声波测井重要知识点
- 格式:docx
- 大小:345.77 KB
- 文档页数:11
声波测井重要知识点声波测井是地球物理勘探中常用的一种测井方法,其原理是利用声波在地层中的传播特性来获取有关地层结构和岩石属性的信息。
声波测井包括测量地震波在地层中传播时间和振幅的测井方法,以及通过分析地震反射和折射来确定地层性质的地震测井方法。
本文将介绍声波测井的基本原理以及几个重要的知识点。
声波测井原理:声波在地层传播时会受到地层的吸收、散射和反射等因素的影响,从而传播的速度、振幅和频率会发生变化。
通过测量声波的传播特性,可以获得有关地层的信息。
声波测井的主要知识点如下:1.声速:声速是声波在介质中传播的速度,它受到地层岩石的密度和流体饱和度等因素的影响。
常见的声速测井方法有全波传播时差测井、全波传播振幅测井和多道测井等。
2.声频率:频率是声波的振动次数,它对地层信息的分辨能力有很大影响。
高频率的声波能够提供更高的地层分辨率,但传播距离较短,低频率的声波可以传播更远,但分辨率较低。
合理选择声波的频率可以获得更准确的地层信息。
3.反射:地震波在地层中传播时,会遇到不同介质之间的反射界面,从而产生反射波。
反射波的振幅和到达时间可以提供地层的界面信息,如岩石层位、裂缝、气水界面等。
4.折射:地震波在地层中传播时,会由于介质的变化而发生弯折,这种现象称为折射。
折射波的振幅和到达时间可以提供地层的速度、倾角和入射角等信息。
5.衰减:声波在地层中传播时会由于介质的吸收和散射而衰减。
衰减会导致声波传播距离的减小和振幅的减弱。
对于薄层和含有流体的岩石,衰减影响更为显著。
6.岩石弹性参数:声波测井可以通过测量声波传播速度和密度等参数来确定地层岩石的弹性参数,如岩石的弹性模量、泊松比、剪切模量等。
这些参数对于岩石力学性质和岩性解释非常重要。
7.流体饱和度:声波测井可以通过测量声波速度的变化来估算地层中的流体饱和度。
由于流体的密度和声速与岩石不同,当地层中存在流体时,声速会有明显的变化。
声波测井可以提供丰富的地层信息,对于确定含油气层、划分地层、解释岩性和评价油气储层等都具有重要意义。
声波测井声波测井是通过测量井壁介质的声学性质来判别地层特性及井眼工程状况的一类测井方法。
主要内容:声速测井(声波时差测井),声幅测井,全波列测井。
主要应用:判断岩性,估算储集层的孔隙度,检查固井质量。
第一节岩石的声学性质声波是物质运动的一种形式,它由物质的机械震动而产生,通过质点间的相互作用将震动由近及远的传递而传播。
对于声波测井来说,井下岩石可以认为是弹性介质,在声震动作用下,产生切变形变和压缩形变,因而,可以传播横波,也可以传播纵波。
一、岩石的弹性弹性体:物体受外力作用发生形变,取消外力能恢复到原来状态的物体,叫弹性体,这种形变叫弹性形变;塑性体:取消外力后不能恢复到原来状态的物体;物体是否为弹性体的决定因素:物体本身的性质、外界条件(压力、温度)、外力的作用方式、作用时间和大小。
对于声波测井来讲,声源发出的声波能量较小,作用在岩石上的时间短,故将岩石看成弹性体,其理论为弹性波在介质中的传播性质。
弹性体的弹性力学性质:扬氏模量E,泊松比σ,体积形变模量K等。
杨氏模量(E)--- 弹性体拉长或压缩时应力(F/A)与应变(ΔL/L)之比。
切变模量(μ)---弹性体在剪切力作用下,切应力(F t/A)与切应变(Δl/l)之比。
泊松比(σ) --- 弹性体在形变时横向形变(相对减缩ΔD/D)和纵向形变(相对伸长ΔL/L)之比。
体积形变弹性模量(K) ---在外力作用下,物质体积相对变化(体积应变)与应力之比。
它的倒数为体积压缩系数。
二、岩石中的声波传播特性声波测井的声波频率:15Khz~30Khz(声波和超声波)。
质点的震动以波动形式在介质内传播,根据质点震动方向与波的传播方向的关系,分为;纵波—质点震动方向与波传播方向一致(压缩波);横波—质点震动方向与波传播方向相互垂直(剪切波、切变波);声波在介质中的传播速度主要取决于介质的弹性模量和密度。
在均匀介质中,声波速度与杨氏模量E 、泊松比σ、密度ρ的关系为:)21)(1()1(σσσρ-+-⋅=E v p )1(21σρ+⋅=E v s 三、声波在介质界面上的传播特性1、波的反射和折射波阻抗----定义为介质的声速与密度之乘积。
一、名词解释杨氏模量:按广义胡克定律,在弹性限度内,被当做弹性体处理的岩石在发生伸长或压缩形变时,拉伸或压缩应力与同方向上的相对伸长或压缩,即外加应力方向上的线应变成正比,其比例系数即为杨氏模量E。
泊松比:物体在弹性限度内,在受拉伸应力时,受力方向上发生伸长,其形变用纵向线应变(x轴方向)表示,而在于受力方向垂直的方向上发生缩短,其形变用横向线应变和(y轴和z轴方向)表示,其横向线应变(缩短)与纵向线应变(伸长)的比值即为泊松比。
滑行纵波:折射纵波的折射角为90°,产生的折射纵波沿界面传播称为滑行纵波孔隙度:岩石所有空隙体积占岩石总体积的百分比声波时差:在物理声学中,声速的倒数1/v称为慢度,在声波测井中称为声波时差(声波信号在1m 厚的岩层中传播所用时间)周波跳跃:声波时差测井曲线上出现声波时差值抖动性增加滑行横波:折射横波的折射角为90°,产生的折射横波沿界面传播称为滑行横波全波列:指滑行纵波、滑行横波、瑞利波、管波、斯通波的总和瑞利波:在固体的自由表面上,传播方向沿表面的波瑞利角:θr=arcsinV*/Vr,并认为在井内声波以瑞利角入射时,在井壁地层的表面产生瑞利波斯通滤波(管波):井内流体中传播的波自由套管:套管内外都是空气或水(或低密度钻井液)的套管弯曲波:在井壁地层中传播时,井壁上地层中的质点在与井轴垂直方向上的位移与扭转波德位移不在一个平面内,而是沿井的半径方向,即与井壁表面垂直传播时,井壁产生弯曲形变扭转波:在井壁地层中传播时,井壁上质点存在沿水平方向上的位移,而且在井壁相对表面位移相反方向传播时,井壁地层产生扭转形变各向异性(TI):介质中有一个对称平面(如垂直于地面的井轴)在沿该轴方向上和与该轴垂直方向上介质的声波速度、弹性力学性质有差异,而与该轴垂直的水平面上,各个方向介质的声波速度和弹性力学性质可以认为是相同的横向各向异性(HTI):与井轴垂直的水平面上,在各个不同的方位上呈现出的各向异性第一、第二临界角:①产生滑行纵波时,入射波的入射角θ1*=arcsin(VP1/VP2)②产生滑行横波是,入射波的入射角θ2* = arcsin(VP1/VS2)二、简述题1.声波在两种介质的分界面处是如何传播的,请画图说明?2.什么是滑行纵波,如何产生滑行纵波?在井壁上沿井轴方向以纵波模式传播,即介质中质点的振动方向与波的传播方向一致的波叫滑行纵波。
声波测井的基本原理声波测井是一种常用的地球物理勘探方法,它利用声波在地下介质中传播的特性来获取地下岩石的物理参数。
声波测井的基本原理可以总结为以下几点。
1. 声波传播原理声波是一种机械波,它可以在固体、液体和气体等介质中传播。
在地下岩石中,声波的传播速度与岩石的密度、模量以及岩石中的孔隙度有关。
当声波传播到不同介质之间的界面时,会发生反射和折射现象,通过测量声波的传播时间和传播速度,可以获得地下岩石的结构和性质信息。
2. 声波发射与接收声波测井通常通过在井中放置声源和接收器来实现。
声源会产生一系列的声波脉冲,这些声波脉冲沿着井筒向地下传播。
当声波脉冲遇到地层界面时,一部分能量会被反射回来,一部分能量会继续向下传播。
接收器可以接收到反射回来的声波信号,并将其转化为电信号。
3. 声波传播时间与距离声波传播的速度与介质的物理性质有关。
在地下岩石中,声波的传播速度通常比较稳定,因此可以利用声波传播时间与声波传播距离的关系来计算声波的传播速度。
通过测量声波的传播时间,可以推算出声波在地层中的传播距离,从而得到地下岩石的深度信息。
4. 声波速度与地层参数地下岩石的物理参数可以通过声波的传播速度来推算。
例如,声波在固体中的传播速度与固体的弹性模量和密度有关,声波在液体中的传播速度与液体的密度有关。
通过测量声波的传播速度,可以反推出地下岩石的弹性模量、密度等物理参数,从而了解岩石的性质和结构。
5. 声波测井的应用声波测井广泛应用于油气勘探、地质工程和水文地质等领域。
在油气勘探中,声波测井可以帮助确定油气藏的储集层和非储集层,评估油气储量和产能。
在地质工程中,声波测井可以评估地下岩石的稳定性和工程建设的可行性。
在水文地质中,声波测井可以帮助研究地下水的分布和流动规律。
声波测井的基本原理是利用声波在地下介质中传播的特性来获取地下岩石的物理参数。
通过测量声波的传播时间和传播速度,可以推算出地下岩石的深度、结构和性质信息。
声波测井1.普通声波测井声波在不同介质中传播时,其速度、幅度衰减及频率变化等声学特性是不同的。
声波测井就是以岩石等介质的声学特性为基础而提出的一种研究钻井地质剖面、评价固井质量等问题的测井方法。
声波测井分为声速测井和声幅测井。
声速测井(也称声波时差测井)测量地层声波速度。
地层声波速度与地层的岩性、孔隙度及孔隙流体性质等因素有关。
因此,根据声波在地层中的传播速度,就可以确定地层孔隙度、岩性及孔隙流体性质。
1.1岩石的声学特性声波是一种机械波,它是由物质的机械振动而产生的,通过介质质点间的相互作用将振动由近及远的传递而传播的,所以,声波不能在真空中传播。
根据声波的频率(声波在介质中传播时,介质质点每秒振动的次数)可将声波分为:次声波(频率低于20Hz);可闻声波(20Hz至20kHz);超声波(频率大于20kHz)。
各类声波测井用的机械波是可闻声波或超声波。
1.1.1岩石的弹性1.1.1.1弹性力学的基本假设:1)物体是连续的,即描述物体弹性性质的力学参数及形变状态的物理量是空间的连续函数;2)物体是均匀,即物体由同一类型的均匀材料组成,在物体中任选一个体积元,其物理、化学性质与整个物体的物理、化学性质相同;3)物体是各向同性的,即物体的性质与方向无关;4)物体是完全线弹性的,在弹性限度内,物体在外力作用下发生弹性形变,取消外力后物体恢复到初始状态。
应力与应变存在线性关系,并服从广义的胡克定律。
满足以上基本假设条件的物体称为理想的完全线弹性体,描述介质弹性性质的参数为常数。
当外力取消后不能恢复到其原来状态的物体称为塑性体。
一个物体是弹性体还是塑性体,除与物体本身的性质有关外,还与作用其上的外力的大小、作用时间的长短以及作用方式等因素有关,一般情况下,外力小且作用时间短,物体表现为弹性体。
声波测井中声源发射的声波能量较小,作用在地层上的时间也很短,所以对声波速度测井来讲,岩石可以看作弹性体。
因此,可以用弹性波在介质中的传播规律来研究声波在岩石中的传播特性。
三、声波在介质界面上的传播特性声波通过传播速度不同的两种介质Ⅰ和Ⅱ的分界面时,会发生反射和折射,并遵循光的反射定律和折射定律。
图6-2(a)是声波的反射和折射的示意图。
折射定律的数学表达式是 21s i n s i n v v =βα式中α—入射角;β—折射角;V1、v2—分别为介质Ⅰ和介质Ⅱ的声速。
因为V1、v2对一定的介质是个固定值,所以随着入射角α的增大折射角β也增大,如在v2>v1的情况下,则β>α。
当入射角增大到某一角度i 时,折射角达到90°,见图6-2(b)。
此时,折射波将在第Ⅱ介质中以v2的速度沿界面传播,这种折射波在声波测井中叫滑行波。
入射角i 叫临界角。
2声波速度测井声波速度测井简称声速测井,测量滑行波通过地层传播的时差△t (声速的倒数,单位是μS/m)。
是目前用以估算孔隙度、判断气层和研究岩性等的主要测井方法之一。
它的下井仪器主要由声波脉冲发射器和声波接收器构成的声系以及电子线路组成。
声系主要有三种类型,单发射双接收声系和双发射双接收及双发射四接收声系。
一、单发射双接收声速测井仪的测量原理1.单发射双接收声速测并仪的简单介绍这种下井仪器包括三个部分:声系、电子线路和隔声体,声系由一个发射换能器(发射探头)T 和两个接收换能器(接收探头)R1、R2组成。
如图6-3所示。
电子线路用来提供脉冲电信号,触发发射换能器T 发射声波,接收换能器R1、R2接收声波信号,并转换成电信号。
发射与接收换能器是由具有压电效应物理性质的锆钛酸铅陶瓷晶体制成。
在脉冲电信号的作用下以其压电效应的逆效应产生声振动,发射声波;在声波信号的作用下,R 以其压电效应的正效应接收声波,形成电信号.待放大后经电缆送至地面仪器记录。
实际测井时,电子线路每隔一定的时间给发射换能器一次强的脉冲电流,使换能器晶体受到激发而产生振动,其振动频率由晶体的体积和形状所决定。
目前,声速测井所用的晶体的固有振动频率为20 kHz 。
第一章:声波测井物理基础1、描述声波的基本参数频率f :声音传播过程中,介质震动的频率即介质质点每秒钟振动的次数就是声波的频率周期T :指介质完成一次振动所需要的时间速度c或v:指声波的传播速度波长λ:声音在介质中传播时,相位相同的两点在空间上的距离称为声波的波长2、声速(时差)的影响因素以及如何影响,流体、压力、岩性、密度等等(一)岩性<最主要的影响因素,灰质含量↑声速↑>(二)孔隙和流体<孔隙性岩层声速<非孔隙性、含气饱和度↑纵波速度↓横波速度↑> (三)压力<压力↑波速↑极大值后基本保持不变,压力对声速影响可达35%+>(四)温度<相对压力而言,影响很小可忽略、温度↑纵波速度稍许↓>(五)岩石生成的地质条件<老地层的声速>新地层、构造顶部的声速>构造翼部>(六)埋藏深度<深度↑声速↑>3、泥浆对超声的衰减因素泥浆对超声波的衰减包括吸收衰减和固相颗粒散射衰减两部分(一)泥浆对超声波的吸收衰减:主要有泥浆的粘滞、热传导以及泥浆的微观过程引起的弛豫效应(二)泥浆固相颗粒对超声波的散射衰减:泥浆中含有的固相颗粒引起的散射衰减、泥浆添加剂引起的散射衰减、声频散4、声阻抗的概念及其对反射波和透射波的影响声阻抗:地震波在介质中传播时,作用于某个面积上的压力与单位时间内垂直通过此面积的指点流量之比,其数值等于介质密度ρ与波速v的乘积,即Z=ρ.v。
影响:声波发生反射和折射的能量分配取决于泥浆和井壁两种介质的声阻抗值大小、入射角和折射角的关系。
当声波垂直井壁入射时,θ1θ2p=0,从右式可以看出,介质1和介质2声阻抗分别为Z1、Z2Β为反射系数α为折射系数,系数越大,越易进行Z1Z2声阻抗差越大,声耦合越差,声能量传递就越差,通过界面传播的折射波能量就小,若两介质声阻抗相近,声耦合率较好,声波都形成折射波通过界面传播到介质2,这时反射波能量就非常小,当Z1<<Z2时,声阻抗差异明显,声耦合差,不利于声音传递。
5、裂缝对声波慢度和幅度的影响,高角度裂缝和低角度裂缝分别有什么影响声波慢度影响:对垂直裂缝或接近垂直的裂缝,声波直接在岩石骨架中传播,不受裂缝影响,测出的时差和没有裂缝时的岩石一样;对于水平或低角度裂缝,声波在岩层中传播要通过该裂缝,时差就会增加,裂缝密度越大,声波时差增加越多。
幅度的影响:声波通过裂缝的幅度衰减与裂缝倾角和声波全波中各子波的类型有关,一般地说,低倾角裂缝横波幅度衰减大些,高倾角裂缝纵波幅度衰减大些6、滑行波作为首波的条件及优点,理解原理并会推导优点:方便记录,受泥浆干扰信号小7、造成井中声波传播能量衰减的因素(一)波前扩展造成的声能衰减:由于波阵面的几何扩展而造成的声强随传播距离的增加而减弱的现象称为几何衰减(二)声波在介质中的吸收造成的衰减:介质中由于声强(能量)被吸收而造成的衰减(三)井下声波探头指向角特性影响造成的衰减:发射器的等效“球面波”向某一方向发射的能量是由方向而异的(四)泥浆对超声波的衰减<1.泥浆对超声波的吸收衰减2.泥浆固相颗粒对超声波的散射衰减>8、描述声场的基本物理量有哪些?声功率:声波在某一单位时间内,沿其传播方向通过波阵面所传递的能量称为声功率,用W 表示,单位为微瓦(μW)声强:单位面积上声功率的大小称为声强,声强通常用J表示,单位为瓦/米2(W/m2)声压:由于声波传播在介质中造成的压力称为声压,用p表示,单位为微帕μPa声能量密度:声场中,单位体积内的声能量称为声能量密度,用ε表示。
声强公式:J= p*v 即声压乘质点运动速度J= p*v=p2/Z 声强和声压的平方成正比,与波阻抗成反比。
假定声速为c,有ε=j/C=p2/ρc29、斯奈尔定律表达式斯奈尔定律是描述波在分界面上发生发射、折射后波的传播方向的定律,可解释为入射波、反射波和折射波沿分界面视速度相等10、声波换能器常用哪几种效应?通常,换能器是指将能量从一种形式转换为另一种形式的装置(一)磁致伸缩效应:当铁磁性材料的磁状态发生改变时,其尺寸也发生相应的改变。
(二)压电效应:有些多晶体材料在应力作用下发生形变时,会在晶体表面产生电荷,这种现象称为压电效应,具有压电效应的材料称为压电材料目前常用的是圆管状的压电陶瓷,对于圆管状的压电陶瓷换能器来说,发生形变有三个方向上的振动模式,即向井壁发射接近于柱面波的切向振动模,向井眼轴线方向发射近似于平面波的轴向振动模以及向井壁发射柱面波的径向振动模,声波换能器常用的振动模式是径向振动和切向振动第三章:声速测井1、声波时差和波速的关系、不同单位慢度或波速的转换,如us/ft与us/m的转换等声速测井测量的是滑行波穿越地层单位长度时所用的时间,即时差,单位是μs/m或μs/ft 1ft=0.3048m 1in=2.54cm 慢度即为时差2、常见流体如油、气、水的时差范围气的时差比油、水的时差大得多3、会利用威利时间平均公式计算孔隙度及其变形应用,如利用公式求骨架值,孔隙度与时差的关系威利认为声波在单位体积岩石内传播所用的时间由两部分组成:岩石骨架部分(1-ф)以速度Vma传播所经过的时间与充满流体的孔隙部分ф以速度Vf传播所经过的时间纯砂岩水层:纯砂岩油层或气层:同样含泥质砂岩同样计算(了解)4、声速测井包括哪些应用,并掌握常见应用的原理,如何利用声速测井资料判断断层力学性质(一)划分地层<根据岩层中声波的传播速度不同,依据其曲线划分不同的岩层> 砂岩时差较高,胶结物性质和含量对时差有影响,孔隙度、气体含量会使时差增大,泥岩一般显高值,泥岩中含砂、钙质、石膏都会使时差下降。
砂岩的骨架时差值一般为56μs/ft,泥岩为100μs/ft.致密石灰岩(49μs/m)和白云岩(43μs/ft)时差最低,含泥质时差会增大,渗透性砂岩时差最高。
(二)判断气层气层的时差比油、水层的时差大得多,在相同条件下,气层砂岩大于油水层砂岩的时差,气层中由于声波传播能量衰减较大,故声波时差曲线有可能出现周波跳跃现象(三)确定孔隙度根据实际情况建立关系式,例如Δt=A+Bф Δt=(1-ф)Δt ma+фΔt f(四)确定断层力学性质1.压性断层:在长期压应力作用下,在断层附近,时差偏移泥岩正常岩石趋势线,出现负异常现象2.张性断层:在长期张应力作用下,在断层附近,时差偏移泥岩正常岩石趋势线,出现正异常现象(五)地震标定和地球化学指示(六)估算地层压力孔隙度减小量与压力增大量及孔隙度本身有关(线性关系)5、泥质在岩石中的存在形式(一)分散泥质:分散泥质是分散的填充或粘接在砂岩的孔隙中的,它不受上覆岩层压力,在泥质中含有较多的束缚水(二)层状泥质:层状泥质和结构泥质以夹层、颗粒或结核的形式存在于砂岩中,他们与邻层泥岩一样受到上覆岩层的压实作用,并具有相同的特征(三)结构泥质:同层状泥质6、周波跳跃的概念及应用周波跳跃:遇到声波幅度衰减严重的某些地层时,第二道首波幅度可能明显减小,致使第二道首波前沿不能触发,而是触发记录首波后沿,其相位将明显地滞后,造成记录的时差比岩层的实际时差大。
更严重的是,第二道首波被第二周或推延多周后的幅度峰所触发,每差一个峰值,时差就增加一个周期,这种现象称为周波跳跃引起周波跳跃的地层1.裂缝发育的地层或层理发育的地层2.未胶结的纯岩石气层、高压气层3.井径扩大严重的盐岩层以及泥浆中含有气体的地层等*周波跳跃现象可以作为裂缝层段或储集层中含气的特征标志7、常用声速测井声系有哪几种,理解工作原理,各有什么优缺点,什么情况下适用,比如井径变化用什么声系,消除泥浆影响用什么声系?8、掌握体积模型的概念,并会根据体积模型推导不同储层(泥质砂岩含水储层、含油储层、含气储层)利用时差计算孔隙度的公式同本章题3第四章:套管井中的声波测井1、自由套管、套管接箍、胶结良好、中等和较差时的声幅测井响应特征(一)自由套管此时,无水泥胶结的自由套管,此时考虑套管波幅度受套管特性影响。
当源距L=5ft时,在320μs左右出现套管波,自由套管的套管波幅度最大,在固井声幅测井中,以它为标准来刻度其他水泥胶结情况的套管波幅度。
可以根据波形的周期计算套管波的中心或传播中心主频,记录的波形显示出套管波有单一波形频率整个波的包络线有高的振幅和能量,波形有长的持续性,即持续相当长的时间。
无地层波,约在945μs处出现泥浆导波(二)套管接箍一界面胶结好,即套管与水泥胶结良好、水泥与地层无胶结,考虑水泥环参数对套管波幅度的影响。
当源距L=5ft时,在320μs左右出现套管波。
由于套管与水泥胶结良好,部分声能量透射到水泥中,因而套管波幅度大大减小。
在套管波后有小的波动起伏,一般认为是水泥波由于水泥与地层未胶结,在他们中间有个环形流体层耦合很差,只有少量声能进入环形流体层,再进入地层的声能就更少了。
因此波形曲线中无地层波。
最后出现的是泥浆导波(三)胶结良好、中等和较差2、CBL、VDL、SBT的原理,源距特征、各有什么区别、各自的应用范围及优缺点,特别是CBL和VDL的应用3、变密度测井资料的应用(一)检查固井质量:1. 自由套管段:全波列波形中套管波幅度很大,地层波很弱或完全没有。
变密度测井左端套管波为黑白反差明显呈整齐的直线条;右端地层波为灰白模糊不清的曲线条或缺失,表示地层波很弱2. 仅套管与水泥胶结:全波列波形中套管波幅度弱,地层波也非常弱或没有。
变密度测井左端套管波为黑白模糊不清的直线条;右端地层波为灰白模糊不清的曲线条;固井声幅曲线为低幅值3. 部分胶结:全波列波形套管波幅度中等,地层波也呈中等强度。
变密度曲线左端套管波为灰白间隔直线条;右端地层为灰白间隔的曲线条;固井声幅曲线为低-中幅值4. 套管与水泥、水泥与地层都胶结良好:全波列波形中套管波幅度很弱,地层波很强。
变密度曲线左端套管波为灰白模糊不清直线条或缺失;右端地层波为黑白反差明显的曲线条;固井声幅曲线为低幅值。
(二)检查窜槽(三)检查压裂效果:压裂前地层致密,地层波幅度大,变密度黑白反差明显;压裂后裂缝发育,地层波幅度小,变密度灰白模糊显示,弯曲率也大。
4、声幅测井的应用5、如何评价固井质量,如何分别利用CBL资料和VDL资料评价固井质量,掌握评价标准,会分析实际资料同上,了解并学会看书上实际曲线图6、套管井测井时井中有哪些类型的模式波(波型)?(一)套管波:套管波的声强(或幅度)大小与水泥胶结好坏有关,套管波的幅度可以确定第一界面水泥胶结质量(二)水泥环波:水泥环中一般存在微裂隙,导致水泥环能量很弱,波形常被掩盖,故很难观察到(三)地层波:当套管-水泥(第一界面)和水泥-地面(第二界面)胶结良好时,一般出现地层波(滑行纵波和横波),因此出现地层波时说明第二胶结面良好,就可以用地层波幅度的大小来反应第二界面的胶结情况。