2018年8月浙江省学考选考2018学年金丽衢十二校高三第一次联考数学试题参考答案
- 格式:pdf
- 大小:803.10 KB
- 文档页数:4
2018学年金丽衢十二校高三第一次联考信息技术参考答案一、选择题(每题有一个正确的选项,每题2分,共24分)二、非选择题(本大题共5小题,其中第13小题4分,第14小题5分,第15小题8分,第16小题3分,第17小题6分,共26分)13.(1)选中A1:I1 在单元格格式设置中设置合并居中或相近答案(1分)(2)2017年(1分)(3)A2,C2:H2,A22:A23,C22:H23 或相同区域(1分)(4)=COUNTIF(H3,$H$3:$H$23)或=COUNTIF(H3,H$3:H$23)(1分)14.(1) B (1分)(2)①s = Text1.Text (1分)②result + Mid(dw, m - 7, 1) (2分)(3)东北3西南5 (1分)15.(1)BC (选对一个给1分,错选多选不给分)(2分)(2)选中音乐图层任意一帧设置声音属性为数据流(1分)并删除音乐图层第57帧到100帧或在音乐图层第57帧插入关键帧(空白关键帧)或其他正确的描述(1分)(3)影片剪辑元件(1分)(4)动画补间动画(1分)(5)“on (press) {gotoAndStop("主场景",1);}或on (release) {gotoAndStop("主场景",1);} (1分)(6)选择“近石1”图层第15帧执行清除关键帧的操作或其他正确的描述(1分)16.(1)程序中①处应改为bb(i) = zb(n) (1分)(2)程序中②处应改为pos To pos + ld – 2 (2分)17.(1)2 16 25 68(1分)(2)程序中①处填入的是mstep = mstep + a(i + 1) - a(i) (2分)程序中②处填入的是tmax = t (2分)程序中③处填入的是flag = False (1分)信息技术参考答案第1页(共1页)通用技术参考答案 第1页 (共2页)2018学年金丽衢十二校高三第一次联考通用技术参考答案一、选择题(每题有一个正确的选项,每题2分,共26分)) B ;) C ;) C ;) B;) A ;) A 。
2018-2018学年浙江省名校新高考研究联盟高三(下)第一次联考数学试卷(理科)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集U=R,且A={x||x﹣1|>2},B={x|x2﹣6x+8<0},则(∁U A)∩B=()A.[﹣1,4)B.(2,3)C.(2,3]D.(﹣1,4)2.已知m>0且m≠1,则log m n>0是(1﹣m)(1﹣n)>0的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是()A.B.C.D.4.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(﹣x)≠f(x)B.∀x∈R,f(﹣x)≠﹣f(x)C.∃x0∈R,f(﹣x0)≠f(x0)D.∃x0∈R,f(﹣x0)≠﹣f(x0)5.已知数列{a n}满足a n=(n∈N*),若{a n}是递减数列,则实数a 的取值范围是()A.(,1)B.(,)C.(,1)D.(,)6.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△AFO与△BFO面积之和的最小值是()A.B.C.D.7.如图四边形ABCD,AB=BD=DA=2.BC=CD=,现将△ABD沿BD折起,使二面角A﹣BD﹣C的大小在[,],则直线AB与CD所成角的余弦值取值范围是()A.[0,]∪(,1)B.[,]C.[0,] D.[0,]8.设函数f:N•→N•,并且对所有正整数n,有f(n+1)>f(n),f(f(n))=3n,则f A.2018 B.3858 C.4180 D.6185二、填空题:(本大题共7小题,多空题每小题6分,单空题每题4分,共36分.)9.双曲线的实轴长是______,渐近线方程是______.10.函数f(x)=sinx﹣cosx﹣1的最小正周期是______,单调递增区间是______.11.已知{|a n|}是首项和公差均为1的等差数列,则a2=______,若S2=a1+a2,则S2的所有可能值组成的集合为______.12.若2a=6,b=log23,则a﹣b=______.13.已知一平面与一正方体的12条棱的所成角都等于α,则sinα=______.14.若实数x,y满足|x|+|y|≤1,则|4x+y﹣2|+|3﹣x﹣2y|的最小值是______,取到此最小值时x=______,y=______.15.空间四点A,B,C,D满足||=2,||=3,||=4,||=7,则•的值为______.三、解答题:(本大题共5个题,共74分,解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,已知AB=2,.(Ⅰ)若BC=3,求AC的长;(Ⅱ)若点D为AC中点,且,求sinA的值.17.已知四棱锥P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,,E,F分别是AB,AP的中点.(1)求证:AC⊥EF;(2)求二面角F﹣OE﹣A的余弦值.18.设f(x)=x2+bx+c(b,c∈R),函数f(x)在区间(2,3]上有最大值1.(Ⅰ)若c=4,求b的值;(Ⅱ)当|x|>2时,f(x)>0恒成立,求b+的取值范围.19.已知椭圆C: +=1(a>b>0)的左右焦点为F1,F2,离心率为e.直线l:y=ex+a 与x轴、y轴分别交于点A,B两点,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设.(Ⅰ)若,求椭圆C的离心率;(Ⅱ)若△PF1F2为等腰三角形,求λ的值.20.设数列{a n}满足a1=a,a n+1a n﹣a n2=1(n∈N*)(I)若a3=,求实数a的值;(Ⅱ)设b n=(n∈N*).若a=1,求证≤b n<(n≥2,n∈N*).2018-2018学年浙江省名校新高考研究联盟高三(下)第一次联考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集U=R,且A={x||x﹣1|>2},B={x|x2﹣6x+8<0},则(∁U A)∩B=()A.[﹣1,4)B.(2,3)C.(2,3]D.(﹣1,4)【考点】绝对值不等式的解法;交、并、补集的混合运算;一元二次不等式的解法.【分析】利用绝对值是表达式的解法求出集合A,二次不等式的解法求解集合B,然后求解(∁U A)∩B.【解答】解:A={x||x﹣1|>2}={x|x>3或x<﹣1},∁U A={x|﹣1≤x≤3}.B={x|x2﹣6x+8<0}={x|2<x<4},∴(∁U A)∩B={x|2<x≤3}.故选:C.2.已知m>0且m≠1,则log m n>0是(1﹣m)(1﹣n)>0的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据对数不等式以及不等式的性质,结合充分条件和必要条件的定义进行判断即可.【解答】解:若m>1,由log m n>0得n>1,此时1﹣m<0,1﹣n<0,则(1﹣m)(1﹣n)>0成立,若0<m<1,由log m n>0得0<n<1,此时1﹣m>0,1﹣n>0,则(1﹣m)(1﹣n)>0成立,即充分性成立,若(1﹣m)(1﹣n)>0则或,当0<m<1,n=0时,满足,但log m n>0无意义,即必要性不成立,即log m n>0是(1﹣m)(1﹣n)>0的充分不必要条件,故选:A3.如图,一个简单空间几何体的三视图其主视图与左视图都是边长为2的正三角形,其俯视图轮廓为正方形,则其体积是()A.B.C.D.【考点】由三视图求面积、体积.【分析】三视图复原的几何体是正四棱锥,求出底面面积,正四棱锥的高,即可求出体积.【解答】解:如图据条件可得几何体为底面边长为2的正方形,侧面是等边三角形高为2的正四棱锥,故其体积V=×4×=.故选C.4.已知定义域为R的函数f(x)不是偶函数,则下列命题一定为真命题的是()A.∀x∈R,f(﹣x)≠f(x)B.∀x∈R,f(﹣x)≠﹣f(x)C.∃x0∈R,f(﹣x0)≠f(x0)D.∃x0∈R,f(﹣x0)≠﹣f(x0)【考点】全称命题;特称命题.【分析】根据定义域为R的函数f(x)不是偶函数,可得:∀x∈R,f(﹣x)=f(x)为假命题;则其否定形式为真命题,可得答案.【解答】解:∵定义域为R的函数f(x)不是偶函数,∴∀x∈R,f(﹣x)=f(x)为假命题;∴∃x0∈R,f(﹣x0)≠f(x0)为真命题,故选:C.5.已知数列{a n}满足a n=(n∈N*),若{a n}是递减数列,则实数a 的取值范围是()A.(,1)B.(,)C.(,1)D.(,)【考点】数列的函数特性.【分析】依题意,a n=(n∈N*),{a n}是递减数列,可知,解之即可得答案.【解答】解:∵a n=(n∈N*),且{a n}是递减数列,∴,即,解得<a<.故选D.6.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△AFO与△BFO面积之和的最小值是()A.B.C.D.【考点】抛物线的简单性质.【分析】先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.【解答】解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),x=ty+m代入y2=x,可得y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,从而(y1•y2)2+y1•y2﹣2=0,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又F(,0),∴S△BFO+S△AFO=••y1+••|y2=(y1+)≥•2=当且仅当y1=,即y1=时,取“=”号,∴△BFO与△AFO面积之和的最小值是,故选:B.7.如图四边形ABCD,AB=BD=DA=2.BC=CD=,现将△ABD沿BD折起,使二面角A﹣BD﹣C的大小在[,],则直线AB与CD所成角的余弦值取值范围是()A.[0,]∪(,1)B.[,]C.[0,] D.[0,]【考点】异面直线及其所成的角.【分析】取BD中点O,连结AO,CO,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,利用向量法能求出直线AB与CD所成角的余弦值取值范围.【解答】解:取BD中点O,连结AO,CO,∵AB=BD=DA=2.BC=CD=,∴CO⊥BD,AO⊥BD,且CO=1,AO=,∴∠AOC是二面角A﹣BD﹣C的平面角,以O为原点,OC为x轴,OD为y轴,过点O作平面BCD的垂线为z轴,建立空间直角坐标系,B(0,﹣1,0),C(1,0,0),D(0,1,0),设二面角A﹣BD﹣C的平面角为θ,则,连AO、BO,则∠AOC=θ,A(),∴,,设AB、CD的夹角为α,则cosα==,∵,∴cos,∴|1﹣|∈[0,].∴cos.故选:D.8.设函数f:N•→N•,并且对所有正整数n,有f(n+1)>f(n),f(f(n))=3n,则f A.2018 B.3858 C.4180 D.6185【考点】抽象函数及其应用.【分析】可令n=1,可得f(f(1))=3,讨论f(1)=1,2,3,即可判断f(1)=2,f(2)=3,进而求得f(3)=6,f(6)=9,…,f(54)=81,…,得到n与f(n)的关系,总结出一般规律,即可得到f)=3,f(n)为正整数,若f(1)=1,把f(1)=1带进去,就成了f(1)=3,矛盾.要是f(1)=2,那就是f(2)=3,可能正确,要是f(1)=3,那就是f(3)=3,不满足f(n+1)>f(n).所以f(1)=2,所以f(f(2))=f(3)=6,f(f(3))=f(6)=9,f(9)=f(f(6))=18,f(18)=f(f(9))=27,f(27)=f(f(18))=54,f(54)=f(f (27))=81,…,即有n∈[1,2],f(n)∈[2,3],即f(n)与n一一对应;n∈[3,6],f(n)∈[6,9],即f(n)与n一一对应;n∈[9,18],f(n)∈[18,27],即f(n)与n一一对应;n∈[27,54],f(n)∈[54,81],即f(n)与n一一对应;…;则得到一般的规律,任意的n为自然数,存在m为自然数,n∈[3m,3m+1],n=3m+k,①n∈[3m,2•3m],0≤k≤3m,f(n)=f(3m+k)=2•3m+k;②n∈[2•3m,3m+1],3m≤k≤3m+1,f(n)=f(3m+k)=2•3m+3m+3(k﹣3m)=3k.2018∈[2•36,37],2018=36+1286,f9.双曲线的实轴长是2,渐近线方程是y=x.【考点】双曲线的简单性质.【分析】根据双曲线的标准方程分别进行求解即可.【解答】解:由双曲线的方程得a2=1,b2=3,则a=1,b=,则双曲线的实轴长2a=2,渐近线方程为y=±x=x,故答案为:2,y=x10.函数f(x)=sinx﹣cosx﹣1的最小正周期是2π,单调递增区间是[2kπ﹣,2kπ+],k∈Z.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法;正弦函数的图象.【分析】利用两角和与差的正弦公式,由周期公式求得周期,再由复合函数的单调性求得原函数的单调递增区间.【解答】解:f(x)=sinx﹣cosx﹣1=.∴T=2π;由,得,k∈Z.∴f(x)的单调递增区间为[2kπ﹣,2kπ+],k∈Z.故答案为:2π,[2kπ﹣,2kπ+],k∈Z.11.已知{|a n|}是首项和公差均为1的等差数列,则a2=±2,若S2=a1+a2,则S2的所有可能值组成的集合为{﹣3,﹣1,1,3} .【考点】等差数列的通项公式.【分析】解:由题意|a n|=n,分别求出a1、a2的值,再求对应的S2即可.【解答】解:由题意|a n|=n,n∈N*,∴a1=±1,a2=±2;当a1=1,a2=2时,S2=3;当a1=1,a2=﹣2时,S2=﹣1;当a1=﹣1,a2=﹣2时,S2=﹣3;当a1=﹣1,a2=2时,S2=1;所以S2的所有可能值组成的集合为{﹣3,﹣1,1,3}.故答案为:±2;{﹣3,﹣1,1,3}.12.若2a=6,b=log23,则a﹣b=1.【考点】对数的运算性质.【分析】根据对数的定义和对数的运算性质计算即可.【解答】解:∵2a=6,b=log23∴a=log26,∴a﹣b=log26﹣log23=log22=1,故答案为:113.已知一平面与一正方体的12条棱的所成角都等于α,则sinα=.【考点】棱柱的结构特征.【分析】棱A1A,A1B1,A1D1与平面AB1D1所成的角相等,平面AB1D1就是与正方体的12条棱的夹角均为θ的平面.则∠A1AO=θ,即可得出.【解答】解:∵棱A1A,A1B1,A1D1与平面AB1D1所成的角相等,∴平面AB1D1就是与正方体的12条棱的夹角均为θ的平面.则∠A1AO=θ,设棱长为:1,A1O=,AO==,易知sinθ===.故答案为:.14.若实数x,y满足|x|+|y|≤1,则|4x+y﹣2|+|3﹣x﹣2y|的最小值是,取到此最小值时x=,y=.【考点】绝对值三角不等式.【分析】分情况讨论目标函数化简,画出约束条件所表示的可行域,结合图形找出最优解,可求出目标函数的最小值.【解答】解:(1)当时,作出满足约束条件的可行域如图,令z=|4x+y﹣2|+|3﹣x﹣2y|=3x﹣y+1,则y=3x+1﹣z,∴y=3x+1﹣z过点C时,1﹣z取得最大值,z取得最小值.解方程组得.∴z=3x﹣y+1=.(2)当时,作出满足约束条件的可行域如图,令z=|4x+y﹣2|+|3﹣x﹣2y|=﹣5x﹣3y+5,则y=﹣+,∴y=﹣+经过点C时,取得最大值,z取得最小值,由(1)知,C(,),∴z=﹣5x﹣3y+5=.(3)当3﹣x﹣2y<0时,不存在符合条件的可行域,综上,|4x+y﹣2|+|3﹣x﹣2y|的最小值是.故答案为:,,.15.空间四点A,B,C,D满足||=2,||=3,||=4,||=7,则•的值为19.【考点】平面向量数量积的运算.【分析】将向量,,,转化为以,,,的式子,计算||2﹣||2+||2﹣||2,又•=(﹣)•(﹣),展开即可得到所求值.【解答】解:||2﹣||2+||2﹣||2=()2﹣()2+()2﹣()2=(﹣)2﹣(﹣)2+(﹣)2﹣(﹣)2=2(•+•﹣•﹣•)=4﹣9+16﹣49=﹣38,即有•+•﹣•﹣•=﹣19,又•=(﹣)•(﹣)=•+•﹣•﹣•=19.故答案为:19.三、解答题:(本大题共5个题,共74分,解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,已知AB=2,.(Ⅰ)若BC=3,求AC的长;(Ⅱ)若点D为AC中点,且,求sinA的值.【考点】余弦定理;正弦定理.【分析】(Ⅰ)由cosB的值,以及BC与AB的长,利用余弦定理求出AC的长即可;(Ⅱ)法1:利用余弦定理列出关系式,联立求出a与b的值,再利用正弦定理即可确定出sinA的值;法2:由题意得到=(+),两边平方后求出a的值,进而求出b的值,再由sinB的值,利用正弦定理求出sinA的值即可.【解答】解:(Ⅰ)∵cosB=,AB=2,BC=3,∴由余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=4+9﹣4=9,则AC=3;(Ⅱ)法1:在△ABC中,设BC=a,AC=b,∵AB=c=2,cosB=,由余弦定理得:b2=a2+4﹣a①,在△ABD和△BCD中,由余弦定理得:cos∠ADB=,cos∠BDC=,∵cos∠ADB=﹣cos∠BDC,∴=﹣,即b2=2a2﹣9②,联立①②,解得:a=3,b=3,∵cosB=,B为三角形内角,∴sinB=,由正弦定理=得:sinA===;法2:根据题意得:=(+),两边平方得:(c2+a2+2ac•cosB)=,把c=2代入得:1+a2+a=,即3a2+4a﹣39=0,分解得:(3a+13)(a﹣3)=0,解得:a=﹣(舍去)或a=3,∵AB=c=2,cosB=,∴sinB==,由余弦定理得:b2=a2+4﹣a,把a=3代入得:b=3,由正弦定理=得:sinA===.17.已知四棱锥P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,,E,F分别是AB,AP的中点.(1)求证:AC⊥EF;(2)求二面角F﹣OE﹣A的余弦值.【考点】二面角的平面角及求法;空间中直线与直线之间的位置关系.【分析】(1)以O为原点,建立空间坐标系,求出的坐标,通过计算得出AC⊥EF;(2)求出平面OEF的法向量,则|cos<>|为所求二面角的余弦值.【解答】证明:(1)∵四边形ABCD是等腰梯形,∴OA=OB,OC=OD.∵AC⊥BD,AB=2,CD=,∴OA=OB=2,OC=OD=1.以O为原点,以OB,OC,OP为坐标轴建立空间直角坐标系,则A(0,﹣2,0),B(2,0,0),C(0,1,0),P(0,0,2).∵E,F分别是AB,AP的中点,∴E(1,﹣1,0),F(0,﹣1,1),∴=(0,3,0),=(﹣1,0,1),∴=0,∴AC⊥EF.(2)=(1,﹣1,0),=(0,﹣1,1),设平面OEF的法向量为=(x,y,z),则,∴,令z=1,得=(1,1,1).∵OP⊥平面OAE,∴=(0,0,2)为平面OAE的一个法向量.∵cos<,>===,∴二面角F﹣OE﹣A的余弦值为.18.设f(x)=x2+bx+c(b,c∈R),函数f(x)在区间(2,3]上有最大值1.(Ⅰ)若c=4,求b的值;(Ⅱ)当|x|>2时,f(x)>0恒成立,求b+的取值范围.【考点】二次函数的性质;函数恒成立问题.【分析】(1)由函数f(x)图象开口向上且在区间(2,3]上有最大值1,得f(3)=1,解出b;(2)由f(3)=1可得bc之间的关系式和b的取值范围,然后讨论△与0的关系,结合当|x|>2时,f(x)>0恒成立进一步确定b的范围,最后得到b+的表达式,求出此表达式的值域即可.【解答】解:(I)c=4时,f(x)=)=x2+bx+4,f(x)图象开口向上,对称轴为x=﹣,∵函数f(x)在区间(2,3]上有最大值1,f(3)=1,即5+b=1,解得b=﹣4.(II)∵函数f(x)在区间(2,3]上有最大值1,∴即,∴c=﹣8﹣3b.∴△=b2﹣4c=b2+12b+32=(b+6)2﹣4.∵b≥﹣5,∴△≥﹣3.①若△=0,即b=﹣4时,f(x)=0的解为x=﹣=2,符合题意,②若△<0,即﹣5≤b<﹣4时,f(x)>0恒成立,符合题意,③若△>0,即b>﹣4时,∵当|x|>2时,f(x)>0恒成立,∴,即,无解.综上,﹣5≤b≤﹣4.∴b+=b﹣.令g(b)=b﹣,则g′(b)=1+>0,∴g(b)在(﹣5,﹣4]上是增函数,∵g(﹣5)=﹣,g(﹣4)=﹣,∴b+的取值范围是[﹣,﹣].19.已知椭圆C: +=1(a>b>0)的左右焦点为F1,F2,离心率为e.直线l:y=ex+a 与x轴、y轴分别交于点A,B两点,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设.(Ⅰ)若,求椭圆C的离心率;(Ⅱ)若△PF1F2为等腰三角形,求λ的值.【考点】椭圆的简单性质.【分析】(I)直线l:y=ex+a与x轴、y轴分别交于点A,B(0,a)两点,根据=,可得M,代入椭圆方程即可得出.(II)若△PF1F2为等腰三角形,P是点F1关于直线l的对称点,可得:|AF1|=|BF1|,即=,可得e=.由,可得M,代入椭圆方程解出即可得出.【解答】解:(I)直线l:y=ex+a与x轴、y轴分别交于点A即,B (0,a)两点,∵=,∴M,代入椭圆方程可得: +=1,b2=a2﹣c2,化为:(4e2﹣1)2=0,解得e=.(II)若△PF1F2为等腰三角形,P是点F1关于直线l的对称点,∴|PA|=|AF1|,|PB|=|BF1|,|PA|=|PB|,∴|AF1|=|BF1|,∴=,化为:a2=3c2,解得e==.∴=1﹣,解得=.∵,∴M,代入椭圆方程可得: +=1,∴3(λ﹣1)2+=1,化为:(3λ﹣2)2=0,解得.20.设数列{a n}满足a1=a,a n+1a n﹣a n2=1(n∈N*)(I)若a3=,求实数a的值;(Ⅱ)设b n=(n∈N*).若a=1,求证≤b n<(n≥2,n∈N*).【考点】数列的求和;数列递推式.【分析】(Ⅰ)由已知得a2a﹣a2=1,解得,由a3=,得=或=2,由此能求出实数a的值.(Ⅱ)由已知得=,由=2,能证明=b2,再用数学归纳法证明b n<,n≥2.由此能证明≤b n<(n≥2,n∈N*).【解答】(Ⅰ)解:∵数列{a n}满足a1=a,a n+1a n﹣a n2=1(n∈N*),∴a2a﹣a2=1,解得,∵a3=,∴,解得=或=2,由=解得a∈∅,由=2,解得a=1.∴实数a的值为1.(Ⅱ)证明:当a=1时,数列{a n}满足a1=1,a n+1a n﹣a n2=1(n∈N*),∴,∴=2,,=,…∵b n=(n∈N*),∴=,∵a n>0,∴=2,当且仅当,即a n=1=a1时,取等号,∴=b2,再证b n<,n≥2.(a)n=2时,,满足.(b)假设当n=k,(k>2)时有b k<,等价于,∵,∴k,当n=k+1时,<=,∴只需证<.证明如下:∵k>2,∴k>,∴9k>16,∴25k>16(k+1),∴5>4,∴>2,∴,∴,∴,∴,∴,∴,∴n=k+1时,成立.综合(a),(b)知b n<.综上所述:≤b n<(n≥2,n∈N*).2018年9月18日。
金丽衢十二校2018届第一次联考选考科目考试高三地理试题一、选择题(本大题共25小题,每小题2分,共50分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)2016年12月5日19时,夜空上演火星合月的天象(“火星合月”是指火星运转到轨道中离月球近点时发生的天文现象)。
完成下列各题。
1. 火星和月球都属于A. 天体B. 天体系统C. 行星D. 行星际物质2. “火星合月”说明A. 火星与月球形成一个暂时天体系统B. 月球的引力使火星靠近C. 两星都运行到地球同一侧且距离较近D. 火星与月球运行轨道有交点【答案】1. A 2. C【解析】1. 火星和月球都是宇宙物质的空间存在形式,均属于天体,天体间相互吸引并绕转形成天体系统,火星和月球不相互绕转,不能构成天体系统,月球属于地球的卫星,火星属于行星,故选A。
2. 火星合月”是指火星运转到轨道中离月球近点时发生的天文现象,说明两星都运行到地球同一侧且距离较近位置,故选C。
..................浙江某地选用两块相邻耕地进行农业生产比较实验,一块建设成大棚,一块为一般耕地,种植相同农作物,并同样精耕细作,结果大棚农业产量较高。
据此完成下列各题。
3. 大棚农业产量较高的自然原因是A. 土壤肥力高B. 太阳能利用率高C. 农业投入大D. 天气好4. 大棚农业对下列自然灾害防御效果相对较好的是A. 洪灾B. 旱灾C. 寒潮D. 地震【答案】3. B 4. C【解析】3. 大棚农业生产是利用了大气保温作用原理,充分利用太阳能,提高了太阳能利用率,使得产量提高,与土壤肥力、天气无关,B对、AD错。
农业投入大,不属于自然原因且不一定投入大就产出高,C错。
故选B。
4. 大棚农业通过对太阳辐射的充分利用,提高了棚内的温度,对于防御寒潮起到较好的作用,故选C。
雁荡山形成于1.2亿年前,是一座典型的白垩纪流纹质古火山。
雁荡山以锐峰、叠嶂、怪洞、石门、飞瀑称绝。
2018学年金丽衢十二校高三第一次联考信息技术参考答案一、选择题(每题有一个正确的选项,每题2分,共24分)二、非选择题(本大题共5小题,其中第13小题4分,第14小题5分,第15小题8分,第16小题3分,第17小题6分,共26分)13.(1)选中A1:I1 在单元格格式设置中设置合并居中或相近答案(1分)(2)2017年(1分)(3)A2,C2:H2,A22:A23,C22:H23 或相同区域(1分)(4)=COUNTIF(H3,$H$3:$H$23)或=COUNTIF(H3,H$3:H$23)(1分)14.(1) B (1分)(2)①s = Text1.Text (1分)②result + Mid(dw, m - 7, 1) (2分)(3)东北3西南5 (1分)15.(1)BC (选对一个给1分,错选多选不给分)(2分)(2)选中音乐图层任意一帧设置声音属性为数据流(1分)并删除音乐图层第57帧到100帧或在音乐图层第57帧插入关键帧(空白关键帧)或其他正确的描述(1分)(3)影片剪辑元件(1分)(4)动画补间动画(1分)(5)“on (press) {gotoAndStop("主场景",1);}或on (release) {gotoAndStop("主场景",1);} (1分)(6)选择“近石1”图层第15帧执行清除关键帧的操作或其他正确的描述(1分)16.(1)程序中①处应改为bb(i) = zb(n) (1分)(2)程序中②处应改为pos To pos + ld – 2 (2分)17.(1)2 16 25 68(1分)(2)程序中①处填入的是mstep = mstep + a(i + 1) - a(i) (2分)程序中②处填入的是tmax = t (2分)程序中③处填入的是flag = False (1分)信息技术参考答案第1页(共1页)2018学年金丽衢十二校高三第一次联考通用技术参考答案一、选择题(每题有一个正确的选项,每题2分,共26分)) B ;) C ;) C ;) B ;) A ;) A 。
金衢十二校联考数学试题卷考生须知:1.全卷共三大题,小题,全卷满分分,考试时间分钟.2.全卷分试卷Ⅰ(选择题)和试卷(非选择题)两部分,全部在答题卷上作答,卷Ⅰ的答案必须用铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔答在答题卷的相应位置上.卷Ⅰ一、选择题(本大题有小题,每小题分,共分.请选出各题中一个符合题意的正确选项.不选、多选、错选均不给分)1.在、、、-这四个数中,最小的数是( ▲ ).....-2.据媒体报道,我国因环境污染造成的巨大经济损失,每年高达元,这个数用科学记数法表示正确的是( ▲ ).×元×元×元. ×元3.下列事件中,必然事件是( ▲ ).A.今年夏季的雨量一定多.下雨天每个人都打着伞.二月份有天.我国冬季的平均气温比夏季的平均气温低4.如图,点、、、、都在方格纸的格点上,若△是由△绕点按逆时针方向旋转而得,则旋转的角度为(▲ )..°.°.°.°5.一次函数-的图象不.经.过.的象限是( ▲ )..第一象限.第二象限.第三象限.第四象限(第题图)6.下列四个图形:其中是轴对称图形,且对称轴的条数为的图形的个数是( ▲ ).A.个.个.个.个7.对于反比例函数,下列说法不.正.确.的是( ▲ )..点(-,-)在它的图象上.它的图象在第一、三象限.当> 时,随的增大而增大.当<时,随的增大而减小8.如图,在菱形中,对角线、相交于点,为的中点,则下列式子中一定成立的是(▲).....9.如图,将长为,宽为的矩形纸片分割成个三角形后,拼成面积为的正方形,则≠( ▲ ).....(第题图)(第 题图)10. 小阳在如图①所示的扇形舞台上沿 ﹣﹣匀速行走,他从点 出发,沿箭头所示的方向经过点 再走到点 ,共用时 秒.有一台摄像机选择了一个固定的位置记录了小阳的走路过程,设小阳走路的时间为 (单位:秒),他与摄像机的距离为 (单位:米),表示 与 的函数关系的图象大致如图②,则这个固定位置可能是图①中的( ▲ ). .点 .点 .点.点(第 题图)卷 Ⅱ二、填空题(本大题有 小题,每小题 分,共 分) 11. 使代数式有意义的 的取值范围是▲ .12. 东山茶厂有甲、乙、丙三台包装机,同时分装质量为 克的茶叶. 从它们各自分装的茶叶中分别随机抽取了 盒,测得它们的实际质量的方差如下表所示:根据表中数据,三台包装机中,▲ 包装机包装的茶叶质量最稳定.13. 如图,是反比例函数在第一象限内的图象,且过点(,),与关于 轴对称,那么图象的函数解析式为▲(>).(第 题图)14. 将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”, 它们的“等距”是,那么它们周长的差是 ▲ .15. 已知在直角坐标平面内,以点(,)为圆心,为半径画圆,⊙与坐标轴恰好有三个交点,那么的取值是▲ .16. 在平面直角坐标系 中,抛物线 交 轴于点为 ,顶点为 ,对称轴与 轴交于点 . (1) 顶点的坐标为▲ (用含 的代数式表示);(2) 当抛物线顶点在第二象限时,如果∠∠,的值为▲. 三、解答题(本大题共有小题,共分) .(本题 分)计算:--°(-)--..(本题 分)已知多项式 ( )(-)( )-. (1) 化简多项式 ; ()若(),求 的值.甲包装机 乙包装机 丙包装机方差(克 ).(本题 分)如图所示,巨型广告牌 背后有一看台 ,台阶每层高 米,且米,现有一只小狗睡在台阶的 这层上晒太阳,设太阳光线与水平地面的夹角为α,当α°时,测得广告牌 在地面上的影长 米,过了一会,当α°, 问小狗在 这层是否还能晒到太阳?请说明理由..(本题 分)杂技团进行杂技表演,演员从跷跷板右端 处弹跳到人梯顶端椅子 处, 其身体(看成一个点)的路线是抛物线,已知起跳点 距地面的高度为 米,弹跳的最大高度距地面 米,距起跳点 的水平距离为 米,建立如图所示的平面直角坐标系,(1) 求演员身体运行路线的抛物线的解析式? (2) 已知人梯高 米,在一次表演中,人梯到起跳点 的水平距离是 米,问这次表演是否成功? 说明理由.(第 题图)21. (本题 分)如图,已知⊙为△的外接圆,为⊙的直径,作射线 ,使得 平分∠,过点 作 ⊥ 于点 (1) 求证为⊙ 的切线; (2) 若 ,∠,求⊙的半径..(本题 分)(第 题图)为了解八年级学生的身体素质情况,老师以八年级()班 位学生为样本进行了一分钟跳绳次数测试.根据测试结果,绘制出部分频数分布表和部分频数分布直方图. (如下所示):请结合图表完成下列问题:八年级()班一分钟跳绳次数的频数分布直方图跳绳次数 组别 次数 频数(人数) 第 组 ≤< 第 组 ≤< 第 组 ≤<第 组 ≤< 第 组 ≤<(1)表中的▲;并把频数分布直方图补充完整;(2)这个样本数据的中位数落在从左到右数第▲组;(3)已知该校八年级共有学生,请你估计一分钟跳绳次数不低于次的八年级学生大约多少名?. (本题分)已知:矩形中,,,点、分别在边、上,直线交矩形对角线于点,将△沿直线翻折,点落在点处,且点在射线上.(1)如图,当⊥时,求的长;(2)如图,当⊥时,求的长;(3)请写出线段的长的取值范围,及当的长最大时的长.AB(图)(图)(备用图).(本题分)已知(,),点是轴上的动点,设(,), 过作的垂线交轴与,点是的中点.(1)当点在轴上时,求点坐标及直线的解析式;(2)如图,当点在第一象限时,若直线与过点的双曲线的另一支交于点,将点关于轴作轴对称变换得点′,连结′,′,.○求证:四边形′为平行四边形;○当为何值时,四边形′为矩形.(3)如图,设过点画轴的垂线与直线交于点,是否存在点,使△成为等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.。
2018 金衢十二校联考数学参考答案及评分细则二、填空题(本大题有 6 小题,每小题 4 分,共 24 分)11.x ≥-1; 12.丙; 13.y =-2;14. 6 3;x15.2 或 ;16. (1)(m , 1-m ); (2) m = -1 或m = -2三、解答题17. (1) 1 1= -1+1-……………………各 1 分9 3 =-2 9 18. 3x +3,…………………2 分……………………各 3 分19. 解:当α=45°时,小狗仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点 B 射下的光线与地面 AD 的交点为点 F ,与 MC 的交点为点 H .当α=60°时,在 Rt △ABE 中, ∴AB =10•tan60°=10 3. ∵∠BFA =45°, 此时的影长 AF =AB =10 3米, ............. 3 分 ∴CF=AF-AC =10 3-17>0.3 米, ............. 2 分 ∴小狗能晒到太阳. ............. 1 分20. 解 :(1) 故 y =-3(x -2.5)2+4.75, ............. 4 分5(2)当 x =4 时,y =-3.4=BC ,............. 3 分 故这次表演成功. ............. 1 分 21. 解(1)连结 OA , .............................. 1 分C∴∠DAO =∠DAB +∠BAO =∠DAB +∠ABO=∠DAB +∠ABD= 90°, ............... 1 分∵A 为圆上一点, ∴DA 为圆 O 切线. ............................ 1 分(2)由题意可知:AD =BD ·tan ∠ABD =2, ................. 1 分∴AB = 5,∴cos ∠ABD = 1, ............... 1 分5(第 21 题图)5 ±3 6.AB O∵AD ⊥BF ,∴∠ABD +∠BAD =90°, 又∵BA 平分∠CBF , ……………………1 分 F D∴∠ABD =∠ABO , ……………………1 分又∵OA =OB ,∴∠ABO =∠OAB , ……………………1 分∴BC =ABcos ∠ABD=5, ................ 1 分∴OB = 1BC =2.5....................... 1 分 222. (1)12 ........................................................................................................................... 2 分频数分布直方图(略)(12 人,18 人), ............................. 2 分 (2)三 .............................................................. 2 分(3)800×36=576(人) .................................................................................................. 2 分5023. 解:(1)∵△AME 沿直线 MN 翻折,点 A 落在点 P 处,∴△AME ≌△PME . ∴∠AEM =∠PEM ,AE=PE . ∵ABCD 是矩形,∴AB ⊥BC . ∵EP ⊥BC ,∴AB // EP .∴∠AME =∠PEM . ∴∠AEM =∠AME . ∴AM =AE .∵ABCD 是矩形,∴AB // DC . ∴ AM = AE . ∴CN =CE .CNCE设 CN = CE =x .∵ABCD 是矩形,AB =4,BC =3,∴AC =5. ∴PE= AE=5- x .∵EP ⊥BC ,∴ EP = sin ∠ACB = 4.CE 5 ∴ 5 - x = 4 . ∴ x = 25 ,即CN = 25 ....................................... 3 分 x 5 99 (2)∵△AME 沿直线 MN 翻折,点 A 落在点 P 处,∴△AME ≌△PME . ∴AE=PE ,AM=PM .∵EP ⊥AC ,∴ EP = tan ∠ACB = 4. ∴AE = 4 . CE 3CE 3 ∵AC =5,∴AE = 20 ,15 .∴ PE = 20 .CE =77∵EP ⊥AC ,∴ PC =∴ PB = PC - BC = 25 - 3 = 4 .7 7=25 . 7在 Rt △PMB 中,∵ PM 2 = PB 2 + MB 2 ,AM=PM .∴ A M 2 = 4 2 2 . ∴AM =100 ........................................... 4 分( ) + (4 - AM ) 749(3)0 ≤ CP ≤ 5 , ............................... 2 分 当 CP 最大时 MN = 35 ............................... 1 分224.(1)当点 D 在 x 轴上时,点 C 与 O 重合,可求得 B 点坐标为(133,0) ................. 2 分7直线 AC 的解析式为 y = 23x ; ............... 2 分(2) ○1 由双曲线和正比例函数图象的中心对称性可知,点 D ,F 关于点 O 成中心对称,则OD =OF ;由轴对称可知 OB =OB ′,则四边形 DB ′FB 为平行四边形;………2 分○ 2 由○1 得,四边形 DB ′FB 为平行四边形,若四边形 DB ′FB 为矩形,则 OB =OD =t ,又∵点 D 是 Rt △BOC 的斜边 BC 的中点, ∴OD =BD ,∴△OBD 为等边三角形, y ∴OC = 3BO ,C过点 A 分别作 AG ⊥y 轴,AH ⊥x 轴,垂足为 G ,H .则,易得△AGC ∽△AHB G D∴HB GC ∴ =AH AG 9-3t O B H x CG = ;2 ∴ 13-3t OC =2∴13-3t = 3t213 26 3-39t = =……………………………………………………………………2 分 2 3+3 3 (3)Ⅰ 0<t <3当点 E 与点 A 重合时,△CDE 为等腰三角形即直线 DE 经过点 A 13-3t ∴ =24 ∴t =53 ∴B ( 5 3,0); ................................... 1 分 Ⅱ 3<t <13 3设 CD =CE过 A 作 AM ⊥y 轴, 易证△AMC ∽△DHC ∴HD HC t=AM MC ∴2 3 = 13-3t 13-3t 2-4 2 ∴t =± 13∴B ( 13 ,0);……………………1 分yA ∴A13Ⅲt>3∠CED 为钝角,设CE=DE ∴CG=BG∴△OCG≌△ABG∴AB=OC∴(13-3t2)2=(t-3)2+22解得t1=3 (舍去),t2=7.8∴B (7.8,0) .......................................................................... 1 分Ⅳt<0可求得OKyC 3t-13=t-3当CD=CE 时D E∴CB=CK∴OB=OK3t-13 A∴t-3=-t解得t=± 13 B O K x∴B (-13 ,0) .......................................................................................................................... 1 分综上所述,存在点 B 使△DCE 为等腰三角形,此时B 点坐标为B1(53,0);B2( 13 ,0);B3 (7.8,0);B 4(-13 ,0).AGOxBEDC。
2018学年金丽衢十二校高三第一次联考数学参考答案一 选择题(每小题4分,共40分)二 填空题(多空题每题6分,单空题每题4分,共36分) 11.5212.23(0, 14] 13.2 1414.45 17 15.2- 16.23π 17.3三 解答题18.解:(1)在△ABC 中,cos A =45,A ∈(0, π),所以sin A 35==.同理可得,sin ∠ACB=1213.所以cos B =cos[π-(A +∠ACB )]= -cos(A +∠ACB )=sin A sin ∠ACB-cos A cos ∠ACB=312451651351364⨯-⨯=.…………………………7分 (2)在△ABC 中,由正弦定理得,AB =sin BC Bsin ∠ACB =13123135⨯=20.又AD =3DB ,所以BD =14AB =5.在△BCD 中,由余弦定理得,CD ……………………………………14分19.(1)证明:连接ME ,因为点M ,E 分别是P A ,PD 的中点,所以ME =12AD ,ME ∥AD ,所以BC ∥ME ,BC =ME ,所以四边形BCEM 为平行四边形,所以CE ∥BM . 又因为BM ⊂平面BMD ,CE ⊄平面BMD ,所以CE //平面BMD .……………………6分(2)如图,以A 为坐标原点建立空间坐标系O -xyz ,则又1,1,12CQ ⎛⎫=-- ⎪⎝⎭,()1,0,1CE =-设平面CEQ 的法向量为(),,x y z =n ,列方程组求得其中一个法向量为()2,1,2=n , 设直线P A 与平面CEQ 所成角大小为θ,于是2sin 3θ==,进而求得cos θ=…………………………15分 20.(1)a n +1+a n -1=2a n +2,则(a n +1-a n ) - (a n -a n -1)=2.所以{a n +1-a n }是公差为2的等差数列. ……………………… 5分 (2)n ≥2,a n =(a n -a n -1)+…+(a 2-a 1)+a 1=2n +…+4+2=2·(1)2n n +=n (n +1).当n =1,a 1=2满足.则a n =n (n +1). ……………………………… 8分 b n =10(1)(!11012)2nn n n ++-=-∴S n =10(1+12+ (1))-2n ,∴S 2n =10(1+12+ (1)+11n ++12n ++…+12n )-22n ,设M n =S 2n -S n =10(11n ++12n ++ (12))-2n ,………………………………11分∴M n +1=10(12n ++13n ++…+12n+121n ++122n +)-12n +, ∴M n +1-M n =10(121n ++122n +-11n +)-12=10(121n +-122n +)-12=10(21)(22)n n ++-12,∴当n =1时,M n +1-M n =1034⨯-12>0,即M 1<M 2,当n ≥2时,M n +1-M n <0,即M 2>M 3>M 4>…,∴(M n )max =M 2=10×(13+14)-1=296,则{S 2n -S n }的最大值为S 4-S 2=296……………………………………15分21.(1)11121122OMN S MN ∆=⨯⨯⨯⨯=≥………………………………6分(2)设),sin Eθθ,则AE方程为y x =+,则M为sin t t θ+⎛⎫⎝,同理N 为sin t t θ-⎛⎫ ⎝,因为OM ON ⊥,所以(2202t t -=,得2t =.………………15分【也可设E 为()00,x y 求出】22.(1)因为()2'31826f x x x =-+-,所以126x x +=,求得()12()6f x f x +=………6分(2)()()''61863f x x x =-+=--,所以函数()f x 在()0,3的图象为下凸,在()3,+∞的图象为上凸,记()()3,3P f ,求得P 处()f x 的切线为y x =,再记()0,Q a ,有求得()f x的极大值点为3339M ⎛⎝⎭,①当39a +≥时,直线y =kx +a 与曲线y =f (x )显然只有唯一公共点②当[3,39a ∈+时,直线QM 斜率为正,且与曲线y =f (x )有三个公共点,舍去.③当()0,3a ∈时,直线QP 斜率为正,且与曲线y =f (x )有三个公共点,舍去.④当(,0]a ∈-∞时,当()0,PQ k k ∈,P 在直线上方,直线y =kx +a 与曲线y =f (x )的上凸部分有唯一公共点,与下凸部分不相交;当PQ k k =时,直线y =kx +a 与曲线y =f (x )交于P 点,与上凸部分和下凸部分均不相交;当(),PQ k k ∈+∞,P 在直线下方,直线y =kx +a 与曲线y =f (x )的下凸部分有唯一公共点,与上凸部分不相交. 所以此种情况成立综上,a 的取值范围为23(,0][3,)9-∞++∞…………………………………15分。
2018学年金丽衢十二校高三第一次联考生物参考答案一、选择题1—5B D A C B6—10B A C D D11—15C C C A A16—20B B A C D21—25C C B C B26—28A C D二、非选择题29.(6分,每空1分)(1)分解者和(一级)消费者(写全给分)(2)浮游植物和水草固定的太阳能(3)斜温层大于(4)逻辑斯谛被分解者分解和未被利用30.(7分,每空1分)(1)叶片的层次、光照强度CaCO3单层尼龙布不能(2)下层A叶片的净光合速率达到最大时所需光照强度低于B叶片(3)碳31.(7分,每空1分,遗传图解2分)(1)6(2)A1A2X B X b或A1A3X B X b7/839/64(3)3黑色卷毛雄性花斑色卷毛雌性P A1A1X B Y×A2A3X B X B配子A1X B A1Y A2X B A3X BF1A1A2X B X B A1A3X B X B A1A2X B Y A1A3X B Y黑色卷毛雄性黑色卷毛雌性1:132.(14分,每空1分)Ⅰ(1)琼脂糖和酚红(顺序颠倒不得分)封口膜(2)将未接种的培养基在适宜温度下放置适宜的时间(或:37度恒温箱中培养),观察培养基上是否有菌落产生浙江高考墙QQ2754808740(3)稀释涂布平板 2.46×109少由于两个或多个细菌连接在一起,往往统计的是一个菌落或死菌未计入,故用此方法测得的细菌数偏低(其他合理答案酌情给分)生物参考答案第1页(共2页)Ⅱ(1)自身环化转化(2)鉴定和筛选出导入目的基因的胚胎干细胞(3)胚胎成纤维细胞(4)内细胞团同期发情(5)抗原—抗体杂交33.(每空1分,共10分)(1)有丝分裂中期(1分)配对(1分)(2)葡萄糖溶液(1分),棕色(两个“棕色”给1分)试管1号2号3号4号5号装入液体葡萄糖溶液测试情况棕色棕色(3)无菌葡萄糖受到杂菌污染或自身发生分解(1分)其他合理答案酌情给分(4)生长激素促进蛋白质合成、促进脂肪分解(1分)(5)①植物生长调节剂(或:植物生长物质)(1分)B(1分)②(图形2分)生物参考答案第2页(共2页)。
浙江省金丽衢十二校2023-2024学年高三上学期第一次联考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合A={0,1,2,3,5},B={x|x2−2x>0},则A∩B=()A.{0,1,2}B.{0,3,5}C.{3,5}D.{5}2.圆C:x2+y2−2x+4y=0的圆心C坐标和半径r分别为()3.已知平面向量a⃗,b⃗⃗满足:|b⃗⃗|=2|a⃗|=2,a⃗与b⃗⃗的夹角为120°,若(λa⃗+b⃗⃗)⊥(a⃗−b⃗⃗)(λ∈R),则λ=()4.已知直线a,b和平面α,a⊄α,b∥α,则“a∥b”是“a∥α”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(1+x−y)5展开式中含x2y项的系数为()A.30B.−30C.10D.−106.已知函数y=2sin(ωx+φ),该图象上最高点与最低点的最近距离为5,且点(1,0)是函数的一个对称点,则ω和φ的值可能是()7.一个正方形网格ABCD由99条竖线和99条横线组成,每个最小正方形格子边长都是1.现在网格中心点O处放置一棋子,棋子将按如下规则沿线移动:O→P1→P2→P3→P4→P5→⋯..,点O到P1的长度为1,点P1到P2的长度为2,点P2到P3的长度为3,点P3到P4的长度为4,……,每次换方向后的直线移动长度均比前一次多1,变换方向均为向右转.按此规则一直移动直到移出网格ABCD为止,则棋子在网格上移动的轨迹长度是()A.4752B.4753C.4850D.4851二、多选题10.为调研加工零件效率,调研员通过试验获得加工零件个数x与所用时间y(单位:min)的5组数据为:(10,52),(20,67),(30,70),(40,75),(50,86),根据以上数据可得经验回归方程为:ŷ=0.76x+â,则()A.â=47.3B.回归直线ŷ=0.76x+â必过点(30,70)C.加工60个零件的时间大约为92.8minD.若去掉(30,70),剩下4组数据的经验回归方程会有变化11.设P是抛物线弧C:y2=8x(y>0)上的一动点,点F是C的焦点,A(4,4),则()A.F(2,0)B.若|PF|=4,则点P的坐标为(2,4)C.|AP|+|AF|的最小值为2+2√5D.满足△PFA面积为9的点P有2个212.对于集合A中的任意两个元素x,y,若实数d(x,y)同时满足以下三个条件:①“d(x,y)=0”的充要条件为“x=y”;②d(x,y)=d(y,x);③∀z∈A,都有d(x,y)≤d(x,z)+d(y,z).则称d(x,y)为集合A上的距离,记为d A.则下列说法正确的是()A.d(x,y)=|x−y|为d RB.d(x,y)=|sinx−siny|为d RC.若A=(0,+∞),则d(x,y)=|lnx−lny|为d AD.若d为d R,则e d−1也为d R(e为自然对数的底数)三、填空题四、解答题17.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知c2b2+c2−a2=sinCsinB.(1)求角A;(2)设边BC的中点为D,若a=√7,且△ABC的面积为3√34,求AD的长.18.在三棱柱ABC−A1B1C1中,四边形BCC1B1是菱形,△ABC是等边三角形,点M是线段AB的中点,∠ABB1=60°.(1)证明:B1C⊥平面ABC1;(2)若平面ABB1A1⊥平面ABC,求直线B1C与平面A1MC1所成角的正弦值.19.袋中有2个黑球和1个白球,现随机从中有放回地取球,每次取1个,约定:连续参考答案:1.C【分析】由不等式x2−2x>0,解得x>2或x<0,再运用集合的交集即可.【详解】由不等式x2−2x>0,解得x>2或x<0,则集合{x|x>2或x<0},又A={0,1,2,3,5},∴A∩B={3,5}.故选:C.2.A【分析】将一般方程化为标准方程即可求解.【详解】圆C:x2+y2−2x+4y=0,即C:(x−1)2+(y+2)2=5,它的圆心C坐标和半径r分别为C(1,−2),r=√5.故选:A.3.D【分析】先计算平面向量a⃗,b⃗⃗的数量积,再利用(λa⃗+b⃗⃗)⋅(a⃗−b⃗⃗)=0,列式解得即可.【详解】由题意,得a⃗⋅b⃗⃗=|a⃗|⋅|b⃗⃗|cos120°=1×2×(−1)=−1,2由(λa⃗+b⃗⃗)⊥(a⃗−b⃗⃗),得(λa⃗+b⃗⃗)⋅(a⃗−b⃗⃗)=0,即λa⃗2+(1−λ)a⃗⋅b⃗⃗−b⃗⃗2=0,.∴λ−(1−λ)−4=0,解得λ=52故选:D4.A【分析】由线面平行的判定、面面平行的性质以及充分不必要条件的定义即可求解.【详解】因为b∥α,则存在c⊂α使得b∥c且b⊄α,若a∥b且a⊄α,则a//c,又a⊄α且c⊂α,所以a∥α,充分性成立;设β//α,b⊂β,a⊂β,a∩b=P,则有a∥α,但a,b不平行,即必要性不成立.故选:A.5.B【分析】根据排列组合与二项式定理知识直接计算即可.【详解】由题意得,(1+x−y)5展开式中含x2y的项为(C52⋅x2)⋅[C31⋅(−y)]⋅(C22×12)=−30x2y,故选:A【点睛】结论点睛:若A、B分别为双曲线的左、直线PB的斜率之积为定值.9.ACD【详解】)m,0),在△F1PF2中,PM是x0,)知|PF1|=2+12PF2|=√(x0−1)2+y02=且x。
金丽衢十二校2018学年高三第一次联考地理试卷本试卷分第I卷(选择题)和第Ⅱ卷(综合题)两部分,总分100分。
考试时间90分钟。
答案要涂写到答题纸上,否则不得分。
第I卷(选择题)本卷共25小题,每小题2分,共50分。
在每小题给定的四个选项中,只有一项是符合题目要求的。
读图1“哈尔滨市人口增长曲线图”。
完成1——2题。
1.对哈尔滨市人口增长分析不准确的是A.哈尔滨城区人口最多时期是1985年——1990年之间B.在2000年后人口增长主要影响因素是人口的机械增长。
C.在经过80年代生育高峰之后,从90年代开始自然增长进入低增长阶段D.人口再生产类型现已进人“低出生、低死亡、低增长率”的阶段。
2.哈尔滨市的人口增长不会导致:A.公共空间严重不足B.城市热岛效应明显C.交通拥挤加剧D.城市功能分区合并浙江省常住城镇人口占比61. 62%,青海省常住城镇人口占比44. 72%。
近年来,青海省着重探讨、研究未来城镇化发展的方向和思路。
完成3——4题。
3.两省城镇人口占比差异的原因是A.浙江省比青海省人口多B.浙江省比青海省人口自然增长快C.青海省比浙江省农业发达D.青海省比浙江省经济发展水平低4.青海省未来城镇化发展的方向和思路,不应是A.强调以人为本,注重和谐人居环境B.充分发挥好规划的引领和调控作用C.要坚持城乡区域统筹发展、城镇化数量与质量并重发展D.牧区大力发展劳动密集型工业,集聚人口形成城市读“台湾地形图和台北的气温曲线降水柱状图”。
完成5——7题。
5.台北气候类型为A.大陆性亚热带季风气候B.海洋性亚热带季风气候C.热带季风气候D.温带海洋性气候6.有一歌词“冬季到台北来看雨”,下列与冬季台北降水成因最接近的是A.新加坡的全年降水B.日本岛屿西侧日本海沿岸的暴风雪C.长江中下游地区的梅雨D.今年9月宁波台风雨7.有关台湾的叙述,正确的是A.东部断崖高耸,因地壳断裂上升B.东部不利建港口,因水域条件差C.东部城市数少于西部,因东部气象灾害更严重D.东部沿海多海水侵蚀地貌,西部平原为海水沉积地貌读图4“世界一大板块边界示意图(箭头表示相部板块运动方向)”。