一次函数的图象的综合应用
- 格式:doc
- 大小:114.50 KB
- 文档页数:4
一次函数的图形、性质、应用【学习目标】1. 掌握一次函数的性质图像;2.理解待定系数法;3. 能用待定系数法求一次函数,用一次函数表达式解决有关现实问题4.体会用"数形结合"思想解决数学问题.【知识梳理】知识点一.函数图象:画函数图像的一般步骤:列表,描点,连线;知识点二.正比例函数与一次函数的图像与性质1. 一次函数与坐标轴交点:一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0),正比例函数的图像都是过原点。
2.k>0k<0|k|的决定直线的倾斜程度:|k|越大直线越陡,越接近y轴;|k|越小直线越缓,越接近x 轴;b代表与y轴交点的纵坐标。
3. 一次函数 y=kx+b与正比例函数 y=kx的图像间的关系:一次函数y=kx+b的图像可由正比例函数y=kx的图像平移得到,b>0,向上平移|b|个单位;b<0,向下平移|b|个单位。
知识点三.确定一次函数的表达式1.(1)图像过原点函数为正比例函数,可设表达式为y=kx,再找图像上一点的坐标带入表达式,即可求出K;(2)图像不过原点函数为一般的一次函数,可设表达式为y=kx+b,再找图像上两点的坐标带入表达式,即可求出K,b;知识点四.一次函数与一元一次方程的关系1、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值. 从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.2、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围. 【经典习题】题型一:函数图像例1、若正比例函数的图象经过点(2,-3),则这个图象必经过点()A.(-3,-2)B.(2,3)C.(3,-2)D.(-2,3)例2、直线y=2x+1经过点(0,a),则a= .例3、若直线y=kx+b经过A(1,0),B(0,1),则()A. k=-1, b=-1B. k=1, b=1C. k=1, b=-1D. k=-1, b=1练习:1、函数y=kx的图象经过点P(3,-1),则k的值为()A.3B.-3C. 13D.132、当x=5时一次函数y=2x+k和y=3kx-4的值相同,那么k和y的值分别为()A. 1, 11B. -1, 9C. 5, 11D. 3, 3题型二:函数图像及其性质例4、在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限例5、设0<k<2,关于x的一次函数y=kx+2(1-x),当1≤x≤2时的最大值是()A.2k-2 B.k-1 C.k D.k+1例6、已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是()A.B.C.D.例7、对于函数1223y x=-, y的值随x值的________而增大。
一次函数几何综合题解题技巧一次函数是初中数学的重点知识之一,同时也是中考的热点。
它与几何知识的综合应用在中考中主要体现在:利用一次函数求待定系数、一次函数图象与几何图形相结合、一次函数图象的应用等几个方面。
本文将结合实例谈谈一次函数与几何图形综合题的解题技巧。
一、利用一次函数求待定系数解决这类问题的关键是利用已知条件建立方程组,求出待定系数。
具体来说,一般先设出一次函数解析式,利用已知条件得到解析式中的系数,再得到一次函数解析式。
【例1】已知:如图1,在平面直角坐标系中,直线AB与两坐标轴分别交于A、B两点,且与反比例函数的图象在第一象限交于点C。
(1)求该反比例函数的解析式;(2)求直线AB的解析式;(3)根据图像,当C的横坐标在哪个取值范围内时,线段AB不经过第四象限?分析:(1)由点C在反比例函数图象上,可直接求得解析式;(2)由于点C在直线AB上,可设直线AB的解析式为,将点C 的坐标分别代入解析式,可求得A、B两点的坐标,进而可求得直线AB 的解析式;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。
解:(1)设反比例函数的解析式为,将点C(3,4)代入得,所以该反比例函数的解析式为;(2)设直线AB的解析式为,因为点C(3,4)在直线AB上,所以,解得,所以直线AB与轴交于点D(6,0),又因为点A(-3,-4),所以直线AB的解析式为;(3)由图象可知,当C点的横坐标小于时,线段AB不经过第四象限。
二、一次函数图象与几何图形相结合此类问题主要利用了待定系数法、数形结合的思想以及分类讨论的思想。
解题时要注意数形结合,根据已知条件建立方程或不等式,结合图形加以分析。
【例2】如图2,在平面直角坐标系中,四边形OABC为矩形,点A、C的坐标分别为(4,0)、(0,2),点D是边BC上的一个动点(点D与B、C不重合),过点D的抛物线经过点A、C、E。
(1)求该抛物线的解析式;(2)当AC为何值时,四边形DEOB为平行四边形?请说明理由;(3)设点D的坐标为(x,y),①试求该抛物线的对称轴及点D 到直线AC的距离;②试探究在抛物线上是否存在点M,使四边形AMDE 的面积最大?若存在,请求出点M的坐标;若不存在,请说明理由。
一次函数图象与性质的综合应用1.在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是(C )2.如图,在Rt △ABC 中,∠C =90°,AC =1 cm ,BC =2 cm ,点P 从点A 出发,以1 cm/s 的速度沿折线AC →CB →BA 运动,最终回到点A ,设点P 的运动时间为x (s),线段AP 的长度为y (cm),则能够反映y 与x 之间函数关系的图象大致是(A ),(第2题图))(第14题图)3.如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应为点为直线y =34x 上一点,则点B 与其对应点B ′间的距离为 (C )A. 94B. 3C. 4D. 54.汽车以60 km/h 的速度在公路上匀速行驶,1 h 后进入高速路,继续以100 km/h 的速度匀速行驶,则汽车行驶的路程s (km)与行驶的时间t (h)的函数关系的大致图象是(C )5.把直线y =-x +3向上平移m 个单位后,与直线y =2x +4的交点在第一象限,则m 的取值范围是(C )A. 1<m <7B. 3<m <4C. m >1D. m <46.如图,已知一条直线经过点A (0,2),B (1,0),将这条直线向左平移,使其与x 轴、y 轴分别交与点C ,D .若DB =DC ,则直线CD 的函数表达式为y =-2x -2.,(第6题图))7.已知直线y =-(n +1)n +2x +1n +2(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=__5032014__.解:令x =0,则y =1n +2; 令y =0,则-n +1n +2x +1n +2=0, 解得x =1n +1. ∴S n =12·1n +1·1n +2=12⎝ ⎛⎭⎪⎫1n +1-1n +2,∴S 1+S 2+S 3+…+S 2012=12×⎝ ⎛12-13+13-14+14-15+…+12013-⎭⎪⎫12014=12×⎝ ⎛⎭⎪⎫12-12014=5032014. 8.已知直线y =kx +b ,若k +b =5,kb =6,那么该直线不经过第__四__象限.9.如图,点A ,B 的坐标分别为(0,2),(3,4),点P 为x 轴上的一点.若点B 关于直线AP 的对称点B ′恰好落在x 轴上,则点P 的坐标为__(43,0)__.(第9题图)10.已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(第10题图水银柱的长度x (cm) 4.2 … 8.2 9.8 体温计的读数y (℃)35.0…40.042.0(1)求y 关于的函数关系式(不需要写出函数自变量的取值范围).(2)用该体温计测体温时,水银柱的长度为6.2 cm ,求此时体温计的读数.解:(1)设y 关于x 的函数关系式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧35=4.2k +b ,40=8.2k +b ,解得⎩⎪⎨⎪⎧k =54,b =29.75.∴y =54x +29.75.∴y 关于x 的函数关系式为y =54x +29.75.(2)当x =6.2时,y =×6.2+29.75=37.5.答:此时体温计的读数为37.5 ℃.(第11题图)11.如图,一次函数y =ax +b 与反比例函数y =k x的图象交于A ,B 两点,点A 坐标为(m ,2),点B 坐标为(-4,n ),OA 与x 轴正半轴夹角的正切值为13,直线AB 交y 轴于点C ,过C作y 轴的垂线,交反比例函数图象于点D ,连结OD ,BD . (1)求一次函数与反比例函数的表达式. (2)求四边形OCBD 的面积.解:(1)如解图,过点A 作AE ⊥x 轴于点E .(第11题图解)∵点A (m ,2),tan∠AOE =13,∴tan ∠AOE =AE OE =2m =13,∴m =6,∴点A (6,2).∵y =k x 的图象过点A (6,2), ∴2=k6,∴k =12,∴反比例函数的表达式为 y =12x.∵点B (-4,n )在 y =12x的图象上,∴n =12-4=-3,∴点B (-4,-3).∵一次函数y =ax +b 过A ,B 两点,∴⎩⎪⎨⎪⎧6k +b =2,-4k +b =-3,解得⎩⎪⎨⎪⎧k =12,b =-1.∴一次函数的表达式为y =12x -1.(2)对于y =12x -1,当x =0时,y =-1,∴点C (0,-1). 当y =-1时,-1=12x,∴x =-12,∴点D (-12,-1), ∴S 四边形OCDB =S △ODC +S △BDC=12×|-12|×|-1|+12×|-12|×|(-3)-(-1)| =6+12 =18.12.甲、乙两车从A 地驶向B 地,并以各自的速度匀速行驶,甲车比乙车早行驶2 h ,并且甲车途中休息了0.5 h ,如图是甲、乙两车行驶的距离y (km)与时间x (h)的函数图象.(第12题图)(1)求出图中m ,a 的值.(2)求出甲车行驶路程y (km)与时间x (h)的函数表达式,并写出相应的x 的取值范围. (3)当乙车行驶多长时间时,两车恰好相距50 km? 解:(1)由题意,得 m =1.5-0.5=1.120÷(3.5-0.5)=40, ∴a =40×1=40. ∴a =40,m =1.(2)∵260÷40=6.5,6.5+0.5=7,∴0≤x ≤7.当0≤x ≤1时,设y 与x 之间的函数表达式为y =k 1x ,由题意,得 40=k 1, ∴y =40x ;当1<x ≤1.5时, y =40;当1.5<x ≤7时,设y 与x 之间的函数表达式为y =k 2x +b ,由题意,得⎩⎪⎨⎪⎧40=1.5k 2+b ,120=3.5k 2+b , 解得⎩⎪⎨⎪⎧k 2=40,b =-20.∴y =40x -20.∴y =⎩⎪⎨⎪⎧40x (0≤x ≤1),40(1<x ≤1.5),40x -20(1.5<x ≤7).(3)设乙车行驶的路程y 与时间x 之间的函数表达式为y =k 3x +b 3,由题意,得⎩⎪⎨⎪⎧0=2k 3+b 3,120=3.5k 3+b 3, 解得⎩⎪⎨⎪⎧k 3=80,b 3=-160.∴y =80x -160.当40x -20-50=80x -160时, 解得x =94.当40x -20+50=80x -160时, 解得x =194.94-2=14,194-2=114. 答:乙车行驶14 h 或114h ,两车恰好相距50 km.13.经统计分析,某市跨河大桥上的车流速度v (千米/小时)是车流密度x (辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x ≤220时,车流速度v 是车流密度x 的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度.(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数(即:车流量=车流速度×车流密度).求大桥上车流量y 的最大值.解:(1)设车流速度v 与车流密度x 的函数关系式为v =kx +b ,由题意,得⎩⎪⎨⎪⎧80=20k +b ,0=220k +b , 解得⎩⎪⎨⎪⎧k =-25,b =88.∴当20≤x ≤220时,v =-25x +88,当x =100时,v =-25×100+88=48(千米/小时).(2)由题意,得⎩⎪⎨⎪⎧-25x +88>40,-25x +88<60,解得70<x <120.∴应控制大桥上的车流密度在70~120辆/千米范围内. (3)设车流量y 与x 之间的关系式为y =vx , 当0≤x ≤20时, y =80x .∵k =80>0,∴y 随x 的增大而增大, ∴x =20时,y 最大=1600; 当20≤x ≤220时y =(-25x +88)x =-25(x -110)2+4840,∴当x =110时,y 最大=4840. ∵4840>1600,∴当车流密度是110辆/千米,车流量y 取得最大值,是每小时4840辆.14.某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳设享受医保的某居民一年的大病住院医疗费用为元,按上述标准报销的金额为y 元. (1)直接写出x ≤50000时,y 关于x 的函数表达式,并注明自变量x 的取值范围. (2)若某居民大病住院医疗费用按标准报销了20000元,则他住院医疗费用是多少元? 解:(1)由题意得:①当x ≤8000时,y =0;②当8000<x ≤30000时,y =(x -8000)×50%=0.5x -4000;③当30000<x ≤50000时,y =(30000-8000)×50%+(x -30000)×60%=0.6x -7000. (2)当花费30000元时,报销钱数为y =0.5×30000-4000=11000, ∵20000>11000,∴他的住院医疗费用超过30000元,当花费是50000元时,报销钱数为y =11000+20000×0.6=23000(元), 故住院医疗费用小于50000元.故把y =20000代入y =0.6x -7000中,得 20000=0.6x -7000, 解得x =45000.答:他住院医疗费用是45000元.15.某农户计划购买甲、乙两种油茶树苗共1000株.已知乙种树苗比甲种树苗每株贵3元,且用100元钱购买甲种树苗的株数与用160元钱购买乙种树苗的株数刚好相同. (1)求甲、乙两种油茶树苗每株的价格.(2)如果购买两种树苗共用5600元,那么甲、乙两种树苗各买了多少株?(3)调查统计得,甲、乙两种树苗的成活率分别为90%,95%.要使这批树苗的成活率不低于92%,且使购买树苗的费用最低,应如何选购树苗?最低费用是多少? 解:(1)设甲、乙两种油茶树苗每株的价格分别为x 元,y 元,由题意,得 ⎩⎪⎨⎪⎧y =x +3,100x=160y ,解得⎩⎪⎨⎪⎧x =5,y =8.答:甲、乙两种油茶树苗每株的价格分别为5元,8元.(2)设购买甲种树苗a 株,则购买乙种树苗(1000-a )株,由题意,得 5a +8(1000-a )=5600,解得a =800,∴乙种树苗购买株数为1000-800=200株.答:购买甲种树苗800株,购买乙种树苗200株.(3)设购买甲种树苗b 株,则购买乙种树苗(1000-b )株,设购买的总费用为W 元,由题意,得90%b +95%(1000-b )≥1000×92%, 解得b ≤600.易得W =5b +8(1000-b )=-3b +8000, ∵k =-3<0,∴W 随b 的增大而减小,∴当b =600时,W 最低=6200元.答:购买甲种树苗600株,购买乙种树苗400株时,费用最低,最低费用是6200元. 16.某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放.某日从上午7点到10点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的变化趋势如图①,每个无人售票窗口售出的车票数y 2(张)与售票时间x (h)的变化趋势是以原点为顶点的抛物线的一部分,如图②.若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同. (1)求图②中所确定抛物线的表达式.(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?(第16题图)解:(1)设y 2=ax 2,当x =2时,y 1=y 2=40,把点(2,40)的坐标代入y 2=ax 2,得 4a =40, 解得a =10,∴y 2=10x 2.(2)设y 1=kx +b (1≤x ≤3),把点(1,0),(2,40)的坐标分别代入y 1=kx +b ,得⎩⎪⎨⎪⎧k +b =0,2k +b =40,解得⎩⎪⎨⎪⎧k =40,b =-40. ∴y 1=40x -40.∴当x =3时,y 1=80,y 2=90.设需要开放m 个普通售票窗口,由题意,得 80m +90×5≥900,∴m ≥558.∵m 取整数, ∴m ≥6.答:至少需要开放6个普通售票窗口.。
初中数学一次函数的图象、性质、解析式及应用1、一次函数的定义:一般地,如果变量y与变量x有关系式y=kx+b(k,b是常数,且k≠0)那么y叫x的一次函数。
一次函数y=kx+b中,若b=0,此时变成y=kx(k≠0)称y是x的正比例函数。
2、一次函数的图象(1)一次函数y=kx+b的图象是一条直线,这条直线与y 轴相交于(0,b),这里b叫作直线y=kx+b的截距。
(2)y=kx(k≠0)的图象经过原点,y=kx+b(k≠0,b≠0)的图象不经过原点,与两坐标轴交点分别为(0,b),(,0)。
(3)对于直线,如果,且,那么这两条直线平行,反之也成立。
如果,那么这两条直线相交,反之也成立。
(4)直线y=kx+b可以看作是由直线y=kx平移而来。
(5)(k≠0)的图象的不同情形,即当k值、b值不同时图象所处的位置。
3、一次函数的性质一般地,一次函数y=kx+b(k,b为常数,k≠0)有下列性质当k>0时,y随x的增大而增大,图象是自左到右上升的直线当k<0时,y随x的增大而减小,图象是自左到右下降的直线4、用待定系数法求一次函数的解析式待定系数法:先设待求函数关系式(其中含有未知常数,系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法。
用待定系数法求一次函数解析式的步骤:第一步:设关系式第二步:列方程(组)第三步:求出结果,写出关系式5、运用一次函数解决实际问题建立数学模型运用一次函数解决实际问题的一般步骤(1)通过实验,测量获得数量足够多的两个变量的对应值。
(2)建立合适的直角坐标系,在坐标系中,以各对应值为坐标描点,并画出函数图象。
(3)观察图象特征,判定函数类型。
(4)运用得到的经验公式,进一步求得所需要的结果。
例1、已知函数是一次函数,求m的值及函数关系式。
分析:一次函数满足:自变量的次数为1;自变量的系数不为0。
解析:∵是一次函数所以解得m=1所以函数关系式例2、下图不可能是关于x的一次函数的图象是()分析:一次函数中的m的取值应是一致的,应从一次函数的图象和性质出发A中,m>0,3-m>0,即A是0<m<3时的图象B中,直线经过原点,所以,m=3,即B是m=3时的图象C中,截距在x轴下方,∴3-m<0,m>3直线是呈下降趋势的,所以m<0,而无解,即C不可能D中,截距在x轴上方,所以3-m>0,m<3,图象呈下降趋势,故m<0即D是m<0时的图象解析:选C例3、已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,求直线y=kx+b的解析式。
学生做题前请先回答以下问题问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第_______象限;当k0时,图象必过第_______象限;当b0时,图象必过第_______象限;当b0时,图象必过第_______象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质_____________;②验证___________________________________.以下是问题及答案,请对比参考:问题1:对于一次函数y=kx+b来讲,当k0时,图象必过第象限;当k0时,图象必过第象限;当b0时,图象必过第象限;当b0时,图象必过第象限.答:对于一次函数y=kx+b来讲,当k0时,图象必过第一、三象限;当k0时,图象必过第二、四象限;当b0时,图象必过第一、二象限;当b0时,图象必过第三、四象限.问题2:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质;②验证.答:函数图象共存问题的处理思路:①选定一个函数图象,根据图象性质判断k,b的符号;②验证另一个函数图象存在的合理性.一次函数图象的应用(图象共存问题)(人教版)一、单选题(共8道,每道12分)1.一次函数y=-ax+4与正比例函数y=2ax(a为常数,且a≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题2.一次函数y=kx-k2与正比例函数y=-kx(k为常数且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题3.一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题4.一次函数y=kx-b与正比例函数y=kbx(k,b为常数,且kb≠0)在同一坐标系内的大致图象不可能的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:图象共存问题5.两条直线与(k,b为常数,且kb≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:图象共存问题6.一次函数y=-kx+4-k与正比例函数y=3kx(k为常数,且k≠0)在同一坐标系中的图象可能是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:图象共存问题7.一次函数y=ax-b与y=abx(ab≠0)在同一坐标系中的图象可能是( )A.①②B.③④C.②④D.①③答案:D解题思路:试题难度:三颗星知识点:图象共存问题8.两条直线y=mx-n与y=nx+m(m,n为常数,且mn≠0)在同一坐标系中的图象可能是( )A.①③B.①②C.②③D.③④答案:D解题思路:试题难度:三颗星知识点:图象共存问题。
知识回顾专题15一次函数的应用与综合1. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛-0 ,k;与y轴的交点坐标公式为:()b ,0。
2. 一次函数的平移:①左右平移,自变量上进行加减。
左加右减。
即若()0≠+=k b kx y 向左移动了m 个单位,则平移后的函数解析式为:()()0≠++=k b m x k y ;若()0≠+=k b kx y 向右移动了m 个单位,则平移后的函数解析式为:()()0≠+-=k b m x k y 。
②上下平移,解析式整体后面进行加减。
上加下减。
k 的取值 b 的取值 所在象限y 随x 的变化情况大致图像0>k0>b (图像交于y 轴正半轴)一二三象限y 随x 增大而增大0<b (图像交于y 轴负半轴)一三四象限0<k0>b (图像交于y 轴正半轴)一二四象限y 随x 减小而减小0<b (图像交于y 轴负半轴)二三四象限即若()0≠+=k b kx y 向上移动了m 个单位,则平移后的函数解析式为:()0≠++=k m b kx y ;若()0≠+=k b kx y 向下移动了m 个单位,则平移后的函数解析式为:()0≠-+=k m b kx y 。
3. 一次函数的对称变换:①若一次函数关于x 轴对称,则自变量不变,函数值变为相反数。
即()0≠+=k b kx y 关于x 轴的函数解析式为:()0≠+=-k b kx y ,即()0≠--=k b kx y 。
②若一次函数关于y 轴对称,则函数值不变,自变量变成相反数。
即()0≠+=k b kx y 关于y 轴的函数解析式为:()()0≠+-=k b x k y ,即()0≠+-=k b kx y 。
③若一次函数关于原点对称,则自变量与函数值均变成相反数。
即()0≠+=k b kx y 关于原点的函数解析式为:()()0≠+-=-k b x k y ,即()0≠-=k b kx y 。
一、教学目标:1. 让学生理解一次函数的概念,掌握一次函数的图象特征。
2. 培养学生利用图象解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索一次函数图象的性质。
二、教学内容:1. 一次函数的定义及表示方法。
2. 一次函数图象的性质及特点。
3. 利用一次函数图象解决实际问题。
三、教学重点与难点:1. 重点:一次函数的图象特征,一次函数图象与实际问题的结合。
2. 难点:一次函数图象在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生探究一次函数图象的性质。
2. 利用数形结合法,让学生直观地感受一次函数图象的特点。
3. 结合实际例子,培养学生解决实际问题的能力。
五、教学过程:1. 导入:通过生活中的实例,引导学生认识一次函数,并激发学生学习兴趣。
2. 新课:讲解一次函数的定义、表示方法,并通过示例让学生理解一次函数图象的概念。
3. 探究:让学生分小组探究一次函数图象的性质,如:斜率、截距等,并归纳总结。
4. 应用:结合实际问题,让学生运用一次函数图象解决问题,如:线性规划等。
5. 巩固:出示一些练习题,让学生巩固所学知识,提高解题能力。
6. 总结:对本节课内容进行总结,强调一次函数图象在实际问题中的应用。
7. 作业:布置一些有关一次函数图象的练习题,让学生课后巩固。
教案反思:在授课过程中,要注意让学生通过观察、分析、归纳等方法,自主地探索一次函数图象的性质,培养他们的动手操作能力和独立思考能力。
结合实际例子,让学生感受一次函数图象在解决实际问题中的重要性,提高他们的学习兴趣。
在教学过程中,要关注学生的学习情况,及时解答他们的疑问,确保他们能够掌握一次函数图象的知识。
六、教学评价:1. 通过课堂提问、练习题和小组讨论,评估学生对一次函数概念和图象性质的理解程度。
2. 观察学生在解决实际问题时的表现,评估他们应用一次函数图象解决实际问题的能力。
3. 收集学生作业和课后练习,评估他们的巩固程度和独立解题能力。
第2课时用一次函数模型解实际综合应用教学目标【知识与技能】熟练运用一次函数知识建立实际问题的数学模型,提高解决实际问题的能力.【过程与方法】经历活动过程,让学生认识数学在现实生活中的用途,发展学生运用数学知识解决实际问题的能力.【情感、态度与价值观】1.体会数学与生活的联系,了解数学的价值,加深对数学的理解和认识.2.认识到数学是解决实际问题的重要工具,了解数与形的联系以及事物之间的关联.重点难点【重点】根据题意写出函数关系式,建立实际问题的数学模型.【难点】运用一次函数解决实际问题.教学过程一、创设情境,导入新知师:这一章我们在前面都学习了哪些内容?生:在前面我们学习了一次函数的形式和画法,也学习了一次函数与二元一次方程的联系,学习了用一次函数的图象解二元一次方程组.师:很好!这节课我们用这些知识来解决实际问题,学以致用.二、共同探究,获取新知【例】奥运会每4年举办一次.奥运会的游泳成绩在不断地被刷新,如男子400m自由泳项目,1996年奥运冠军的成绩比1960年的提高了约30s.下面是该项目冠军的一些数据:冠军成绩/s231.31231.23226.95225.00227.97220.59223.10221.86根据上面的资料,能否预测2012年奥运会时该项目的冠军成绩?如何解决这个问题?分析:题中给出的数据是每4年一次奥运会上男子400m自由泳的冠军成绩.如果设x表示1980年起举办奥运会的年份,y表示相应年份奥运会上男子400m自由泳的冠军成绩,那么,对于每个x、y有唯一确定值与之对应.这样,要估算2012年这项运动的冠军成绩,设法求出变量y与x的关系式是关键.解:1.以1980年为零点,举办奥运会的年份的x值为横坐标、相应的y值为纵坐标,在坐标系中描出这些数据的点,如图:2.观察图中描写的点的整体分布,它们基本上在一条直线附近波动.因此,y与x之间的关系可以近似地以一次函数去模拟,即设y=kx+b.这里,我们选择点(0,231.31)及点(6,223.10)的坐标代入y=kx+b中得解方程组,得k=-1.37,b=231.31.所以一次函数的解析式为y=-1.37x+231.31.3.x=8代入上式,得y=-10.96+231.31=220.35(s).所以估计2012年奥运会男子400m自由泳冠军成绩约是220.35s.师:通过上面的学习,我们可以知道建立两个变量之间的函数模型的具体步骤如下:(1)将实验得到的数据在直角坐标系中描出;(2)观察这些点的特征,确定选用的函数形式,并根据已知数据求出具体的函数表达式;(3)进行检验;(4)应用这个函数模型解决问题.三、练习新知教师多媒体出示:某单位有职工几十人,想在节假日期间组织到外地H处旅游.当地有甲、乙两家旅行社,它们服务质量基本相同,到H地旅游的价格都是每人100元.经联系协商,甲旅行社表示可给予每位游客八折优惠;乙旅行社表示单位先交1000元后,给予每位游客六折优惠.问该单位选择哪个旅行社,使其支付的旅游总费用较少?学生小组讨论.师:假设该单位参加旅游的人数为x,按甲旅行社的优惠条件,应付费用多少元?生:80x元.师:按乙旅行社的优惠条件,应付费用多少元?生:(60x+1000)元.师:那么“选择哪个旅行社,使其支付的旅游总费用较少”的问题就转化成了什么问题?生:转化成了“80x和60x+1000哪个式子的值小”的问题.师:很好!那我们怎么比较它们的大小呢?生:记y1=80x,y2=60x+1000,在同一直角坐标系内作出两个函数的图象,x的值相同时,y的值小的那部分的费用就低.师:现在请大家在方格纸上建立坐标系,画出两个函数的图象并观察图象,看能得到什么结论.学生作图,教师巡视指导,最后得到:学生观察图象后作答:当人数为50时,选择甲或乙旅行社费用都一样;当人数小于50时,选择甲旅行社费用较少;当人数大于50时,选择乙旅行社费用较少.师:同学们回答得很好.还有没有其他的方法呢?生:还可以这样做.设选择甲、乙旅行社所需费用之差为y,则y=y1-y2=80x-(60x+1000)=20x-1000,画一次函数y=20x-1000的图象,由y的正负来判断y1与y2的大小.师:现在请同学们画出这个图象,然后观察图象作答. 学生作图,得到:学生观察图象后回答:当x=50时,y=0,即y1=y2;当x>50时,y>0,即y1>y2;当x<50时,y<0,即y1<y2.师:很好.四、课堂小结师:你今天学习了什么内容?学生回答,教师补充完善.教学反思本节课我给出了一个生活中的例子,让学生来解决.学生各自发挥自己的能力,用自己的办法来解决问题,锻炼学生的主动性和积极性.我鼓励他们说出自己的意见,锻炼他们的语言表达能力.在大家的讨论中,加深学生对一次函数和一次函数的意义的理解.这节课涉及了用解析式表达函数之间的关系和由函数图象比较两个函数值的大小等知识,这是对学生函数应用能力和观察能力的考察和锻炼.小升初专项卷2.图形与几何一、认真审题,填一填。
一次函数的图像与应用一、引言一次函数是数学中常见且重要的一类函数类型。
它的图像呈现出一条直线的特点,具有简洁的数学表达形式和广泛的应用。
本文将分析一次函数的图像特征,并探讨其在实际问题中的应用。
二、一次函数的定义与表达形式一次函数又称为线性函数,其定义域和值域通常为实数集。
一次函数的一般表达形式为:f(x) = ax + b其中,a和b为常数,且a≠0。
函数图像为一条直线,斜率为a,截距为b。
三、一次函数的图像特征1. 斜率的意义一次函数的斜率代表了图像上每单位水平位移对应的垂直位移,即函数的变化率。
当斜率为正值时,图像呈现上升趋势;当斜率为负值时,图像呈现下降趋势;当斜率为零时,图像为水平线。
2. 截距的意义一次函数的截距代表了函数图像与y轴的交点,即当x=0时的函数值。
它反映了一次函数图像在垂直方向上的位置。
3. 变量对函数图像的影响一次函数的图像特征由斜率a和截距b决定。
增大a的绝对值会使图像更陡峭或更平缓,而改变b的值则会上下平移整个图像。
四、一次函数的应用1. 直线运动模型一次函数在直线运动模型中有着广泛的应用。
假设一个物体以固定速度运动,则其位移与时间的关系可以用一次函数表示。
斜率代表了物体的运动速度,截距则代表了物体在起点的位置。
2. 成本与收益分析在商业领域中,一次函数可以用来分析成本与收益之间的关系。
设某产品的生产成本与销售量之间呈现线性变化关系,则一次函数可以描述成本与销售量之间的关系。
商家可以通过分析这个函数来确定最大利润的销售量。
3. 折旧与资产价值在会计领域中,一次函数被用于计算资产的折旧和价值变化。
资产价值随着时间的推移而减少,这种变化可以用一次函数来描述。
斜率表示每年的折旧额,截距代表了初始价值。
4. 温度变化模型一次函数在气象学中也有重要的应用。
温度随着时间的变化通常呈现线性关系。
通过查找一次函数的斜率和截距,我们可以预测未来一段时间内的温度变化趋势。
五、总结一次函数作为一种常见的数学模型,具有简洁的形式和广泛的应用。
44第3课时两个一次函数图象的应用一、引言一次函数是我们初中数学学科中非常重要的一个内容,它具有简单清晰的数学表达形式,并且在实际生活中有着广泛的应用。
在本次课程中,我们将学习和探究两个一次函数图象的应用,并通过实际的例子来加深对一次函数的理解和应用。
二、函数图象的特点在学习函数图象的应用之前,我们先来回顾一下函数图象的基本特点。
一次函数的一般形式为y=ax+b,其中a和b都是常数。
在平面直角坐标系中,一次函数的图象是一条直线,其特点如下:1.斜率:斜率a代表函数图象的倾斜程度,a的绝对值越大,则图象的斜率越大,图象的倾斜程度越大。
2.截距:截距b代表函数图象与y轴的交点,如果b大于0,则图象在y轴的正半轴上,如果b小于0,则图象在y轴的负半轴上。
3.方向:如果a大于0,则图象从左下向右上斜;如果a小于0,则图象从左上向右下斜。
掌握了这些基本特点,我们就可以更好地应用一次函数图象来解决实际问题。
三、实际案例分析1.人口增长问题通过这个一次函数的表达式,我们可以方便地预测未来几年该城市的人口数量,也可以根据实际的年份来求人口数。
2.汽车行驶问题假设一辆汽车以恒定的速度行驶,行驶过程中计算仪表上所显示的速度与行驶时间之间的关系,可以用一次函数来表示。
假设仪表上显示的速度为y(单位:km/h),行驶的时间为x(单位:小时),那么该关系可以用一次函数y=ax+b来表示。
假设汽车起初的时间为0小时,速度为0km/h;当行驶1小时后,速度为100km/h。
根据这两个条件可以得到两个方程:(1)当x=0时,y=0;(2)当x=1时,y=100;通过求解这两个方程,可以得到a=100,b=0。
所以该一次函数的表达式为y=100x。
通过这个一次函数的表达式,我们可以计算任意时间下汽车的速度,也可以根据速度来推算汽车已经行驶的时间。
四、总结通过对两个实际案例的分析,我们可以看到一次函数图象的应用在生活中的重要性。
无论是人口增长还是车辆行驶,一次函数都可以提供方便快捷的解决方案。
1、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……用S1,S2分别表示乌龟和兔子所行的路程,t为时间,则下列所示图象中与故事情节相吻合的是()
2、.甲、乙两人赛跑争夺冠军,如图,t表示赛跑所化时间,s表示比赛时所跑的距离,请根据图象回答下列问题:
①图形反映了哪两个变量之间的关系?
②他们进行的是多少米赛跑?
③谁获得冠军?
④乙在比赛中的平均速度是多少?
3:(1999年江苏省南京市中考题)某地长途汽车客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李重量x(千克)的一次函数,其图象如图所示.
求:(1)y与x之间的函数关系式;
(2)旅客可免费携带的行李的重量.
秒)
4、..一位农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y 与x 之间的关系式
(3)由表达式你能求出降价前每千克的土豆价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆? ]
5.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
y(元)
(1)求a,c 的值 (2)当x ≤6,x ≥6时,分别写出y 于x 的函数关系式 (3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
6、已知A 地在B 地正南方向3千米处,甲、乙两人分别从两地向正北方向匀速直行。
他们与A 地的距离s (千米)与所行时间t (小时)之间的关系如图所示,其中1l 表示甲运动的过程,2l
⑴甲和乙哪一个在A 地,哪一个在B 地?
⑵甲用多长时间追上了乙?
⑶求出表示甲的函数关系式和表示乙的函数关系式。
⑷通过函数关系式,计算说明什么时候两人又相距3千米。
7、对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系,从温度计的刻度上可以看出,摄氏
(0℃)温度x 与华氏(0F )温度y 有如下对应关系:
⑴通过①描点连线,②猜测y 与x 之间的函数关系式,③求解,④验证等几个步骤,试确定y 与x 之间的函数关系式。
⑵某天,中国上海的最高气温是8℃,澳大利亚悉尼的最高气温是91F ,问这一天悉尼的最高气温比上海的最高气温高多少摄氏度?(结果保留整数)
8.工厂有甲、乙两条生产线先后投产,两条生产线的产量(吨)与时间(天)的关系如图所示.根据图象回答下列问题:
(1)在乙生产线投产以前,甲生产线已生产了多少吨成品? (2)甲、乙两条生产线每天分别生产多少吨成品? (3)分别求出图中两条直线所对应的函数关系式.
9、小强骑自行车去郊游,右图表示他离家的距离y (千米)与所用的时间x (小时)之间关系的函数图象,小明9点离开家,15点回家,根据这个图象,请你回答下列问题:①小强到离家最远的地方需几小时?此时离家多远?②何时开始第一次休息?休息时间多长?③小强何时距家21㎞?(写出计算过程)
10.如图,l 1表示神风摩托车厂一天的销销售售收入与摩托车销售量的关系;l 2表示摩托车厂一天的销售成本与销售量之间的关系. (1)写出销售收入与销售量之间的函数关系式. (2)写出销售成本与销售量之间的函数关系式;
(3)当一天的销售量为多少时,销售收入等于销售成本.
(4)当一天的销售量超过多少辆时,工厂才能获利?(2005年江苏中考题)
y/x/天
j
距离(km)时间1513121110.5O 15
30。