰。
四、开关电源的应用开关电源在各个领域都有广泛的应用。
在电子设备中,开关电源广泛应用于计算机、手机、平板电脑、电视等消费电子产品;在通信设备中,开关电源用于无线基站、通信交换机等设备;在工业控制领域,开关电源被广泛应用于PLC、变频器、伺服系统等设备;在LED照明领域,开关电源用于LED灯带、LED灯泡等。
总结:开关电源是一种将交流电转换为直流电的电源设备,具有体积小、效率高、稳定性好等优点。
了解电脑电源的不同类型及其性能比较电源是电脑的核心组件之一,它为计算机提供稳定的电力供应。
在选择电源时,了解不同类型的电源以及它们的性能比较是至关重要的。
本文将介绍电脑电源的不同类型,包括传统电源和新型电源,以及它们在性能方面的比较。
一、传统电源类型传统电源一般是通过交流电转换为直流电来为电脑供电的。
常见的传统电源类型包括线性电源和开关电源。
1. 线性电源线性电源是较早期的一种传统电源类型,它通过电源变压器来将交流电转换为所需的直流电。
线性电源具有较低的成本和较小的体积,但效率较低,工作时产生较多的热量和噪音。
2. 开关电源开关电源是目前应用较广泛的一种传统电源类型。
开关电源通过高频开关进行电能转换,具有较高的效率,能够稳定输出所需的直流电,且体积相对较小。
开关电源的稳定性和可靠性较好,但造价较高。
二、新型电源类型随着技术的不断进步,新型电源逐渐应用于电脑系统。
新型电源一般分为无功率因数校正(PFC)电源和模块化电源两种类型。
1. 无功率因数校正(PFC)电源无功率因数校正电源是一种通过调整输入电流与输入电压之间的相位关系来提高功率因数的电源。
它能够更高效地利用电网能源,减少对电网的污染。
无PFC电源有效避免了功率因数低下可能引起的供电问题。
2. 模块化电源模块化电源是一种将电源分为独立的模块,可根据实际需求进行模块替换或增加的电源系统。
它的优点在于可以根据电脑系统的需求进行灵活的扩展和拆解。
模块化电源可以提高电脑系统的可维护性和升级性。
三、传统电源与新型电源的性能比较传统电源和新型电源在性能方面存在一定差异。
下面将对它们的几个方面进行具体比较。
1. 效率传统电源的效率相对较低,一般在70%到80%之间。
而新型电源的效率相对较高,特别是模块化电源的效率可达90%以上。
高效率的电源能够更好地转换电能,减少能量的浪费和损耗。
2. 稳定性传统电源和新型电源在供电稳定性上并无明显差距,都能够提供稳定的直流电。
电源可靠性设计研究 1 引言 电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计 2 开关电源电气可靠性设计 2.1 供电方式的选择 集中式供电系统各输出之间的偏差以及由于传输距离的不同而造成的压差降低了供电质量,而且应用单台电源供电,当电源发生故障 2.2 电路拓扑的选择 开关电源一般采用单端正激式、单端反激式、双管正激式、双单端正激式、双正激式、推挽式、半桥、全桥等八种拓扑。
2.3 控制策略的选择 在中小功率的电源中,电流型PWM控制是大量采用的方法,它较电压控制型有如下优点:逐周期电流限制,比电压型控制更快,不 硬开关技术因开关损耗的限制,开关频率一般在350kHz以下,软开关技术是应用谐振原理,使开关器件在零电压或零电流状态下通 2.4 元器件的选用 因为元器件直接决定了电源的可靠性,所以元器件的选用非常重要。
元器件的失效主要集中在以下四个方面: (1)制造质量问题 质量问题造成的失效与工作应力无关。
质量不合格的可以通过严格的检验加以剔除,在工程应用时应选用定点生产厂家的成熟产品, (2)元器件可靠性问题 元器件可靠性问题即基本失效率的问题,这是一种随机性质的失效,与质量问题的区别是元器件的失效率取决于工作应力水平。
在一 ①电阻在室温下按技术条件进行100%测试,剔除不合格品。
②普通电容器在室温下按技术条件进行100%测试,剔除不合格品。
③接插件按技术条件抽样检测各种参数。
④半导体器件按以下程序进行筛选: 目检→初测→高温贮存→高低温冲击→电功率老化→高温测试→低温测试→常温测试 筛选结束后应计算剔除率Q Q=(n / N)×100% 式中:N——受试样品总数; n——被剔除的样品数; 如果Q超过标准规定的上限值,则本批元器件全部不准上机,并按有关规定处理。
在符合标准规定时,则将筛选合格的元器件打漆点标注,然后入专用库房供装机使用。
(3)设计问题 首先是恰当地选用合适的元器件: ①尽量选用硅半导体器件,少用或不用锗半导体器件。
②多采用集成电路,减少分立器件的数目。
③开关管选用MOSFET能简化驱动电路,减少损耗。
④输出整流管尽量采用具有软恢复特性的二极管。
⑤应选择金属封装、陶瓷封装、玻璃封装的器件。
禁止选用塑料封装的器件。
⑥集成电路必须是一类品或者是符合MIL-M-38510、MIL-S-19500标准B-1以上质量等级的军品。
⑦设计时尽量少用继电器,确有必要时应选用接触良好的密封继电器。
⑧原则上不选用电位器,必须保留的应进行固封处理。
⑨吸收电容器与开关管和输出整流管的距离应当很近,因流过高频电流,故易升温,所以要求这些电容器具有高频低损耗和耐高温的 在潮湿和盐雾环境下,铝电解电容会发生外壳腐蚀、容量漂移、漏电流增大等情况,所以在舰船和潮湿环境,最好不要用铝电解电容 钽电解电容温度和频率特性较好,耐高低温,储存时间长,性能稳定可靠,但钽电解电容较重、容积比低、不耐反压、高压品种(》 关于降额设计: 电子元器件的基本失效率取决于工作应力(包括电、温度、振动、冲击、频率、速度、碰撞等)。
除个别低应力失效的元器件外,其 ①电阻的功率降额系数在0.1~0.5之间。
②二极管的功率降额系数在0.4以下,反向耐压在0.5以下。
③发光二极管电压降额系数在0.6以下,功率降额系数在0.6以下。
④功率开关管电压降额系数在0.6以下,电流降额系数在0.5以下。
⑤普通铝电解电容和无极性电容的电压降额系数在0.3~0.7之间。
⑥钽电容的电压降额系数在0.3以下。
⑦电感和变压器的电流降额系数在0.6以下。
(4)损耗问题 损耗引起的元器件失效取决于工作时间的长短,与工作应力无关。
铝电解电容长期在高频下工作会使电解液逐渐损失,同时容量亦同 2.5 保护电路的设置 为使电源能在各种恶劣环境下可靠地工作,应设置多种保护电路,如防浪涌冲击、过压、欠压、过载、短路、过热等保护 3 电磁兼容性(EMC)设计 开关电源因采用脉冲宽度调制(PWM)技术,其脉冲波形呈矩形,上升沿与下降沿均包含大量的谐波成分,另外输出整流管的反向 如图1所示,产生电磁干扰有三个必要条件:干扰源、传输介质、敏感的接收单元,EMC设计就是破坏这三个条件中的一个。
1形成电磁干扰的三个条件 对于开关电源而言,主要是抑制干扰源,干扰源集中在开关电路与输出整流电路。
采用的技术包括滤波技术、布局与布线 良好的布局和布线技术也是控制噪声的一个重要手段。
为减少噪声的发生和防止由噪声导致的误动作,应注意以下几点: ①尽量缩小由高频脉冲电流所包围的面积。
②缓冲电路尽量贴近开关管和输出整流二极管。
③脉冲电流流过的区域远离输入输出端子,使噪声源和出口分离。
④控制电路和功率电路分开,采用单点接地方式,大面积接地容易引起天线作用,所以建议不要采用大面积接地方式。
⑤必要时可以将输出滤波电感安置在地回路上。
⑥采用多只低ESR(等效串联电阻)的电容并联滤波。
⑦采用铜箔进行低感低阻配线。
⑧相邻印制线之间不应有过长的平行线,走线尽量避免平行,采用垂直交叉方式,线宽不要突变,也不要突然拐角。
禁止环形走线。
⑨滤波器的输入和输出线必须分开。
禁止将开关电源的输入线和输出线捆扎在一起。
对于辐射干扰主要应用密封屏蔽技术,在结构上实行电磁封闭,要求外壳各部分之间具有良好的电磁接触,以保证电磁的连续性。
目 4 电源设备可靠性热设计 除了电应力之外,温度是影响设备可靠性最重要的因素。
电源设备内部的温升将导致元器件的失效,当温度超过一定值时 强迫风冷的散热量比自然冷却大十倍以上,但是要增加风机、风机电源、联锁装置等,这不仅使设备的成本和复杂性增加,而且使系 5 安全性设计 对于电源而言,安全性历来被确定为最重要的性能之一,不安全的产品不但不能完成规定的功能,而且还有可能发生严重 对于商用设备市场,具有代表性的安全标准有UL、CSA、VDE等,内容因用途而异,容许泄漏电流在0 5mA~5mA之间,我国军用 为了防止烧伤,对于可能与人体接触的暴露部件(散热器、机壳等),当环境温度为25℃时,其最高温度不应超过60℃,面板和手 6 三防设计 三防设计是指防潮设计、防盐雾设计和防霉菌设计。
在设计时,对于密封有要求的元器件应采取密封措施;对于不可修复的组合装置可采用环氧树脂灌封;所用元器件、原材料的吸湿度应 7 结语 以上建议只适用于军用电源,对于商用和工业用产品可以在某些方面作出不同的选择。
总之,电源设备可靠性的高低,不仅与电气设兼容设计、热设计、安全性设计、三防设计等方面。
因为任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们台电源供电,当电源发生故障时可能导致系统瘫痪。
分布式供电系统因供电单元靠近负载,改善了动态响应特性,供电质量好,传输损耗小,效率高,全桥等八种拓扑。
单端正激式、单端反激式、双单端正激式、推挽式的开关管的承压在两倍输入电压以上,如果按60%降额使用,则使开关管不易选型限制,比电压型控制更快,不会因过流而使开关管损坏,大大减小过载与短路的保护;优良的电网电压调整率;迅捷的瞬态响应;环路稳定,易补偿;纹波比件在零电压或零电流状态下通断,实现开关损耗为零,从而可将开关频率提高到兆赫级水平,这种应用软开关技术的变换器综合了PWM变换器和谐振变用定点生产厂家的成熟产品,不允许使用没有经过认证的产品。
率取决于工作应力水平。
在一定的应力水平下,元器件的失效率会大大下降。
为剔除不符合使用要求的元器件,包括电参数不合格、密封性能不合格、低损耗和耐高温的特性。
环境,最好不要用铝电解电容。
由于受空间粒子轰击时,电解质会分解,所以铝电解电容也不适用于航天电子设备的电源中。
低、不耐反压、高压品种(》125V)较少、价格昂贵。
别低应力失效的元器件外,其它均表现为工作应力越高,失效率越高的特性。
为了使元器件的失效率降低,所以在电路设计时要进行降额设计。
降额程失,同时容量亦同步下降,当电解液损失40%时,容量下降20%;电解液损失0%时,容量下降40%,此时电容器芯子已基本干涸,不能再予短路、过热等保护电路。
成分,另外输出整流管的反向恢复也会产生电磁干扰(EMI),这是影响可靠性的不利因素,因而使电磁兼容性成为系统的重要问题。
这三个条件中的一个。
技术、布局与布线技术、屏蔽技术、接地技术、密封技术等。
EMI按传播途径分为传导干扰和辐射干扰。
传导噪声的频率范围很宽,从10kHz~30MHz 应注意以下几点:面积接地方式。
要突然拐角。
禁止环形走线。
电磁的连续性。
目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高温度超过一定值时,失效率将呈指数规律增加,温度超过极限值时将导致元器件失效。
国外统计资料表明电子元器件温度每升高2℃,可靠性下降10%成本和复杂性增加,而且使系统的可靠性下降,另外还增加了噪声和振动,因而在一般情况下应尽量采用自然冷却,而不采用风冷、液冷之类的冷却方还有可能发生严重事故,造成机毁人亡的巨大损失。
为保证产品具有相当高的安全性,必须进行安全性设计。
电源产品安全性设计的内容主要是防止触 5mA~5mA之间,我国军用标准GJB1412规定的泄漏电流小于5mA。
电源设备对地泄漏电流的大小取决于EMI滤波器电容Cy的容量,如图2所示。
从度不应超过60℃,面板和手动调节部分的最高温度不超过50℃。
用元器件、原材料的吸湿度应较小,不得使用含有棉、麻、丝等易霉制品;对密封机箱、机柜应设置防护网,以防昆虫和啮齿动物进入;直接暴露在大气中可靠性的高低,不仅与电气设计,而且同元器件、结构、装配、工艺、加工质量等方面有关。
可靠性是以设计为基础,在实际工程应用上,还应通过各以我们应充分认识到电源产品可靠性设计的重要性。
量好,传输损耗小,效率高,节约能源,可靠性高,容易组成N+1冗余供电系统,扩展功率也相对比较容易。
所以采用分布式供电系统可以满足高可靠额使用,则使开关管不易选型。
在推挽和全桥拓扑中可能出现单向偏磁饱和,使开关管损坏,而半桥电路因为具有自动抗不平衡能力,所以就不会出现应;环路稳定,易补偿;纹波比电压控制型小得多。
生产实践表明电流控制型的50W开关电源的输出纹波在25mV左右,远优于电压控制型。
综合了PWM变换器和谐振变换器两者的优点,接近理想的特性,如低开关损耗、恒频控制、合适的储能元件尺寸、较宽的控制范围及负载范围,但是数不合格、密封性能不合格、外观不合格、稳定性差、早期失效等,应进行筛选试验,这是一种非破坏性试验。
通过筛选可使元器件失效率降低1~2个降额设计。
降额程度,除可靠性外还需考虑体积、重量、成本等因素。